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Introduction: Peptide-based research has attained new avenues in the antibiotics and 

cancer drug resistance era. The basis of peptide design research lies in playing with or 

altering physicochemical parameters. Here in this work, we have done exploratory data 

analysis (EDA) of physicochemical parameters of antimicrobial (AMPs) and anticancer 

(ACPs) peptides, two promising therapeutics for microbial and cancer drug resistance to 

deduce patterns and trends.  

Methods: Briefly, we have captured the natural AMPs and ACPs data from the APD3 

database. After cleaning the data manually and by CD-HIT web server, further data 

analysis has been done using Python-based packages, modlAMP and Pandas. We have 

extracted the descriptive statistics of 10 physicochemical parameters of AMPs and 

ACPs to build a comprehensive dataset containing all major parameters. The global 

analysis of datasets has been done using modlAMP to find the initial patterns in global 

data. The subsets of AMPs and ACPs were curated based on the length of the peptides 

and were analyzed by Pandas package to deduce the graphical profile of AMPs and 

ACPs. 

Results: EDA of AMPs and ACPs shows selectivity in the length and amino acid 

compositions. The distribution of physicochemical parameters in defined quartile ranges 

was observed in the descriptive statistical and graphical analysis. The preferred length 

range of AMPs and ACPs was found to be 21-30 amino acids, whereas few outliers in 

each parameter were evident after EDA analysis.  

Conclusion: The derived patterns from natural AMPs and ACPs can be used for the 

rational design of novel peptides. The statistical and graphical data distribution findings 
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will help in combining the different parameters for potent design of novel AMPs and 

ACPs.  

Keywords: antimicrobial peptide, anticancer peptide, data analysis, rational design, 

peptide properties, patterns and trends 

Introduction  

According to WHO (World Health Organization), antimicrobial resistance (AMR) and 

cancer are severe threats to human health.1 Recently, global antimicrobial resistance and 

use surveillance system (GLASS) reported laboratory-confirmed AMR cases in 

31,06,602 patients in 70 countries in 2019.2 In the era of antibiotic or multidrug 

resistance (MDR), there is a need to look for alternative and stable treatment options 

beyond these small molecules.3 Amongst non-communicable diseases, cancer is the 

leading cause of death that decreases life expectancy in every country globally. 

According to the international agency for research on cancer (IARC) GLOBOCAN 

(2020) database statistics, there were an estimated 19.3 million new cancer cases, and 

10 million cancer deaths reported worldwide in 2020.4 Traditional anticancer 

therapeutics involve surgery, radiation therapy, and chemotherapy as the major 

treatment options for primary tumors to extensive metastases. However, these 

traditional therapeutic options suffer from serious problems of drug resistance and 

adverse side-effects; for instance, data from a clinical study of patients suggest that 

above 80% of cancer patients acquired single or multiple drug resistance.5 

Given the rising prevalence of microbial and cancer drug resistance, there is an essential 

need to look for alternative therapeutics. Therapeutic peptides (THPs) such as AMPs 

(antimicrobial peptides) and ACPs (anticancer peptides) are being seen as new arsenals 
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in the era of microbial and cancer drug resistance, respectively.6,7 These peptides 

provide many advantages over traditional therapeutics drugs because of their better 

safety.8,9 AMPs are short, cationic, amphiphilic molecules of host defense produced by 

almost all life forms as components of the innate immune response. They display a 

broad spectrum of antimicrobial activity against Gram-negative, Gram-positive bacteria, 

fungi, viruses, and parasites.10 Besides antimicrobial activity, the immunomodulatory 

role of AMPs in mammals to stimulate pro or anti-inflammatory response by activating 

cells of the immune system (macrophages and mast cells) and anticancer or antitumor 

activities in various cancer cell lines or mice models are well established.11  

The potential of AMPs as safe, effective, and highly selective drugs against several 

different types of cancers can be exploited to design novel ACPs as potential drugs.12 

ACPs share most of the characteristics with AMPs, such as both possess high 

hydrophobicity (H), net positive charge, and fold into a well-defined alpha helix or beta-

sheet structure upon interaction with cell membranes. However, despite sharing 

common characteristics, there is still enough uncertainty in the physicochemical 

parameters that determine the activity of some AMPs against cancer cells.13 

The current challenges in peptide therapeutics such as low oral bioavailability, 

sensitivity to host protease, hemolysis and cytotoxicity, and short half-life hinder the 

development of successful AMPs or ACPs candidate.14,15 Furthermore, a lack of 

understanding of rational design approaches further increased the snag in therapeutics 

peptides development.6 Several previous efforts to explore the physicochemical 

parameters from the datasets of AMPs or ACPs were mainly made during the curation 

of peptide databases.16–19 Though, these efforts explored a few physicochemical 

parameters of the peptides but lack sufficient statistical analysis. Furthermore, a 
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combination of synthetic and natural peptide datasets was used in these studies that may 

have prevented the overall representation of physicochemical parameters of natural 

peptides. 

