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Introduction
Diabetes mellitus is among the most rapidly rising 
global epidemics, with a complication that poses a major 
health threat. The main finding of diabetes mellitus 
is chronic hyperglycaemia caused by either impaired 
insulin secretion, impaired insulin effect, or both.1 The 
two most common forms of diabetes are type 1 diabetes 
(T1DM) resulting from pancreatic cell destruction that 
causes an absolute insulin deficiency, and type 2 diabetes 

(T2DM), which is caused by insufficient insulin secretion 
and impaired response to insulin.2 Gestational diabetes, 
in addition to T1DM and T2DM, is another common 
form of diabetes. However, other less common specific 
types exist.3 Leastways, T2DM is the type that is mainly 
responsible for the global health challenges of this disease. 
Globally, the burden of T2DM is on the rise in terms of 
incidence, prevalence, death and disability-adjusted life-
years (DALYs).4 Approximately 1 in 11 adults has been 
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Abstract
The biological actions of oestrogen are mediated 
by the oestrogen receptor α or β (ERα or ERβ), 
which are members of a broad nuclear receptor 
superfamily. Numerous in vivo and in vitro 
studies have demonstrated that loss of circulating 
oestrogen modulated by classical ERα and ERβ 
led to rapid changes in pancreatic β-cell and islet 
function, GLUT4 expression, insulin sensitivity and 
glucose tolerance, dysfunctional lipid homeostasis, 
oxidative stress, and inflammatory cascades. 
Remarkably, 17β-oestradiol (E2) can completely 
reverse these effects. This review evaluates the 
current understanding of the protective role of 
classical ER in critical pathways and molecular mechanisms associated with insulin resistance 
and type 2 diabetes mellitus (T2DM). It also examines the effectiveness of menopausal hormone 
therapy (MHT) in reducing the risk of developing T2DM in menopausal women. Clinical trials 
have shown the protective effects of MHT on glucose metabolism, which may be useful to treat 
T2DM in perimenopausal women. However, there are concerns about E2's potential side effects 
of obesity and hyperlipidaemia in menopausal women. Further studies are warranted to gain 
understanding and find other oestrogen alternatives for treatment of insulin resistance and T2DM 
in postmenopausal women.
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reported to have diabetes mellitus, with 90% of them 
having T2DM. Additionally, it is worth noting that 
Asia is the primary region affected by this global T2DM 
epidemic.5 The inadequate action of insulin, the major 
glucose-lowering hormone, is the pathogenic driver of 
T2DM.6 

Physiologically, the elevation of postprandial blood 
glucose concentration is sensed by pancreatic β-cells, 
which eventually release insulin into the circulation and 
inhibit glucose production in the liver. The circulating 
insulin binds to insulin receptors in almost all mammalian 
cells. In muscle and adipose tissues, glucose uptake is 
dependent on the insulin-responsive glucose transporter 
GLUT4, demonstrating its fundamental role in plasma 
glucose clearance and glucose homeostasis.7 Insulin 
resistance is defined as a state of inappropriate or reduced 
responsiveness of peripheral tissues to high insulin 
levels, causing ineffective glucose homeostasis.8 Insulin 
resistance contributes to increased glucose production in 
the liver and decreased glucose uptake in muscle, liver and 
adipose tissue.9 In a prediabetic state, the level of insulin 
increases to meet normal insulin requirements, which 
leads to chronic hyperinsulinemia, hyperglycaemia-
induced β-cell dysfunction and subsequently leading to 
T2DM.5,10 In essence, malfunction of the feedback loops 
between insulin action and insulin secretion results in a 
hyperglycaemic state in T2DM.11

Prolonged exposure to hyperglycaemia is considered 
the main causal factor in the pathogenesis of diabetes 
complications. In fact, the global burden of diabetes 
mellitus contributes to its morbidity and mortality from 
complications of the disease.12 The incidence of diabetic 
complications escalates with the duration of diabetes 
mellitus, followed by ageing-related disability and reduced 
life expectancy.13 Hence, clinical trials have suggested that 
menopausal hormone therapy (MHT) has a favourable 
effect on glucose homeostasis and could delay the onset 
of T2DM in women. Although this protective mechanism 
is still unclear, the action of oestrogens on glucose 
homeostasis and insulin sensitivity observed in human 
and animal models suggested its role in preventing 
diabetes.14,15 

Oestrogens boost hepatic insulin sensitivity by lowering 
gluconeogenesis and glycogenolysis and increasing 
insulin release in the Langerhans islets. 17β-oestradiol 
(E2) stimulates insulin production and release in cells of 
in vitro and in vivo via oestrogen receptors, which should 
counteract insulin resistance.16 Furthermore, oestrogen 
inhibits β-cell apoptosis and pro-inflammatory signalling, 
as well as improves insulin function. As a result, the 
greater quantity of visceral adipose tissue observed in 
men, along with lower endogenous oestrogen levels, may 
be connected to higher insulin resistance compared to 
that of premenopausal women.17 On the other hand, Choi 
et al demonstrated that weight loss due to limited diets 

increased first-phase insulin secretion in ovariectomised 
rats, but that decreased second-phase insulin secretion 
at 120 minutes under a hyperglycaemia clamp was not 
overcome. Nevertheless, the replacement of oestrogen 
corrected the reduced second-phase and first-phase 
insulin secretion.18 Therefore, this present review 
evaluates the current knowledge and understanding of 
the role of oestrogen and its classical receptors in critical 
pathways and molecular mechanisms involved in insulin 
resistance and T2DM. Additionally, it aims to examine 
the beneficial effect of MHT in menopausal women who 
are at risk of T2DM.

Classical oestrogen receptor: structure and expression
Oestrogens, renowned as one of the most important 
hormones, are involved in female physiology, specifically in 
the reproductive and non-reproductive systems. Estrone, 
estriol and 17β‐oestradiol (also known as oestradiol or 
E2) constitute a group of human oestrogens. Chemically, 
oestrogen belongs to the steroid hormone group, whose 
core structure comprises 17 carbon-carbon bonds. These 
bonds are arranged as four fused rings consisting of three 
cyclohexane rings and one cyclopentane ring. All four 
oestrogens contain 18 carbons and a phenolic hydroxyl 
group. They also have one benzene ring with a ketone 
group for estrone and a varying number of hydroxyl groups 
for the other three oestrogens.19 Among all, oestradiol 
possesses the most potent oestrogenic properties and is 
commonly utilised to symbolise oestrogen owing to its 
physiological significance and predominance.20,21

Oestrogen is involved in the development and 
homeostasis of several tissues in females and males. In 
females, oestrogen is primarily produced by the ovaries 
and in smaller amounts by other tissues, including 
the liver, pancreas, adipose tissue, adrenal glands and 
breast.22 In males, the production of local oestrogen 
occurs by aromatisation of testosterone in reproductive 
tract cells, including Sertoli cells, Leydig cells and 
mature spermatocytes. In certain conditions, including 
pregnancy, oestrogen is also produced by the placenta. 
Oestrogen exerts its actions by binding to the oestrogen 
receptors (ERs), which comprise two distinct types: ERα, 
which is mostly expressed in the uterus, ovary, mammary 
glands, liver, bone, male reproductive organs and adipose 
tissue, and ERβ, which is mainly expressed in the uterus, 
ovary, lung, immune system, prostate and colon20,23 
ERα and ERβ are approximately 95% homologous in 
their DNA-binding domains.24 Oestrogen could activate 
both receptors, but the biological effects exerted may be 
different due to the structural differences in their ligand-
binding domains and amino acid sequence identity, 
which differentiates their ligand affinities.25,26 