The challenges in AMPs or ACPs development and design can be better solved by 

understanding the underlying principles of designing natural peptides, as recently stated 

by Wang, 2020.20 Additionally, the study of physicochemical parameters of natural 

AMPs or ACPs may prove advantageous to the clinical peptide candidates as most of 

these candidate peptides are the analogs or modified derivatives of natural peptides.21,22 

Therefore, compared to synthetic peptides, the analysis of physicochemical parameters 

of natural AMPs and ACPs can decode design principles better which can help in the 

designing of novel agents.20 Furthermore, several natural or synthetic AMPs and ACPs 

have been collected from the literature to curate peptide databases.16-19,23–30 The peptide 

datasets from these databases can provide insights into the overall design parameters for 

the potent design of novel AMPs and ACPs.22,31 

In the current age of data science, exploratory data analysis (EDA) is the process of 

deriving hidden and unknown information from datasets to discover new patterns and 

trends in the data.32 Graphical representation of dataset analysis is the main aim of 

EDA, through which hidden patterns and facts can be easily detected.33 EDA helps 

gather instant intelligence about the data through visual inspection of graphs, plots, or 

images that the human brain can easily interpret.34 The statistical analysis during EDA 

provides only a summary of the data and may miss crucial patterns in the datasets. In 

contrast, the graphical analysis in EDA displays hidden patterns and facts. EDA prefers 

multiple plots compared to a single plot because there is no single “best plot” but rather, 

each different plot helps to identify a unique feature of the dataset.35,36 Recently, the 
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EDA approaches have been used on datasets of different domains to explore hidden 

information and facts. The datasets analyzed for deducing statistical patterns and 

different graphical representations were also plotted for visual analysis of data.37–43 

EDA of natural AMPs and ACPs datasets can provide insight into the design 

parameters. In addition, the uncertainty in physicochemical parameters of some AMPs 

that have shown anticancer activity can also be inferred to develop new potent AMPs or 

ACPs. Thus, EDA will not only provide a statistical description of physicochemical 

parameters for rational-based peptide design but can also contribute to the 

understanding of peptide data for machine learning based model-building. 

Hence, here in this work, we have used a new methodology for EDA of 

physicochemical parameters of natural AMPs and ACPs. The methodology approach 

was implemented using Python based packages to decipher the patterns and trends in 

peptide datasets. EDA was performed on a complete dataset termed as global dataset 

here and subsets (partitioned based on length interval) of both AMPs and ACPs.  

Materials and Methods 

Dataset preparation 

Natural AMPs and ACPs were retrieved from the APD3 database 

(https://aps.unmc.edu/).30 APD3 contains mostly natural peptides from literature sources 

with only a few synthetic peptides as derivatives of natural AMPs.20,30 We used “anti-

Gram+/Gram- bacteria” and “anticancer” filters to retrieved AMPs and ACPs, 

respectively. The peptide sequences and physicochemical parameters such as length, 

charge, Bowman index, and structure and activity types were captured from the APD3. 

https://aps.unmc.edu/).%5b28
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Dataset preprocessing 

By default, the retrieved AMPs also contain ACPs; therefore, we remove ACPs to get 

AMPs exclusively for analysis. Furthermore, both datasets were checked for the 

presence of any synthetic peptides by manual checking the annotated name of each 

peptide. Redundancy in the dataset was checked using the CD-HIT (http://weizhong-

lab.ucsd.edu/cdhit-web-server/cgi-bin/index.cgi?cmd=cd-hit-2d) web server.44 Both 

datasets were cleaned to obtained >99% non-reductant AMPs and ACPs datasets.  

Extraction of additional physicochemical parameters 

In addition to basic physicochemical parameters captured from the APD3 database, we 

also calculated other important peptide parameters like molecular weight, isoelectric 

point (pI), instability index, aromaticity, and aliphatic index. We used modlAMP 

version 4.2.3 (molecular design laboratory’s antimicrobial peptides package), a Python-

based package for peptide data analysis to extract additional physicochemical 

parameters.45 Globaldecsriptor class of descriptors module of modlAMP was used for 

this purpose. We installed and used modlAMP using Spyder IDE (integrated 

development environment) of the Anaconda platform.46 Sequence data of AMPs and 

ACPs were converted into CSV (comma separated values) files to be read by 

Globaldecsriptor. The output of each parameter was stored in columns in a separate 

out.csv file. The collected (from APD3) and extracted (from modlAMP) 

physicochemical parameters of AMPs and ACPs were stored in excel spreadsheets 

(Supplementary file 1 (AMPs dataset) and Supplementary file 2 (ACPs dataset)) for 

EDA. 

Global analysis of AMPs and ACPs 
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EDA was performed on Spyder, a Python IDE available for data analysis on the 

Anaconda platform. Python’s pandas version 1.2.2 package47 and Globalanalysis class 

of the modlAMP analysis module were used for EDA. Datasets were checked for null 

values, dimensions, and variable types using standard commands of pandas. Descriptive 

statistics of datasets were calculated using the “describe ()” function of the pandas 

package. 

To analyze the initially hidden pattern and trends graphically in basic physicochemical 

parameters of global datasets of AMPs and ACPs, we used Globalanalysis class of 

modlAMP. The sequences of AMPs and ACPs were stored in CSV formats to be read 

by Globalanalysis. Furthermore, box plots and heatmaps were generated for all 

physicochemical parameters using the pandas package for graphical analysis.  

Subset analysis  

Due to the unequal size of the datasets, we avoided a direct comparison of AMPs and 

ACPs. However, in order to gain insight into the influence of length on other 

physicochemical parameters, we partitioned each dataset into a length interval of 10, as 

described in the previous studies.48,49 Usually, the basis of partition depended on the 

significance of the length parameter in the peptide designing. The number of amino acid 

(aa) residues in the peptides influences other physicochemical parameters and even the 

activity of the designed peptides.50 

The different subsets of peptides datasets were also analyzed for descriptive statistics 

using the “describe ()” function. The graphical analysis (boxplot and heatmaps) of 

subsets was done using the pandas package. Furthermore, we also calculated the amino 
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acid compositions of subsets by using “aa.freq ()” function of modlAMP. The overall 

methodology used in the study is summarized in Fig. 1. 

 

Fig. 1. Overall methodology used for exploratory data analysis of physicochemical 

parameters of natural AMPs and ACPs. 

Results 

Dataset characterization 

A total of 2680 & 226 natural AMPs and ACPs were retrieved from APD3. Both 

datasets contain peptides with natural amino acids. Any synthetic peptides in the 

datasets were removed manually to get precisely natural AMPs and ACPs. After 

screening AMPs datasets for anticancer or antitumor active peptides, we finally got 
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2384 AMPs, whereas the ACPs dataset contains 226 ACPs. A total of ten 

physicochemical parameters of peptides were taken into account for the analysis in 

which five parameters (such as length, charge, Bowman index, hydrophobicity, and 

structure type) were retrieved from APD3 and the remaining five (molecular weight, 

isoelectric point (pI), instability index, aromaticity, and aliphatic index) were calculated 

using Globaldecsriptor. Out of ten parameters, structure type was the only object data 

type, and the remaining were of the variable data types. The complete datasets (global 

and subsets) used in the study can be found in Supplementary file 1 (AMPs dataset) and 

Supplementary file 2 (ACPs dataset). 

Trends and Patterns in Global analysis 

To identify trends and patterns in the global AMP dataset, we have performed EDA in 

two steps. First, we calculated descriptive statistics of all physicochemical parameters to 

get the data’s statistical pattern. The anomaly observed in the statistical pattern of basic 

physicochemical parameters was visually inspected by the modlAMP. In the second 

step, we performed the graphical analysis of all physicochemical parameters using 

pandas to find the data patterns in each parameter. 

Descriptive statistics of AMPs global dataset 

The descriptive statistics of the AMPs dataset gave mean, minimum, interquartile range 

(Q1 (25%), Q2 (50%, median), and Q3 (75%)) and maximum value of all 

physicochemical parameters along with standard deviation (Table 1).  As previously 

mentioned in section 2.5, the length of AMP played an important role in determining 

the peptide activity. Additionally, the length also affects the mode of action, structure 

type, and cytotoxicity against red blood cells.50 The descriptive statistical analysis 
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results showed that the mean or average length of AMPs is 34.12 aa, whereas the length 

of 2 aa and 183 aa are minimum and maximum, respectively. The mean length of 34.12 

aa can relate to the mechanism of action of AMPs required for traversing the lipid 

bilayers. Furthermore, a recent study also suggests the approved peptides in this 

category range.49 Thus an AMP designed with this length can be of potent activity. The 

interquartile length range of AMPs was from 20 to 40 aa with a median length of 28 aa. 

So, designing de-novo or template-based AMPs within these length ranges may provide 

a potent active AMP.  

The net charge is defined as the sum of all charges of ionizable groups of the peptide 

and is an essential parameter for AMP activity. The net charge of AMPs can be negative 

or positive, which can be altered during peptide design to change antimicrobial or 

hemolytic activity.50 We found that the natural AMPs contain an average charge of 

+3.86; this observation was consistent with the previous finding of Wang (2019).20 The 

net cationic charge is required for the initial electrostatic attraction of AMPs to 

negatively charged phospholipid membranes.6 But a minimum and a maximum charge 

of -12 and +30 respectively were also evident from the analysis in the dataset. The 

interquartile range of charge lies between +2 to +5, with +3 being the median charge. 

These findings suggest that natural AMPs preferred a cationic charge range from +2 to 

+5. Therefore, modulation of AMPs towards this charge range may result in better 

interaction with negatively charged phospholipid membranes.     

Hydrophobicity is the percentage of hydrophobic residues present in the peptide. 

Previous studies showed that most AMPs were 50% hydrophobic. This parameter plays 

a key role in the AMP-membrane interaction and also modulates the activity.51 We 

found mean hydrophobicity of 42% in the global dataset of AMP. Surprisingly, the 
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minimum hydrophobicity in the dataset was found to be 0% and a maximum of 87%. 

The interquartile range of hydrophobicity spans 34% to 42%, with a median value of 

51%. These results reflect the presence of variable hydrophobic amino acid residues in 

the natural peptides.  

The Boman index was proposed by Boman (2003) to calculate the potential of peptides 

towards binding to other proteins (such as receptors) or membranes.52 A peptide having 

a calculated Boman index value of >2.48 kcal/mol is supposed to have a high binding 

potential.53 Furthermore, peptides having a high Boman index suggest their multiple 

roles in the cell due to their tendency to interact with different types of proteins.54 

Surprisingly, we found a significantly lower mean value of 0.84 kcal/mol for AMPs. 

The minimum value was -3.35 kcal/mol, but the maximum value of 8.72 kcal/mol 

exceeds the threshold value of 2.48 kcal/mol. The interquartile range falls between -0.24 

kcal/mol to 1.90 kcal/mol. Despite the active AMPs dataset, the statistical pattern of the 

Boman index value looks impertinent. 

AMPs are usually low molecular weight (<10000 Da) peptides.55 Previous studies have 

demonstrated that the activity of peptides also relies on the molecular weight56, which is 

the sum of the molecular weight of amino acid residues of the peptides.53  The peptide 

weight often limits its therapeutic value compared to small drug molecules; for 

example, a 5000 Da peptide production cost increases 10 fold compared to a 500 Da 

small molecule.57 Hence, understanding the natural peptides weight pattern along with 

other physicochemical parameters may help in cost-effective and efficient design. In our 

study, we found a mean weight of 3724.09 Da for AMPs. Active AMPs with a 

minimum weight of 294.35 Da and a maximum weight of 19842.55 Da were observed 

from the dataset. The weight of AMPs was found to be in the interquartile range of 
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2114.8 to 4323.66 Da. The pattern observed shows that an active AMP must not be of 

large molecular weight. 