The binding of oestrogen to their receptors activates 
cytoplasmic signalling pathways and nucleus transcription 
in the nucleus that are essential in the regulation of gene 
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expression, metabolism, cell growth and proliferation.21 
These actions are basically mediated via genomic and 
non-genomic pathways. The genomic effect (or nuclear) 
involves the direct binding of ER complexes to specific 
sequences in gene promoters and works as transcription 
factors in the nucleus. The non-genomic effect (or 
cytoplasmic) does not involve direct binding to DNA but 
via cytosolic signal transduction pathway that takes place 
at the plasma membrane.19,21 All four oestrogens could 
bind to nuclear and membrane oestrogen receptors but 
with varying affinity and strength.27

It is also known that the role of oestrogen is much 
broader than preceding thought. Ultimately, under 
normal circumstances, oestrogen controls cell autophagy, 
proliferation, differentiation, apoptosis and survival, 
but their action can be dysregulated in diseases.28 
Derangement or dysregulation of oestrogen activity 
has been shown to be involved in the pathogenesis and 
progression of many diseases, including diabetes.21 
Findings from human and animal studies suggested that 
oestrogen has protective effects against diabetes owing 
to the role of oestrogen in glucose homeostasis, insulin 
sensitivity and secretion.14,29,30 

Oestrogen receptor in insulin resistance and type 2 
diabetes mellitus (T2DM): preclinical evidence
Insulin resistance is a condition described as the inability 
of circulating insulin to effectively regulate the uptake 
and/or utilisation of glucose by insulin-sensitive tissues 
and organs. When blood glucose levels rise, the secretion 

of insulin from pancreatic β-cells increases while the 
synthesis of glucose in the liver decreases.31 On the other 
hand, insulin-resistant people are unresponsive to this 
signalling pathway and, as a result, do not experience 
increased insulin secretion and continue with hepatic 
glucose synthesis. This could lead to the development or 
worsening of hyperglycaemia.32 Insulin resistance during 
the prediabetic stage causes β-cell to hypersecrete insulin 
to maintain normal blood glucose levels, resulting in 
hyperinsulinemia. Prolonged insulin release exhausts 
pancreatic β-cells and causes apoptosis, which is a risk 
factor for the onset of T2DM that can result in decreased 
insulin secretion.33 Besides, impaired oestrogen signalling 
is associated with dysfunctional pancreatic β-cells, 
dysregulation of GLUT4 expression, glucose intolerance, 
insulin insensitivity and dysfunctional lipid homeostasis, 
all of which contribute to the development of insulin 
resistance, T2DM and obesity (Fig. 1).

Modulation of oestrogen receptor in pancreatic β-cells 
and islet function
Oestrogen is known to regulate pancreatic β-cell activity. 
The effect on β-cells is immediate, as it controls membrane 
depolarisation, Ca2 + influx and insulin secretion.34 
Previous studies indicated that 17β-oestradiol (E2) has 
favourable effects on insulin action and β-cell function 
by maintaining insulin sensitivity. For example, a study 
indicated that in vivo treatment of male mice with E2 at the 
dose of 100 µg/kg/d for 4 days increased insulin content 
and insulin secretion in response to high blood glucose.35 

Fig. 1. The effect of ERα deletion in pancreatic β-cells and skeletal muscle on insulin sensitivity and glucose tolerance in the pancreatic β-cells and skeletal muscle 
of ERαKO mice. Abbreviation: ERα- oestrogen receptor alpha; ER- endoplasmic reticulum; GLUT4- glucose transporter-4; IRS-1- insulin receptor substrate 1; 
PI3K- Phosphatidylinositol 3 kinase; AKT- protein kinase B; TNF- Tumor necrosis alpha; FFA: free fatty acid; JNK – c Jun N-terminal kinase; IKK- IκB kinase.
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Treatment with pure antioestrogen, ICI182780 inhibited 
this action, indicating a classic ER-mediated effect.36 
ER- knockout (ERKO) mouse is vulnerable to oxidative 
stress, which causes pancreatic β-cell death and insulin-
deficient diabetes. This model exhibited insulin resistance 
and reduced glucose tolerance. It was also evident that 
the most common receptor isoform for regulating insulin 
levels in the pancreas is ERα.37 

The blocking of ATP-sensitive potassium (KATP) 
channels, which control the β-cell resting membrane 
potential, is an important event in the insulin release 
pathway. This blockage can cause a specific electrical 
activity pattern that comprises bursts of action 
potentials by the opening of voltage-gated Ca2 + , Na + and 
K + channels, as well as an increase in intracellular Ca2 + , 
culminating in the release of insulin after the channel is 
closed.38,39 Changes in the expression and/or function of 
these ion channels influence insulin secretion and are 
a major risk factor for T2DM.40 Oestrogen controls the 
KATP channels in β-cells.41 Bisphenol-induced insulin 
hypersecretion might represent one of the changed 
pathways causing insulin resistance, which is a risk 
factor for T2DM and obesity.42 Bisphenol analogues are 
xenoestrogen capable of interacting with ERα and ERβ.43 
Bisphenol S (BPS) or Bisphenol F (BPF) have been shown 
to boost insulin release while decreasing KATP channel 
activity. Additionally, 48-hour treatment with BPS or BPF 
increased insulin release and lowered the expression of 
many ion channel subunits in wild-type (WT)-cells but 
had no effect in ERβ-knockout (ERβKO) cells.44 

Since the 1980s, it has been shown that oestrogen has 
a direct effect on the pancreatic islet cells to modulate 
insulin release.45 Islet dysfunction and hyperinsulinemia 
are ensued from the absence of ERα. For example, 
17β-oestradiol (E2) increased insulin content in cultured 
islets of WT mice but not islets from ERα-knockout 
(ERαKO) mice.46,47 Furthermore, anti-apoptotic effects 
of oestrogen were largely mediated by ERα. E2 treatment 
reduced STZ-induced β-cell death while increasing insulin 
production and decreasing insulin resistance and glucose 
intolerance.48 E2's protective effects were abolished in 
ERαKO female mice. 

Classical ERα and ERβ are nuclear transcription factors 
implicated in regulating various physiological processes 
in humans. Physiological functions of oestrogenic 
compounds are modulated in the cell nucleus regulating 
the transcription of specific target genes by binding 
to associated DNA regulatory sequences. In a study 
by Gay et al, it was demonstrated that the functions of 
the oestrogen receptor are modulated by the LIM/HD 
proteins, which belong to a subset of homeodomain 
(HD)-containing transcription factors. The insulin gene 
enhancer protein, Islet-1 (ISL1), is the most extensively 
studied among the LIM/HD transcription factors. It 
is located in discrete brain areas, which is important in 

motoneuron differentiation and is responsible for ER 
expression. It has been demonstrated that ISL1 could 
directly interact with oestrogen receptors, as shown by the 
dual immunohistochemistry of ISL1-ER co-expression 
by the same neuronal subpopulation within the rat 
hypothalamic arcuate nucleus. The interaction between 
ISL1 via its N-terminal LIM domains and ER inhibited 
oestrogen receptor dimerisation, thus leading to a strong 
and specific inhibition of oestrogen receptor DNA 
binding activity. Therefore, this study indicated that ISL1, 
via its N-terminal LIM domains, could specifically inhibit 
the oestrogen receptor-driven transcriptional activation, 
while the ER could serve as a coactivator for ISL1.49

In the study by Alonso et al to determine the pancreatic 
insulin content regulation by oestrogen receptors, 
ERα selective agonist, propyl pyrazole triol (PPT) and 
ERβ selective agonist, diarylpropionitrile (DPN) were 
supplemented to isolated pancreatic β-cells of genetically 
modified mice (ERαKO and ERβKO). Treatment with 
oestrogen receptor agonists demonstrated that only ERα 
had increased insulin content of the islets following a 
48-hour culture. This action replicated the response 
produced by oestrogen, specifically the E2 treatment. The 
study also demonstrated an upregulation of pancreatic 
insulin content following the activation of ERα by its 
agonist, which rapidly activated the mitogen-activated 
protein kinases/extracellular signal-regulated kinase 
(MAPK/ERK) 1/2 pathway.50 In the study by Longuet 
et al using a MIN6 β-cell line and isolated rat islets of 
Langerhans, it was discovered that MAPK/ERK 1/2 
pathway was associated with glucose-dependent actions 
in β-cells and played a role in the overall glucose-induced 
insulin secretion. The ERK1/2 cascade activation may 
induce the phosphorylation of cytoplasmic proteins 
implicated in the exocytosis of insulin granules.51 Hence, 
it was suggested that the participation of ERα in endocrine 
pancreatic function and blood glucose homeostasis took 
place through the MAPK/ERK 1/2 pathway.

Modulation of oestrogen receptor in GLUT4 expression, 
insulin sensitivity and glucose tolerance
ERα is far more abundant than ERβ in β-cell of the 
pancreas.52 In ERKO mice, homozygous ERβ deletion did 
not result in insulin resistance, but homozygous deletion of 
ERα causes substantial skeletal muscle insulin resistance.53 
Bryzgalova et al suggested reduced total glucose transporter 
type 4 (GLUT4) levels in muscle as the underlying cause 
of the ERαKO insulin resistance phenotype.54 Meanwhile, 
Ribas et al reported that it was due to defective insulin 
signal transduction.29 ERα has previously been implicated 
in the regulation of proximal insulin signal transduction, 
as E2 administration to insulin-resistant rodents increases 
insulin receptor substrate (IRS)-1 abundance and insulin-
stimulated tyrosine phosphorylation, as well as Akt 
phosphorylation at the activation site.55 Additionally, 
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ERαKO caused obesity at the expense of white adipose 
tissue growth, decreased energy expenditure, insulin 
resistance and glucose intolerance.56 In comparison to 
wild-type mice, ERβKO mice showed normal glucose 
tolerance and insulin release, and it was proposed that 
ERβKO protected against diet-induced insulin resistance 
and glucose intolerance. Other than that, Manrique et 
al also discovered that the insulin receptor substrate 1/
phosphatidylinositol 3-kinase association and protein 
kinase B activation were decreased in ERαKO mice, 
resulting in impaired skeletal-muscle insulin signalling 
and glucose uptake.57 The findings on the effect of ERα 
on systemic and skeletal muscle insulin sensitivity may 
help to better understand the mechanisms involved in 
oestrogen protection against insulin resistance.

Identification of oestrogen receptors 1 and 2 (ESR1 
and ESR2), as well as insulin-sensitive GLUT4, provided 
an opportunity to shed light on oestrogen regulation of 
glycaemic homeostasis.58 It was also observed that ESR1 
deficiency may increase the possibility of insulin resistance 
and T2DM.59 Besides, ESR1 could decrease lipogenesis in 
white adipose and liver tissue, improve insulin sensitivity 
and aid the maintenance of pancreatic cells.60 It has been 
recorded that selective deletion of ESR1/ ERα from skeletal 
muscle in female mice and cultured myotubes caused 
marked insulin resistance.61 The solute carrier family 2 
member 4 (SLC2A4) gene encodes the insulin-responsive 
glucose transporter isoform GLUT4, which is essential 
for glucose uptake in muscle and adipose tissues, playing 
a critical role in clearing plasma glucose.62 Additionally, 
the inhibition of SLC2A4 gene expression and eventual 
reduction of GLUT4 protein in chronic insulin resistance 
has been linked to T2DM.63 Moreover, mRNA SLC2A4 
expression was reduced in the subcutaneous and visceral 
adipose tissues of ESR1 knockout female mice.64 SLC2A4 
deletion produced insulin resistance, whereas SLC2A4 
overexpression improved glycaemic control, even in 
diabetic mice.58,65 While decreased SLC2A4 expression 
is associated with insulin resistance, increased SLC2A4 
expression is considered to be related to improved 
glycaemic management.

Skeletal muscle is responsible for approximately 75% 
of glucose elimination in response to insulin release.66 
Insulin receptor, insulin receptor substrate (IRS), 
phosphatidylinositol-3 (PI3K) and AKT kinase are 
components of the insulin signalling system governing 
glucose absorption.67,68 When this pathway is activated, the 
cytoplasmic GLUT4 translocates to the cell membrane, 
where it enhances glucose transport into the cell. GLUT4 
is abundant in muscle and is a rate-limiting step in insulin-
induced glucose absorption.69,70 E2 influences glucose 
homeostasis in the muscle mostly through its impacts 
on important proteins in the insulin signalling system, 
such as GLUT4 expression and translocation.71 Insulin 
signalling pathway is required for GLUT4 transport to the 

cell surface, while insulin resistance has been well known 
to lower GLUT4 expression.72,73 Both ER receptors play a 
role in the regulation of insulin sensitivity in the liver and 
the expression of GLUT4 in skeletal muscle, among other 
functions. It is suggested that increasing ERα expression 
may enhance the sensitivity of skeletal muscle cells to 
insulin, ultimately leading to glucose uptake.74 Further, in 
ERα knockout male mice, tamoxifen, an ER antagonist, 
improved insulin sensitivity with fasting hypoglycaemia, 
increased GLUT4 expression in skeletal muscle and 
improved pancreatic islet function.75 Transgenic mice 
lacking or overexpressing GLUT4 have lower or higher 
whole-body insulin sensitivity, respectively, highlighting 
its role in maintaining glucose homeostasis.76 