The pI is defined as the pH at which the net charge of the protein or peptide is equal to 

0; this physicochemical parameter affects the solubility of peptides at different pH. The 

peptide becomes inactive if the pH of the solvent medium is equal to the pI of the 

peptide.53 The mean pI of AMPs is found to be 9.54 that suggests a preference for basic 

pH. In contrast to a basic mean value of pI, an acidic pI value of 2.42 and a higher basic 

pI value of 13.53 were also found from the dataset. Except for these extreme pI values, 

the interquartile range (8.55 to 10.70) revealed a preference for basic pH in most AMPs. 

The observed basic pH may be attributable to the high frequency of positive charge 

basic amino acid residues in the AMPs. 

The instability index parameter was given by Guruprasad et al. (1990). This parameter 

is used to predict the stability of a protein in the in-vivo environment based on its amino 

acid composition. An index value of less than 40 for a peptide reflects the stability of 

the peptide.53,58 We found a mean value of 27.95 for the AMPs dataset with -43.43 and 

190.38 as a minimum and maximum value, respectively. The interquartile range of 8.28 

to 43.18 with a median of 24.52 also indicated that most AMPs are stable in-vivo.  

According to Lobry (1994), aromaticity is the relative frequency of aromatic amino 

acids (F, W, and Y) in the protein or peptide sequence.59 Previous research works on the 

role of aromaticity described its importance in membrane interaction and structural 

integrity, which are critical to AMP activity.60,61 In another study, the role of aromatic 

interactions in the identification of biomolecules was highlighted, which may help in 

biomaterial research and molecular recognition.62  We found a mean value of 0.08 
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equivalent to 8% from the global dataset, but a minimum value of 0 reflects the lack of 

aromatic residues in some AMPs, whereas the interquartile range of 0.04 to 0.12 shows 

the presence of few aromatic residues.  

Ikai (1980) purposed the aliphatic index parameter to measure the thermal stability of 

proteins by calculating the relative volume occupied by aliphatic side chains of amino 

acid residues, A, V, I, and L.63 The higher value of this parameter means higher heat 

stability.64 Descriptive statistics showed higher values of instability index in the range 

of 56.66 to 121.21. The mean value was found to be 92.  

modlAMP analysis of AMPs global dataset 

The initial descriptive statistics gave insight into the statistical pattern of 

physicochemical parameters but revealed unusual trends in the data (Table 1) compared 

to known patterns about physicochemical parameters.50,65 For example, the maximum 

length of 183 aa and the maximum charge of 30 are lesser-known facts when 

considering literature that shows AMPs length up to 100 aa and net charge in the range 

of +2 to +9.65 Therefore, to uncover the hidden pattern, we used the modlAMP package 

that contains Globalanalysis class for plotting the peptide dataset's basic 

physicochemical parameters. Moreover, it also gave amino acids frequency distribution 

in the peptide dataset.   

The amino acid composition pattern observed in the AMPs dataset revealed the 

preference for G, K, L, I, and A (Fig. 2A) amino acids over other amino acids. 

Furthermore, the parameter length (Fig. 2C) was found to contain outliers in the dataset 

that may have resulted in unusual trends during the descriptive statistics. The graphical 

representations by modlAMP (Figs. 2A, 2B, 2C, 2D, 2E and 2F) uncover some of the 
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unusual patterns observed in descriptive statistics. Additionally, it also provided the 

most favorable patterns for the basic physicochemical parameters; for instance, the 

global charge tends to accumulate around +2 to +5 (Fig. 2B) with the most frequent 

value of +4. The length of AMPs distributed around 20-40 aa (Fig. 2C) is consistent 

with descriptive statistics. 

TABLE 1. Descriptive statistics of AMPs global dataset calculated using Pandas 

package. 

Physicochemical 

Parameters 

Mean Std. Min Q1 Median, 

Q2 

Q3 Max 

Length 34.12 23.14 2 20 28 40 183 

Charge 3.86 3.39 -12 2 3 5 30 

Hydrophobicity (%) 42 13 0 34 42 51 87 

Boman index 

(kcal/mol) 

0.84 1.54 -3.35 -0.24 0.80 1.90 8.72 

Molecular weight 

(Da) 

3724.09 2538.84 294.35 2114.28 3081.69 4323.66 19842.55 

Isoelectric point (pI) 9.54 1.89 2.42 8.55 10.02 10.70 13.53 

Instability index 27.95 27.61 -43.43 8.28 24.52 43.18 190.38 

Aromaticity 0.08 0.06 0 0.04 0.07 0.12 0.50 

Aliphatic Index 92.00 45.88 0 56.66 90.67 121.21 256.25 

 

Std. = Standard deviation; Min = Minimum; Q1 = First quartile or 25%; Q2 = Second 

quartile or 50%; Q3 = Third quartile or 75%; Max = Maximum 
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Interestingly, a graphical global analysis summary of the AMPs dataset by modlAMP 

shows that the data points in the hydrophobicity (Fig. 2D) and hydrophobic moment, 

µH (a measure of the helix amphipathicity)) (Fig. 2E) are uniformly distributed in the 

violin plot. Moreover, a 3D scatterplot (Fig. 2F) in the global summary also revealed a 

good correlation pattern among the hydrophobicity (H), charge, and hydrophobic 

moment (µH). 