E2 administration to insulin-resistant rodents 
increased insulin receptor substrate (IRS)-1 abundance 
and insulin-stimulated tyrosine phosphorylation, as well 
as phosphorylation of Akt at the activation site Ser473.77 
Furthermore, ERα-mediated tyrosine phosphorylation 
of the IRS protein contributed to insulin-stimulated 
glucose uptake, as demonstrated in 3T3-L1 adipocytes.78 
Remarkably, it was demonstrated that oestrogen/ER-
induced adenosine monophosphate protein kinase 
(AMPK) activation acted upstream of IRS-1/Akt 
signalling and that E2 modulated the expression of genes 
associated with glucose metabolism in 3T3-L1 adipocytes 
by activating ER-AMPK in the absence of insulin-induced 
signalling activation.79 

The Akita strain is a monogenic mouse model for type 
1 diabetes characteristics. A spontaneous mutation in 
the insulin 2 (Ins2) gene caused improper folding of the 
insulin protein, resulting in a decreased number of β-cells 
and decreased insulin output, which led to dysfunctional 
β-cells. By 3 to 4 weeks, heterozygous Ins2 Akita mice 
developed insulin-dependent diabetes, which included 
hyperglycaemia, hypoinsulinemia, polydipsia and 
polyuria. Intriguingly, conjugated oestrogen was shown 
to promote the degradation of misfolded Akita proinsulin 
proteasomal in pancreatic cells, preventing pancreatic cell 
death and diabetes.80 

Modulation of oestrogen receptor in dysfunctional lipid 
homeostasis
Dysfunctional lipid homeostasis within pancreatic β-cells 
has been associated with metabolic and oxidative stress. 
This may lead to β-cell damage and progression from 
insulin resistance to T2DM.81 The suppression of fatty 
acids and lipids has been associated with protection 
against β cell failure and T2DM.82,83 In a study by 
Tiano et al, a slow-release 17β-oestradiol (E2) pellet 
subcutaneously implanted behind the neck of male 
Zucker diabetic fatty (ZDF) rats was able to inhibit 
the synthesis and accumulation of fatty acids and 
glycerolipids in pancreatic islets. Studies using rat β cell 
line, cultured ZDF rat, mouse and human islets reported 
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the association between the anti-lipogenic action of E2 
with the activation of ERα, ERβ and G protein-coupled 
ER (GPER). It was also demonstrated that activating 
oestrogen receptors inhibited β-cell lipid synthesis by 
suppressing the activity of fatty acid synthase (FAS) via 
a nonclassical pathway dependent on activated signal 
transducer and activator of transcription 3 (STAT3). 
Accordingly, pancreas-specific deletion of STAT3 in mice 
inhibited ER-mediated suppression of lipid synthesis. The 
data suggested that extranuclear ERs may be promising 
therapeutic targets for preventing β-cell failure in T2DM. 
The study conducted by Tiano et al suggested that 
oestrogen receptors, specifically ERα, ERβ and GPER, 
modulated the expression of FAS through the activated 
STAT3 pathway. This finding could potentially have 
therapeutic implications for addressing β cell dysfunction 
in obesity-associated T2DM.83 

The expression of this transporter gene, which is directly 
related to the development of insulin resistance, decreases 
with obesity. Obesity causes an abundance of free fatty 
acids (FFAs), which in turn induce cellular malfunction, 
particularly in the mitochondria.84 When adipocytes are 
subjected to high levels of either glucose or FFA, they 
exhibit elevated levels of mitochondrial fission. This is 
accomplished by manipulating the insulin transduction 
pathway as well as endogenous ROS generation and release. 
Mitochondrial fission boosts p38 MAPK expression while 
suppressing IRS-1 and protein kinase B (Akt) activity.85,86 
According to a study conducted in patients with varying 
degrees of obesity, this mitochondrial malfunction 
appeared to alter transcriptional levels.87 As adipose tissue 
grows, mitochondrial transcription levels fall, resulting 
in reduced glucose utilisation in this tissue.88 E2 therapy 
improved insulin sensitivity and glucose tolerance in 
ovariectomised mice fed a high-fat diet (HFD) but not 
in ER-deficient mice.54,89 Furthermore, this study found 
that oestrogen improved insulin sensitivity and glucose 
tolerance in HFD-fed rats via ERα activation.54 E2 
therapy, on the other hand, reduced HFD-induced insulin 
resistance by 50% and increased insulin signalling (Akt 
phosphorylation) in insulin-stimulated skeletal muscles 
during hyperinsulinemic-euglycemic clamp trials.90 

Adiposity is a global epidemic that raises the risk of 
diabetes and cardiometabolic disorders. According to 
epidemiological research, postmenopausal women have 
low oestrogen levels, gain weight in general and redistribute 
adipose tissue, resulting in increased abdominal fat 
accumulation. Oestrogen significantly increases the 
activity of the enzyme 3-hydroxy-3-methylglutaryl 
coenzyme A (HMG-CoA) reductase, which is the rate-
limiting enzyme in hepatic cholesterol biosynthesis under 
high dietary cholesterol loads, implying that de novo 
synthesis of cholesterol in the liver may be increased.91 
The presence of ERs in the nucleus and mitochondria 
suggests a mechanism for oestrogen coordination of 

mitochondrial DNA (mtDNA) and nuclear-encoded 
mitochondrial respiratory complex genes. Mitochondria 
ERα and ERβ engage in the coordination of the cell's 
energy requirements as well as in OXPHOS biosynthesis, 
influencing ROS production and apoptosis induction.92 
For instance, Hamilton et al revealed that selective ERα 
activation with the ER agonist, 4,40,4′′-(4-Propyl-[1H]-
pyrazole-1,3,5-triyl) (PPT) enhanced systemic oxidative 
metabolism, mitochondrial function, and insulin 
resistance in low-density lipoprotein receptor-deficient 
mice fed a western high-fat diet.93

Phosphoenolpyruvate carboxykinase (PEPCK) has 
been identified as a crucial enzyme in gluconeogenesis, 
particularly in the liver and kidney.94 Evidence suggested 
that increased PEPCK activity led to higher glucose 
output and diabetes aggravation.95 Previous studies 
discovered that E2 suppressed hepatic gluconeogenic 
genes like PEPCK-1 and glucose 6-phosphatase (G6Pase); 
however, this action was missing in mice lacking the liver 
oestrogen receptor (LERKO mice). Male LERKO mice 
had increased hepatic gluconeogenic activity as well as 
fasting hyperglycaemia. Additionally, enhanced liver lipid 
deposits and triglyceride levels were also seen in male 
LERKO mice owing to enhanced hepatic lipogenesis, as 
evidenced by higher mRNA levels of fatty acid synthase 
(FAS) and acetyl-CoA carboxylase (Acc1). Intriguingly, 
E2 promoted ESR1 binding to the promoters of PEPCK-1, 
glucose-6-phosphatase (G6Pase), FAS and Acc1.96 Thus, 
it is apparent that obesity and metabolic disorders are 
linked to impaired ESR1 function.