 

Figure 2: Global analysis of physicochemical parameters of AMPs global dataset 

plotted using modlAMP. The global summary plot showing the distribution of basic 

physicochemical parameters of AMPs like the relative abundance of individual amino 

acids (A), global charge (B), sequence length (C), global hydrophobicity (D), 

hydrophobic moment (E) and 3D scatter plot (F) that shows the correlation.  

Graphical profile analysis of global AMPs dataset 
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The patterns observed above in the global summary plot of basic physicochemical 

parameters were not evident in the descriptive statistical analysis; thus, it prompted us 

to visually inspect each physicochemical parameter of the global AMPs dataset.  This 

task constituted our second stage of global data analysis, where we have used the 

Python pandas package to plot the distribution of AMPs data points graphically. Box 

plots were obtained for each parameter to analyze the distribution pattern further and 

trends in AMPs global data set. Only object data type, i.e., structure type, was also 

considered in this analysis for which descriptive statistic was not possible. To explore 

the correlation among each physicochemical parameter, we plotted a heatmap. The box 

plots obtained by the pandas package for each physicochemical parameter were 

compiled with heatmap and amino acid composition patterns to form a graphical profile 

of the AMPs global dataset, as shown in Figs. 3A-L. 

The graphical profile of the AMPs global data set helps to find the unusual pattern 

observed in descriptive statistical analysis. For instance, the boxplot of the most 

parameter contains outlier beyond the Q3 (Figs. 3A, 3B, 3C, 3D, 3E, 3G, 3H, 3I, 3J, 3K 

and 3L) except pI (Fig. 3F) in which outliers were detected below Q1. The correlation 

pattern in the parameters was found using a heatmap. The dark blue color shows a more 

positive correlation, whereas lighter blue to white colors shows a decrease or a negative 

correlation among the two variables. A value of 1 represents the highest correlation, 

whereas -1 shows a negative correlation. We found that parameters such as 

hydrophobicity, aromaticity, aliphatic index, and pI show a negative correlation with the 

length of AMPs (Fig. 3J). The charge was positively related to pI, whereas a negative 

correlation was found with the aliphatic index and hydrophobicity (Fig. 3J). This 

correlation analysis of natural AMPs will be helpful in the rational design of novel 
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peptides. By analyzing the relationships between two variables in the natural dataset, we 

can better modulate the template peptides for activity. 

AMPs can adopt different secondary structures, such as α-helix, β-sheet, extended or 

mixed structures. α-helix peptides are unstructured in an aqueous solution, whereas β-

sheet peptides are more ordered. The α-helical AMPs are usually more active against 

microbes due to their ability to undergo conformation change upon interaction with 

membrane.57,66  We found that secondary structures of the large number (1561 AMPs) of 

natural AMPs were unknown, and structure type α-helix (319) dominates over other 

structure types, as shown in Fig. 3L. 
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Figure 3: Graphical profile of global dataset of natural AMPs. (A) Distribution of 

length (B) charge (C) hydrophobicity (D) Boman index (E) molecular weight (F) pI (G) 

instability index (H) aromaticity (I) aliphatic index (J) correlation heatmap (K) amino 

acid frequency, and (L) structure type in global dataset of natural AMPs. 
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Descriptive statistics of ACPs global dataset 

The same procedure which has been followed in AMPs dataset analysis was used for 

the ACPs dataset. The descriptive statistics of the ACPs dataset are summarized in 

Table 2 also revealed some unusual patterns and trends; for example, the maximum and 

minimum length of ACPs in the dataset is 111 aa and 5 aa, respectively. The mean or 

average length was found to be 26.47 aa. The maximum length of 111 aa among ACPs 

is an unusual pattern observed compared to the known facts.13 Therefore, the modlAMP 

analysis was conducted to explore the hidden information in the dataset.  

TABLE 2: Descriptive statistics of ACPs global dataset calculated using Pandas 

package. 

Physicochemical 

Parameters 

Mean Std. Min Q1 Median

, Q2 

Q3 Max 

Length 26.47 14.44 5 17 25 31 111 

Charge 3.09 3.11 -6 1 3 4.75 16 

Hydrophobicity 

(%) 

47 12 0 40 48 56 100 

Boman index 

(kcal/mol) 

0.44 1.55 -3.82 -0.74 0.25 1.28 8.33 

Molecular weight 

(Da) 

2871.1

4 

1596.9

2 

407.4

4 

1744.8

4 

2618.24 3279.9

1 

12251.1

2 

Isoelectric point 9.08 2.27 2.55 7.82 9.83 10.70 12.80 

Instability index 26.61 27.77 -31.77 10.91 24.16 41.20 141.26 
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Aromaticity 0.076 0.059 0 0.037 0.065 0.107 0.307 

Aliphatic Index 105.35 52.54 0 61.75 97.73 142.39 264.28 

Std. = Standard deviation; Min = Minimum; Q1 = First quartile or 25%; Q2 = Second 

quartile or 50%; Q3 = Third quartile or 75%; Max = Maximum 

modlAMP analysis of ACPs global dataset 

The amino acid composition of the ACPs dataset shows the preference of G, K, L, I, A, 

and C amino acids over others as shown in Fig. 4A. The most frequent charge on ACPs 

was +2 (Fig. 4B), and the most preferred charge range was +1 to +5. We observed 

outliers above the length of 50 aa (Fig. 4C), containing a peptide of 111 aa (largest 