Modulation of oestrogen receptor in oxidative stress and 
inflammatory signalling cascade
Hyperglycaemia increases reactive oxygen species (ROS) 
generation while decreasing mitochondrial biogenesis, 
resulting in mitochondrial dysfunction. Excessive ROS 
formation activated important pathways that produced 
oxidative stress in the cellular environment, causing 
β-cell function degradation and increasing insulin 
resistance in T2DM patients.97,98 ROS, such as hydrogen 
peroxide (H2O2), could cause muscle insulin resistance 
by activating c-Jun amino-terminal kinases (JNK), which 
block the insulin signalling cascade at the IRS level.98 E2 
suppresses oxidative stress through nongenomic and 
genomic actions by activating pathways that prevent the 
generation of ROS and increasing the efficiency with which 
ROS are scavenged. The mechanism by which E2 affects 
mitochondrial activity appeared to be via transcription 
by nuclear translocation of dimerised, E2-bound ERs or 
transcriptional activation of mitochondrial genes by ERs 
localised inside the mitochondria.99 A study reported 
ER-containing mitochondrial extracts bound to putative 
mitochondrial EREs (mtEREs), with E2 increasing the 
binding and ER-deficient cells missing the binding.100 
Meanwhile, tumour necrosis factor-α (TNF-α) and 
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interleukin-6 (IL6) cytokines released by adipose tissue 
were linked to decreased GLUT4 expression, decreased 
glucose absorption by muscle and compensatory 
hyperinsulinemia.101 Activated inflammatory signalling 
networks caused JNK and IκB kinase (IKK) activation, 
leading to insulin resistance via Protein kinase C (PKC).102 
This was also shown by Ribas et al, which reported that 
stimulation of inflammatory signalling kinases and 
cascades such as JNK, AMPK, IKK and TNF-α reduced 
insulin action by limiting IRS activity in ERα knockout 
mice.29 Also, when JNK1 deletion mice were subjected 
to a high-fat diet, they experienced long-term metabolic 
protection from diet-induced obesity and demonstrated 
significantly higher insulin sensitivity, while maintaining 
a normal life span.103 

The prevalence of cardiovascular disease in diabetic 
menopausal women has been shown to be higher. 
T2DM was associated with high levels of triglycerides, 
total cholesterol, low-density lipoprotein and fasting 
blood glucose, all of which are major risk factors for 
cardiovascular diseases, including coronary artery 
disease in menopausal women.104 Moreover, In vivo 
studies revealed that T2DM induces cardiovascular 
disease by modifying glycaemic and lipid profiles and 
pro-inflammatory cytokine levels. These studies also 
found a relationship between TNF-α activation and 
lipoprotein buildup in rat artery walls, as well as response 
to cardiac ischemia and reperfusion. Recent research 
by Khaksari et al investigated the beneficial effects of 
administrating selective oestrogen receptor modulators 
(SERMs) and oestrogen (E2), alone or in combination, 
in postmenopausal diabetic cardiovascular disease. E2 
or SERMs appeared to help the cardiovascular system by 
lowering pro-inflammatory cytokines such as TNF-α, IL-
10 and Angiotensin II (Ang II) levels in ovariectomised 
diabetic rats.105 Subsequent studies from Ebrahami et al 
and Azizian et al showed that a combination of Tamoxifen 
(SERM) and E2 is more effective than either tamoxifen or 
E2 alone in reducing diabetes mellitus and cardiovascular 
dysfunction by improving lipid and glycaemic profiles, 
pro-inflammatory cytokines and atherogenic index.106,107

Table 1 summarizes in vivo and in vitro findings on the 
role of ER.

Menopause and T2DM: clinical evidence
Menopause is the end of a woman's reproductive life caused 
by ovarian ageing.108 It is characterised by a significant 
decrease in endogenous oestrogen concentrations, 
changes in body weight, adipose tissue distribution and 
energy expenditure, as well as insulin secretion and 
activity. All these can predispose to the development of 
T2DM, both independently and additively, to ageing.109 
Menopause occurs at an average age of 50 to 52 years.110 
However, roughly 10 per cent of the female population 
experiences menopause before the age of 45, a condition 

known as "early" or "premature" menopause.111 Given 
the protective impact of oestrogen on pancreatic β-cell 
function and insulin resistance, one plausible mechanism 
of T2DM is reduced exposure to endogenous oestrogen.112 
Tyler et al discovered a link between reduced ovarian 
function and reduced pancreatic β-cell function, which 
has an impact on glucose metabolism and diabetes risk.113 
Postmenopausal women experience a significant decrease 
in sex hormones, which leads to a further decline and 
eventual cessation of ovarian function. Weight gain, 
increased visceral fat and impaired glucose homeostasis 
are all related to the menopause transition, which are key 
risk factors for T2DM.114 

Based on the clinical data, certain studies have indicated 
a correlation between early menopause and a heightened 
risk of T2DM. Conversely, other studies reported that 
late menopause is also a significant risk factor for T2DM. 
According to a Dutch study, postmenopausal women 
had a higher incidence of T2DM.115 This suggested that 
postmenopausal status is related to T2DM. However, 
in a Vietnam study, a significant connection between 
menopausal state and T2DM was lost when age, 
occupation, BMI, physical activity, parental history of 
T2DM, residential status and hypertension were taken 
into account.116 In a Chinese study on women from Henan 
Province, the risk of T2DM rose with postmenopausal 
versus premenopausal states. The highest correlation 
between postmenopausal status and T2DM was recorded 
among women with a BMI of less than 24.0 kg/m2.117 
Moreover, T2DM risk was enhanced by postmenopausal 
status, which interacted with BMI, hypertension, 
triglyceride level and waist circumference. 

Brand and colleagues reported a higher incidence of 
T2DM among individuals experiencing early menopause 
after conducting an 11-year prospective follow-up study 
as part of the EPIC (European Prospective Investigation 
into Cancer)-InterAct trial. Furthermore, the study by 
Brand et al revealed a correlation between premature 
ovarian insufficiency (menopause before the age of 40) 
and a 32 per cent higher risk for T2DM.118 After adjusting 
for multiple variables, a prospective case-cohort study 
conducted in Europe revealed that women aged 40 and 
above exhibit a higher risk of developing T2DM.119 This 
finding is consistent with a study from Latin America, 
which showed the association between diabetes with early 
menopause in women under the age of 45.120 This is also 
supported by a previous study's meta-analysis concluding 
that women with early menopause (40 to 45 years of 
age) or premature ovarian insufficiency (40 years of age) 
have an increased risk of T2DM.121 Similarly, another 
Chinese observational study of 16,299 women identified 
that early menopause (before 45 years) was related to a 
20 per cent increased incidence of T2DM.122 A similar 
finding was also obtained in a Beijing longitudinal study, 
which discovered that early menopausal women (age ≤ 45 
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Table 1. In vivo and in vitro findings on the role of ER in pancreas β-cells and islet functions, GLUT4 expression, glucose tolerance, insulin sensitivity, lipid 
homeostasis, oxidative stress and inflammation signalling cascade

Type of study/Model used Summary of findings Comments/Outcomes References

Role of ER in pancreas β-cells and islet function

In vivo/wild-type mice
Bisphenol S (BPS) and Bisphenol F (BPF) have been demonstrated 
to increase glucose-stimulated insulin secretion (GSIS) while 
lowering KATP channel activity via an ERβ-mediated mechanism.

ERβ activation changed three 
critical cellular events in β-cell, 
namely ion channel expression 
and activity, as well as insulin 
release.

42

In vivo/Estrogen-induced adult 
Wistar strain female rats.

Insulin gene enhancer protein Islet-1 (ISL1) and ERα and ERβ 
were co-expressed by the same neuronal subpopulation within 
the rat hypothalamic arcuate nucleus.

The inhibition of ER dimerisation 
led to a strong and specific 
inhibition of ER-DNA binding 
activity.

47

In vitro/ Transient transfection 
of Chinese hamster ovary cells 
with ERE-SV-Luciferase

In vitro interaction between ISL1-ER inhibited ER dimerisation. 

In vivo/ Adult wild type, 
ERαKO and ERβKO of Swiss 
albino OF1 mice 

The levels of activated ERK1/2 in the isolated β-cells were 
increased with treatment using ERα.

ERα is involved in pancreatic 
function and glucose 
homeostasis via MAPK/ERK 1/2 
pathway

48

Roles of ER in GLUT4 expression, insulin sensitivity and glucose tolerance

In vivo/ ERαKO and ERβKO 
mice

ERKO mice were found to lack skeletal muscle glucose absorption 
via GLUT 4, resulting in significant hepatic insulin resistance.

ERαKO mice exhibited severe 
hepatic insulin resistance 
together with impairment 
in skeletal muscle glucose 
absorption.

52

In vivo/ ERαKO mice 

ERαKO mice had reduced insulin receptor substrate 1/
phosphatidylinositol 3-kinase association and protein kinase 
B activation, and immunostaining for 3-nitrotyrosine was 
increased, resulting in impaired skeletal-muscle insulin signalling 
and glucose absorption. ERαKO had poor glucose 

tolerance and significant insulin 
resistance in their skeletal 
muscles.

55

In vivo/ ERαKO of C57Bl6 mice

The insulin receptor substrate (IRS)-1 on serine residues was 
observed to be decreased in ERαKO mice, which led to impaired 
insulin signalling and glucose transport. The increased fat weight 
gain and overall body fat percentage in ERKO mice resulted from 
the buildup of bioactive lipid intermediates and the decreased 
levels of PPARα, PPARδ and UCP2 mRNA.

59

In vivo/ Esr1 knockout 
(Esr1KO) mice

SLC2A4 gene expression, which encodes GLUT4, was increased in 
female Esr1KO mice treated with E2 in subcutaneous and visceral 
adipose tissues. 

E2 induced adipocyte 
development and SLC2A4/GLUT4 
expression via an ESR1-mediated 
mechanism.

62

In vivo/ ERαKO male mice

In ERαKO male mice, tamoxifen improved insulin sensitivity with 
fasting hypoglycemia, as determined by tolerance tests for insulin 
(ITT) and glucose (GTT), increased GLUT4 expression in skeletal 
muscle, and improved pancreatic islet function.

Tamoxifen improved glucose 
tolerance in skeletal muscle by 
increasing GLUT4 expression.

73

In vitro/ 3T3-L1 adipocytes. 
 ERα-mediated tyrosine phosphorylation of the IRS protein was 
associated with insulin-stimulated glucose absorption in 3T3-L1 
adipocytes. 

ERα promoted insulin-stimulated 
glucose absorption via regulation 
of tyrosine phosphorylation of 
the IRS-1 protein.

76

In vivo/Akita mice

Conjugated oestrogen (CE) activated nuclear and membrane 
ER, increased transcriptional repression and proteasomal 
degradation of UBC6e, a ubiquitin-conjugating enzyme and ER-
associated protein degradation (ERAD) degrader.

CE promoted misfolded 
proinsulin degradation, 
suppressed endoplasmic 
reticulum stress and protected 
insulin secretion in Akita mice

78

Roles of ER in lipid homeostasis

In vivo/Non-diabetic Zucker 
fatty (ZF) rats, Zucker diabetic 
fatty (ZDF) rats, Zucker lean 
(ZL) rats/ Pancreas-specific 
null deletion of ERα/mice

Suppression of synthesis and accumulation of fatty acids and 
glycerolipids in islets of the rats.
Pancreas-specific null deletion of ERα in mice (PERα–/–) inhibited 
lipid synthesis induced by E2.

ER activation inhibited β-cell 
lipid synthesis by suppressing 
the activity of fatty acid synthase 
via a nonclassical pathway 
dependent on activated STAT3.

81

In vivo/ ERαKO and ERβKO 
mice

In ERKO mice, the plasma leptin level was increased, while the 
adiponectin concentration and Lepr expression were decreased. 
Genes involved in hepatic lipid production were increased 
in ERKO mice, while genes involved in lipid transport were 
downregulated.

Increment in lipogenic genes 
resulted in insulin resistance in 
the liver, which was caused by a 
decrease in Lepr expression.

52
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years) with postmenopausal obesity had the highest 
risk of developing T2DM compared to premenopausal 
women.123

Abdominal obesity is associated with a higher risk of 
developing T2DM than peripheral obesity as visceral 
fat stores have more impact on insulin metabolism by 
releasing free fatty acids into the portal circulation, which 
may impair hepatic clearance of insulin and lead to 
insulin resistance and hyperinsulinemia.124 A study from 
South India discovered that the average age of menopause 
in diabetic women is 44.7 years, much younger than the 
age of menopause in non-diabetic women (48.2 years). 
The study also discovered that diabetic women have 
higher BMIs than non-diabetic women, which could be 
attributed to changes in body composition and an increase 
in abdominal fat following menopause. These changes 
were more pronounced in diabetics due to altered insulin 
sensitivity and glucose metabolism.125 Consistently, 
findings from South Korea showed that significant obesity, 
severe insulin secretion abnormalities and severe insulin 
resistance resulted in early hyperglycaemia symptoms.126 
Another study presented that visceral fats reduced insulin 
sensitivity in Chinese T2DM patients regardless of BMI 
or subcutaneous fat level with a positive correlation 

with homeostatic model assessment-insulin resistance 
(HOMA2-IR).127 All these study findings have confirmed 
T2DM risk as a postmenopausal complication.

Diabetes has been causally linked to early menopause. 
Previous studies have found that T2DM women appeared 
to enter menopause at an earlier age than non-diabetic 
women. According to the Women's Health Across the 
Nation (SWAN) study (n = 2171), women with diabetes 
have their last menstrual period (FMP) at a significantly 
younger age than women without diabetes.128 The cross-
sectional study of 6079 women aged 40 to 59 years from 
11 Latin American countries found that the risk of being 
postmenopausal in women aged 40 to 44 years is nearly 
three times higher in those with diabetes than in those 
without diabetes, even after adjustment for confounding 
factors like obesity and hypertension.129 This is also 
consistent with data from Brand et al, revealing that 
women with diabetes before the age of 20 have an earlier 
menopause than non-diabetic women, whereas women 
with diabetes after the age of 50 have later menopause.130 
A recent Canadian data revealed an association between 
early T2DM diagnosis (30-39 years) and earlier menopause 
in comparison to non-diabetics.131 In addition, Wellons 
et al reported an observational finding that women with 

Type of study/Model used Summary of findings Comments/Outcomes References

In vivo/ mice lacking liver 
estrogen receptor α (Esr1) 
(LERKO mice)

The LERKO mice demonstrated higher levels of hepatic 
triglyceride as well as elevated FAS and Acc1 expression. E2 
inhibited the expression of hepatic gluconeogenic genes such as 
phosphoenolpyruvate carboxykinase 1 (PEPCK-1) and glucose 
6-phosphatase (G6Pase).