ACP) as also depicted in descriptive statistics.  Most ACPs were present in the length 

range of 17-31 aa as shown in the Fig. 4C. Global hydrophobicity and moment (µH) 

were also distributed uniformly as depicted in Fig. 4D and 4E, respectively. However, 

the correlation pattern in the 3D scatter plot (Fig. 4F) between charge, hydrophobicity, 

and moment (µH) shows minimal correlations compared to the AMPs dataset. 
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Figure 4: Global analysis of physicochemical parameters of ACPs global dataset 

plotted using modlAMP. The global summary plot showing the distribution of basic 

physicochemical parameters of AMPs like the relative abundance of individual amino 

acids (A), global charge (B), sequence length (C), global hydrophobicity (D), 

hydrophobic moment (E) and 3D scatter plot (F) that shows the correlation.  

Graphical profile analysis of global ACPs dataset 

Graphical profile of ACPs global dataset revealed the distribution of ACPs data points 

on the box plots. It was observed that compared to AMPs data points distribution, the 

numbers of outliers in ACPs are very few (Fig. 5A-5L). This observed pattern is may be 

due to the small set of ACPs dataset. But as observed in the AMPs dataset, the number 

of outliers for each parameter in the ACPs dataset also contains outlier beyond the Q3 

except pI. We found the same correlation (dark brown color shows a more positive 

correlation, whereas lighter brown color shows a decrease or a negative correlation) 

among the different parameters in ACPs dataset as was present in the AMPs dataset but 

with different magnitude (Fig. 5J). The analysis of the structure type object variable in 

the ACPs dataset shows that the secondary structure type, α-helix was the most 

preferred conformation adopted by ACPs, as shown in Fig. 5L. Fig. 5A-5L shows the 

graphical profile of the ACPs global dataset. 
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Figure 5: Graphical profile of global dataset of natural ACPs. (A) Distribution of 

length (B) charge (C) hydrophobicity (D) Boman index (E) molecular weight (F) pI (G) 

instability index (H) aromaticity (I) aliphatic index (J) correlation heatmap (K) amino 

acid frequency, and (L) structure type in global dataset of natural ACPs. 
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Trends and Patterns in Subsets analysis 

Although descriptive statistics, a summary of the global analysis by modlAMP, and a 

graphical profile analysis provide interesting facts about the global data sets, since the 

parameters length and amino acid composition are important in peptide design, we have 

created and analyzed subsets of AMPs and ACPs data sets based on lengths. The 

purpose of the subset analysis was to deduce the parameters of correlation among each 

parameter based on the length and the relative compositions of amino acids in the 

peptide. For this purpose, each dataset was divided into a length range of 10 intervals 

until the particular length range contains a significant number of peptides (in the case of 

AMPs >20 aa and ACP >10 aa) 

Subsets analysis of AMPs 

AMPs dataset was divided into 11 subsets (Supplementary file 1) in which the first 10 

sets were of length interval 10 each. The 11th subset contains AMPs that were >100 aa 

and for which there were less than 20 AMPs in the length range. The subsets formed 

after splitting the AMPs dataset show that approximately 74% of natural AMPs 

present in the length range of 11-40. The maximum numbers of AMPs were present in 

the length range 21-30 (674 AMPs), followed by 11-20 (559 AMPs) and 31-40 (529 

AMPs), as shown in Fig. 6. The amino acids distribution pattern in most AMPs subsets 

were found to be slightly different with the presence of high frequency of C, R, S, T, 

and V residues as compared to global AMPs datasets. However, the frequency pattern 

of G, K, L and I residues was found to be relatively consistent throughout all AMPs 

subsets which highlighted the significance of these amino acid residues even in the 

longer form of AMPs.   
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Fig. 6: Number of AMPs present in each subset. The subset 21-30 contains the most 

AMPs, followed by subsets 11-20 & 31-40.  

Similar to the amino acid composition analysis we analyzed the other physicochemical 

parameters of each subset by calculating descriptive statistics and graphical profile 

analysis. The descriptive statistics of each AMPs subset can be found in Table S1, 

Supplementary file 3 and the graphical profile analysis of AMPs subsets in Figs. S1-

S11, Supplementary file 4. The subsets 21-30 and 31-40 containing most of the AMPs 

and included in the interquartile range of the global dataset were discussed here.  

Trends in AMP subset 11-20 

The subset 11-20 containing 559 AMPs (as shown in Fig. 6) shows the average length 

of 16 aa residues; the maximum and minimum lengths of residues were 20 and 11, 

respectively (Table S1, Supplementary file 3). This subset has 121 AMPs, of which 

peptides with 13 aa residues were the most frequent. Amino acid composition analysis 

(Fig. S2-K, Supplementary file 4) shows the same amino acid preferences as the global 

dataset (Fig. 3K) and subset 21-30 (Fig. S3-K, Supplementary file 4). Similar to subset 
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21-30, this subset also shows few outliers among other parameters, but the central 

distribution of AMPs data points in quartile regions was also observed, as shown in Fig. 

S2 (Panels A-L), Supplementary file 4. 