The ESR1 signalling system may 
be a promising therapeutic 
target to prevent and correct 
lipid and glucose metabolic 
disorders.

91

In vivo/Western high-fat diet 
ovariectomised low-density 
lipoprotein receptor-deficient 
mice

In WHFD-fed OVX mice, selective ERa activation with ERα agonist, 
4,40,4′′-(4-Propyl-[1H]-pyrazole-1,3,5-triyl) (PPT) avoided weight 
gain, enhanced insulin action and reduced visceral fat formation.
PPT treatment increased systemic metabolism, oxygen 
consumption and core body temperature and induced the 
expression of several metabolic genes in the heart, liver, skeletal 
muscle, and adipose tissue, including peroxisome proliferator-
activated receptor gamma (PPARγ), coactivator 1 alpha, and 
nuclear respiratory factor 1.

Selective ER activation with PPT 
improves metabolic effects such 
as insulin resistance, whole-
body energy metabolism, and 
mitochondrial function in OVX 
mice with metabolic syndrome.

96

In vivo/ ovariectomised 
diabetic (high-fat diet and 
streptozotocin) female Wistar 
rats

Combination of E2 and tamoxifen treatment lowered triglyceride, 
total cholesterol, low-density lipoprotein, and fasting blood 
glucose in ovariectomised diabetic rats.

Combination of E2 and 
tamoxifen treatment reduced 
lipid profile and atherogenic 
index.

109

Role of ER in oxidative stress and inflammation signalling cascade

In vivo/ ERαKO of C57Bl6 mice
The activation of inflammatory signalling cascades such as JNK, 
AMPK, IKK, and TNFα inhibited insulin action by reducing IRS 
activity in adipose tissue of ERαKO mice.

ERα is a regulator of the 
inflammatory signalling cascade 
in adipose tissue and has been 
linked to insulin resistance. 

59

In vivo/ ovariectomised 
diabetic (high-fat diet and 
streptozotocin) female Wistar 
rats 

Combination treatment of E2 and tamoxifen decreased serum 
Angiotensin II (Ang II), TNF-α, and the TNF- α to IL-10 ratio, 
indicating an improvement in inflammatory balance.

E2 and Tamoxifen therapy 
can reduce Ang I) production, 
which leads to enhanced insulin 
sensitivity and cardioprotection 
by lowering inflammatory 
cytokines.

108

In vivo/ ovariectomised 
diabetic (high-fat diet and 
streptozotocin) female Wistar 
rats

Tamoxifen reduced mean arterial blood pressure, fasting blood 
glucose, and inflammatory cytokine levels. IL-10. Tamoxifen 
boosted the protein expression of ERα and ERβ

Tamoxifen protects against 
diabetic cardiovascular 
impairment and is a promising 
E2 replacement candidate.

110

Table 1. Continued.
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type II diabetes are more likely to experience ovulation 
difficulties and early menopause.131

The global studies above agreed on the existence 
of a relationship between the timing and duration 
of menopause with T2DM. Any disparities in study 
outcomes were most likely attributable to changes in 
model adjustment, sample population, and/or genetic 
traits among women in different nations. It was also 
probable that the relationship between T2DM and 
menopausal age varied by country and was influenced 
by a variety of factors, including nutrition and lifestyle 
choices. 

Menopausal hormone therapy and T2DM
Menopausal hormone treatment (MHT) is commonly 
recommended for menopausal women who experience 
vasomotor symptoms, such as night sweats and hot 
flashes.132 The potential relationship between T2DM 
and vasomotor symptoms has been evaluated in 150,007 
women who participated in the Women’s Health Initiative 
(WHI) trial from 1993 to 2014. The study found that these 
vasomotor symptoms were associated with an 18 per cent 
increase in the incidence of T2DM, and the association 
was independent of obesity.133 In addition, menopausal 
women who utilised MHT tend to experience benefits 
from the metabolic effects of oestrogen replacement. They 
became more energetic, experienced improved glucose 
metabolism, as well as having better weight control 
and improved bone density.134 The favourable effect of 
MHT on glucose metabolism appeared to entail several 
physiological mechanisms, including increased lipid 
oxidation and increased energy expenditure, which help 
to reduce the trend towards central obesity and belly fat 
accumulation.135 According to Garcia et al, animal studies 
have shown that oestradiol and ERα-specific agonists 
enhanced energy homeostasis and enhanced body fat 
distribution, besides decreasing insulin resistance, β-cell 
dysfunction and inflammation. To extrapolate these 
reported benefits to humans, additional studies would 
be necessary to develop targeted oestrogen mimics with 
metabolic benefits without having the adverse effects of 
MHT.56

Postmenopausal women have faster development of 
visceral adiposity, insulin resistance, and T2DM. Oestrogen 
deficiency during menopause is related to an increased 
risk of developing T2DM, which could be alleviated with 
MHT. Several clinical trials on postmenopausal women 
receiving MHT found a lower incidence of T2DM, lower 
glucose plasma levels and increased systemic insulin 
sensitivity. According to most randomised clinical 
trials, MHT is related to a reduction in central adiposity 
and an increase in insulin sensitivity. In the WHI 
intervention trials, both conjugated equine oestrogen 
(CEE) alone and CEE plus medroxyprogesterone acetate 
(MPA) were associated with a lower risk of developing 

T2DM compared to placebo.136 The T2DM incidence 
was reduced by 35% in the MHT arm of the Heart and 
Oestrogen/Progestin Replacement Study (HERS), by 21% 
in the WHI study, and by 25% in a French cohort study of 
women on MHT.137-139

In the randomised controlled clinical trial of HERS 
(women with known CVD), oestrogen treatment 
prevented the rise of blood glucose levels over time and 
resulted in fewer women with impaired fasting glucose at 
study onset progressing to overt diabetes when compared 
to controls.140 Consistently, from the year 1999 to 2007, 
several forms of MHT were reported to improve glucose 
control in women with T2DM, which included CEE 
alone,141 or in combination with MPA,142,143 E2 alone,144 or 
in combination with cyclical,145 or continuous combined 
norethisterone acetate.146,147 Furthermore, a meta-analysis 
of 107 studies (49,973 patient-years) followed for an 
average of 1.5 years revealed that MHT reduced abdominal 
obesity, insulin resistance and new T2DM incidence.148 
However, MHT has been linked to an increase in the 
incidence of thrombotic events in older women with 
T2DM ( > 60 years or > 10 years in menopause).149 

Therefore, the 'timing theory' has been investigated 
in terms of oestrogen effects on glucose metabolism. 
Effects on insulin activity may be one mechanism by 
which MHT decreased the incidence of T2DM in early 
postmenopausal women. For example, Pereira et al used 
the hyperinsulinemic-euglycemic clamp to compare the 
effect of one-week administration of transdermal E2 vs 
placebo in early postmenopausal women (six years since 
last menstruation) versus late postmenopausal women 
(more than ten years since last menstruation). E2 was 
found to boost insulin activity in early postmenopausal 
women while decreasing it in late postmenopausal 
women.15 This is consistent with the finding of an 
observational trial conducted in Japan, which found 
age-stratified findings of HbA1C reduction in response 
to oral standard-dose continuous combination CEE/
MPA in women aged 40 to 49 years but not in those 
aged more than 50 years.150 Besides, transdermal E2 has 
more favourable effects on inflammatory markers and 
triglycerides than oral E2 and does not increase the risk 
of venous thromboembolism. Recently, Speksnijder et 
al published a meta-analysis in 2023 on the impact of 
postmenopausal hormone therapy on glucose regulation 
in women with type 1 or type 2 diabetes. This study found 
that MHT had a positive impact on glucose regulation in 
women with type 2 diabetes. MHT significantly reduced 
fasting glucose and HbA1c (mean difference -0.56% [95% 
CI -0.80, -0.31], -6.08 mmol/mol [95% CI -8.80, -3.36), 
as well as fasting glucose (mean difference -1.15 mmol/L 
[95% CI -1.78, -0.51]). When MHT is used to treat 
menopausal symptoms in women with type 2 diabetes, it 
is likely to have a neutral to favourable effect on glucose 
regulation.151 In addition, MHT has a positive effect on 
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glucose metabolism since it increases lipid oxidation 
and energy expenditure, followed by the reduction of 
fat storage in the abdomen area with a decreased risk of 
central obesity.135 

Most clinical trials have included women receiving 
CEE in combination with MPA. Oral oestrogen has been 
demonstrated to be more effective than transdermal 
oestrogen (patch HRT). However, oral oestrogen has 
some drawbacks. For instance, it enhances triglyceride 
and clotting factors formation by the liver and raises 
inflammatory indicators more than transdermal 
products.152

SERM and T2DM
SERMs are a class of compounds that interact with 
ERs and generate a specific receptor conformation 
that correlates with distinct behaviours in oestrogen-
responsive tissues.153 SERMs exert agonist or antagonist 
activity on ERs in a tissue-specific manner, which is 
determined by the complexity of ER signalling, such as 
ER tissue distribution, ligand binding specificity and 
various interactions with coactivators or corepressors.154 
SERM has been shown to reduce the risk of osteoporosis 
and cardiovascular disease while also inhibiting 
oestrogenic activation in the breast and uterus in 
postmenopausal women.108 SERM, on the other hand, has 
no effect in lowering blood glucose levels or increasing 
insulin sensitivity. As a result, it becomes ineffective 
for menopausal women with T2DM.155 Raloxifene is 
equally effective in lowering the risk of invasive breast 
cancer and preventing postmenopausal osteoporosis. 
However, short-term raloxifene treatment (12 weeks or 
6 months) did not affect fasting blood glucose or insulin 
levels, nor glucose tolerance or insulin sensitivity in 
postmenopausal women with or without T2DM.156,157 
Raloxifene significantly reduced LDL cholesterol levels 
and increased serum leptin levels in postmenopausal 
women.158 However, tamoxifen was reported to improve 
glycaemic control and provide cardioprotective benefits 
in ovariectomised diabetic rats by decreasing lipid profiles 
and pro-inflammatory cytokines.105-107 Therefore, further 
prospective clinical trials are warranted to highlight 
the potential relevance of SERM in the management of 
menopausal diabetic women.

Bazedoxifene (BZA) is a novel SERM with oestrogen 
antagonistic activity in the breast and uterus but oestrogen 
agonistic activity in bone, preventing osteoporosis 
while protecting the breast and uterus from oestrogenic 
stimulation.159 Tissue selective oestrogen complexes 
(TSECs), which combine conjugated oestrogen (CE) and 
bazedoxifene in a single pill, become a new therapy for 
menopausal symptoms.160 The main innovation of TSEC 
is that it provides all the benefits of CE treatment plus 
breast and uterine protection without using progestin.161 
It is noteworthy that TSEC enhances glucose and insulin 

homeostasis in OVX mice,162 but it seemed to not affect 
postmenopausal women.163 Therefore, further studies are 
required to investigate the effects of TSEC on glucose and 
insulin homeostasis in postmenopausal women.

Evidence showed that hyperglycaemia can lead to an 
increase in angiotensin 2 (Ang II) production, which in 
turn leads to a decrease in insulin sensitivity; nevertheless, 
the renin-angiotensin system (RAS) inhibition improves 
insulin sensitivity.164 SERMs alone may not have the 
same impact on type 2 diabetes as oestrogen, but when 
combined with oestrogen, they can reduce trophic 
effects, thrombosis and CVD events. An in vivo study 
by Khaksari et al recently discovered that combining 
SERMs and oestrogen can reduce oestrogen's deleterious 
effects (carcinogenesis in breast and uterine tissues) 
while retaining its favourable benefits on cardiovascular, 
glycaemic and inflammatory markers.105 Nonetheless, 
more human trials are required to determine the 
therapeutic target of combining SERM and oestrogen 
for the treatment of postmenopausal disorders such as 
osteoporosis and cardiovascular diseases. Furthermore, 
a retrospective cohort analysis has been carried out 
involving female patients with early-stage breast cancer 
who were treated with or without SERMs at a Korean 
tertiary care hospital from 2008 to 2020. According to the 
analysis, SERMs, notably tamoxifen in general, were not 
related to an increased risk of diabetes for long-term use 
( ≥ 1500 days).155

Concluding remarks
Numerous in-vitro and in-vivo studies have identified the 
oestrogen receptor as the key player in insulin resistance 
and T2DM. The comprehensive review findings 
demonstrated that ER is critical in β-cell function, insulin 
action, glucose homeostasis and the aetiology of insulin 
resistance, diabetes and its consequences. 

The discoveries of ERα and ERβ as modulators of 
GLUT4 expression, as well as the identification of E2 as 
a crucial regulator of glucose homeostasis, have opened 
new avenues for developing T2DM coadjuvant therapy. 
The idea of selectively activating ERα and inhibiting ERβ 
to increase GLUT4 expression and glucose absorption 
appears very promising. 

Menopause is associated with a poor metabolic profile 
and an increased risk of T2DM. MHT has been shown 
to enhance β-cell insulin secretion, glucose effectiveness 
and insulin sensitivity. These improvements have been 
evaluated using clinically relevant indices, such as the 
HOMA/IR and IVGTT/OGTT. MHT improves glycaemic 
control in young women with T2DM but should be 
individually commenced after careful consideration of 
other risk factors in older women (60 years of age or more 
than 10 years post menopause onset). The issue with MHT 
is its adverse effects on obesity and hyperlipidemia in 
menopausal women, exposing them to thromboembolic 
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events. On the other hand, SERMs that deliver estrogenic 
benefits in selected tissues do not influence insulin 
sensitivity and glucose homeostasis. TSEC is another 
potential alternative but requires further studies to 
determine its role in T2DM therapy in postmenopausal 
women.

In conclusion, although the study findings are 
intriguing, additional research is demanded to gain a 
comprehensive understanding of the mechanism and 
optimal clinical strategy for ER regulation as a potential 
therapy for insulin resistance and T2DM, especially in 
postmenopausal women.
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