Trends in AMP subset 21-30 

The analysis of subset 21-30 shows that the average lengths of AMPs are ~25 aa (Table 

S1, Supplementary file 3), less than the average length of the global dataset that is 34.12 

aa. The maximum and minimum lengths are 30 aa, and 21 aa respectively (Table S1, 

Supplementary file 3), and the 134 AMPs were found to be 24 aa residues long, the 

most frequent count in the subset. The frequency distribution of amino acids in this 

subset was similar to that of the AMPs global dataset, with K, L, G, I, and A residues as 

most frequent (Fig. S3-K, Supplementary file 4). These results reflect that this subset 

largely determined the composition of AMP's global dataset. The other AMPs 

parameters, though centered in the quartile regions in the box plots, but also contains 

few outliers, as shown in Fig. S3 (Panels A-L), Supplementary file 4.  

Subsets analysis of ACPs 

ACPs global data set (226 ACPs) was divided into 6 subsets (Supplementary file 2). 

The first five subsets were of length interval 10 each, whereas the sixth subset (>50 

residues) contains ACPs, which cannot be partitioned into subsets because of a smaller 

number of peptides (<10 ACPs). Segregating the ACPs global dataset into subsets 

unraveled the preferable ranges of length parameter. As shown in Fig. 7, most of the 

ACPs were found in the residue range 21-30 (83 ACPs), followed by 11-20 (71 ACPs) 

and 31-40 (34 ACPs). Though the number of ACPs in the global dataset 

(Supplementary file 2) is lesser than AMPs (Supplementary file 1), the preferred length 
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range is similar in both types of peptides. Both therapeutic agents preferred the 

length range 21-30, followed by 11-20 and 31-40 as shown in Fig. 6 & Fig. 7, 

respectively. 

 

Figure 7: Number of ACPs present in each subset. The subset 21-30 contains the 

most AMPs, followed by subsets 11-20 & 31-40. 

The analysis of amino acid patterns in ACP subsets revealed the dominance of the G, K, 

L, A and C as in the global ACPs dataset but the high frequencies of the R and S as 

compared to I was also seen in most of the subsets. The other physicochemical 

parameters of all six subsets (Supplementary file 2) of ACPs were analyzed for 

descriptive statistics, outlier detection by boxplot, and correlation analysis by plotting 

heat maps using the Pandas package. The subset 21-30 that contains most of the ACPs 

was discussed here. The remaining subset analysis was given in Table S2, 

Supplementary file 3 and graphical profiles in Figs. S1-S6, Supplementary file 5. 

Trends in ACP subset 21-30 



 

28 
 

The analysis of subset 21-30 shows that the average lengths of ACPs are ~26.33 aa 

residues (Table S2, Supplementary file 3), similar to the average length of AMPs 

preferred subset 21-30 (Table S1, Supplementary file 3). The maximum and minimum 

lengths were found to be 30 aa and 21 aa residues, respectively (Table S2, 

Supplementary file 3). The frequency distribution of amino acids in this subset of ACPs 

was similar to that of the AMPs global dataset and subset 21-30, with K, L, G, I, and A 

residues as the most frequent ones as shown in Fig. S3-K, Supplementary file 5. But the 

presence of C and P were also observed. The other ACPs parameters are centered in the 

quartile regions in the box plots but also contain few outliers, as shown in Fig. S3 

(Panels A-L), Supplementary file 5.  

Discussion 

In the era of antibiotics and cancer drug resistance, the research community has put 

tremendous effort into designing safe and reliable AMPs and ACPs, respectively, which 

is evident from number of published literature over the last few years.57  Many research 

groups have collected the published peptide sequences and physicochemical parameters 

data to curate peptide databases, servers and machine learning algorithms like AntiCP 

2.0, MLCPP 2.0, and xDeep-AcPEP, etc.16,17,24,29,67-71 Several previous efforts have 

taken advantage of the peptide datasets for designing novel peptides. For instance, 

Mishra & Wang (2012) used the DFT (database filtering technique) approach where 

they used the most probable physicochemical parameters derived from APD3 to design 

novel potent peptides against Staphylococcus aureus.72 In another study by Pearson et 

al. (2016), potent peptides were designed against Mycobacterium tuberculosis using 

database-derived peptide physicochemical parameters.73 
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The evidence from the above studies shows that the pattern information of 

physicochemical parameters derived from datasets can be proved significant in 

designing potent novel peptides. However, there is still a need to quantitatively examine 

these peptides' physicochemical parameters that can help in future design and 

application.15 In this context, natural peptides that serve as a template for most of the 

designed synthetic AMPs and ACPs and for which a vast amount of data is available in 

the peptide databases can be exploited to retrieve quantitative information.6,20,66   

Hence in the present study, we have done exploratory data analysis of the 

physicochemical parameters of natural AMPs and ACPs retrieved from the APD3 

database. To the best of our knowledge, this is the first attempt to perform EDA on 

natural AMPs and ACPs datasets. Furthermore, the study's uniqueness lies in the fact 

that both AMPs and ACPs datasets contain only natural peptides. Additionally, 

anticancer peptides were removed from the AMPs dataset to get unique AMPs. The 

major limitation of the study was the unequal size of AMPs and ACPs datasets. Hence, 

we avoided the direct comparison of descriptive statistical analysis results of the two 

datasets and emphasized the independent interpretation of these derived parameters.  

The descriptive statistical analysis of global AMPs and ACPs datasets revealed a 

uniform pattern of interquartile ranges (Q1-Q3) with some unobvious trends in the data. 

For instance, in AMPs global dataset each parameter shows some extreme lower and 

upper values (length (min = 2 aa, max = 183 aa) charge (min = -12, max =30), detailed 

analysis is shown in Table 1. The extreme lower and upper trends were also observed in 

the ACPs global dataset (length (min = 5 aa, max = 111 aa) charge (min = -6, max =16), 

detailed analysis is shown in Table 2.  This quantitative information derived from 

statistical analysis of each parameter can be used for rational-based peptide design. In 
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short, the mean, median, and Q1, Q2 and Q3 values of the different peptide parameters 

can be combined to design novel peptides that may likely have more stability and 

activity. For instance, an AMP or ACP can be designed with a selection of either 

minimum, maximum, Q1-Q3, or mean length combining with the minimum, maximum, 

Q1-Q3, or mean observations of other parameters like charge, hydrophobicity, Boman 

index, isoelectric point, and instability index etc. 

In the era of AMR, the computer-aided peptide design approaches such as template and 

de-novo based has been widely used to design the novel optimized peptide analogs.74 

Both of these approaches rely on the pattern information of amino acid frequency that 

plays a crucial role in selecting an individual or group of amino acids residues for the 

substitutions in selected template or a seed fragment for new peptide analogs. The 

amino acid frequency-based pattern information assisted the substitutions of residues 

during the computational design of new analogs with improve activity in many previous 

works.75,76 Hence the amino acid composition information derived from the natural 

AMPs and ACPs datasets in this study could be used for the selection of the most 

probable amino acids for substitutions in design of template or de-novo based 

computational approaches.  

The frequency pattern of amino acid composition found in AMPs and ACPs is similar 

(G, K, L, I, and A) except for C in the ACPs. A recent study pointed the role of cysteine 

in the stabilization of extracellular domain or motif structure during the interaction of 

ACP on the cell surface receptor.[9]  Thus, these most probable amino acids could be 

used for the substitution during computer aided design of more potent AMPs and ACPs. 

EDA of AMPs subsets revealed the high probability of C, R, S, T, and V residues in 

comparison to global dataset pattern whereas the R and S were dominant as compared 
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to I in the ACPs subsets. These patterns of amino acids frequency observed in subsets of 

natural AMPs and ACPs in our study could be helpful for the length specific computer 

aided peptide design by the substitutions of amino acid which are more frequent in the 

particular range length of AMPs and ACPs datasets.  

Moreover, these observed frequency patterns of amino acid compositions can be used in 

combination with the quantitative statistical values of other physicochemical parameters 

such as length, charge, hydrophobicity etc. for the computer aided rational design of 

AMPs and ACPs with improve activity.  

Given the significance of the length parameter in the peptide therapeutics77, we formed 

subsets and analyzed each subset of AMPs and ACPs. The partition of AMPs and ACPs 

in the subsets shows that both follow a similar pattern. For instance, it has been 

observed that subset 21-30 contains most of AMPs and ACPs followed by 11-20 and 

31-40 as compared to other AMPs and ACPs subsets. Moreover, due to the significance 

of subsets information in the computer aided design of peptides as shown by few recent 

studies78 we also extracted descriptive statistics (Table S1 & S2, Supplementary file 3) 

and prepared a graphical profile (Figs. S1-S11 (AMPs), supplementary file 4 & Figs. 

S1-S6 (ACPs), supplementary file 5) of each subset that can be used in the computer-

aided peptide design. Different researchers working on AMPs and ACPs can use the 

pattern observed among the different parameters to design novel peptide agents.  

Conclusion 

To succeed in designing more effective and stable AMPs & ACPs for therapeutics, the 

research community now needs to look for the data-based selection of the peptide 

physicochemical parameters. Here in this work, our study provides a blueprint of 
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physicochemical parameters of natural AMPs and ACPs datasets. Some of the broad 

conclusions drawn from the results are: most natural AMPs and ACPs were present in 

the particular length ranges of 21-30 followed by 11-20 and 31-40, the frequency 

pattern of amino acid composition in natural AMPs and ACPs was found to be similar 

(G, K, L, I, and A) except the presence of C in the ACPs. However, AMPs and ACPs 

subsets were found to have high abundance of C, R, S, T, V and R and S amino acid 

residues respectively as compared to their respective global datasets. The alpha-helix 

conformation was found to be preferred by both AMPs and ACPs.  

The present observations found in global and subset datasets of AMPs and ACPs might 

help to design more potent and stable peptides. These statistical and graphical profiles 

of AMPs and ACPs can impact the decision making while selecting the design 

parameters for computer-aided design of AMPs and ACPs for instance, preferred length 

ranges pattern, amino acid compositions among the global and subsets, the correlation 

pattern as heatmaps, quartile ranges of parameters and the information of which 

preferred secondary structure types adopted by AMPs and ACPs global and subsets can 

prove advantageous during tuning the different physicochemical parameters for novel 

analogs designs. Moreover, the outliers in graphical profiles will help the in detection of 

anomalies among each parameter. 

Furthermore, the methodology used in this work can be used for the exploratory data 

analysis of the other peptide datasets such as anti-allergic, anti-hypertensive, anti-

diabetic, anti-inflammatory and immunomodulatory peptides etc. Additionally, our 

future work involves designing novel AMPs or ACPs based on the derived parameters. 

Study highlights 
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What is the current Knowledge? 

✓ Natural antimicrobial and anticancer peptides can be used for the design of novel 

potent analogs.  

✓ The pattern information of physiocochemical parameters can be used for the 

computer-aided peptide design. 

What is new here? 

✓ Natural AMPs and ACPs global and subsets were used for deriving the pattern 

information from the physiocochemical parameters. 

✓ The patterns and trends in physiocochemical parameters of AMPs and ACPs 

were presented using different graphics and descriptive statistics.   
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