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Introduction: The dysregulation of pH by cancerous cells of solid tumors is able 
to create a unique milieu that is in favor of progression, invasion and metastasis as 
well as chemo-/immuno-resistance traits of solid tumors. Bioelements involved in pH 
dysregulation provide new set of oncotargets, inhibition of which may result in better 
clinical outcome. Methods: To study the impacts of pH dysregulation, we investigated 
the tumor development and progression in relation with Warburg effect, glycolysis 
and formation of aberrant tumor microenvironment. Results: The upregulation of 
glucose transporter GLUT-1 and several enzymes involve in glycolysis exacerbates this 
phenomenon. The accumulation of lactic acids in cancer cells provokes upregulation of 
several transport machineries (MCT-1, NHE-1, CA IX and H+ pump V-ATPase) resulting 
in reinforced efflux of proton into extracellular fluid. This deviant event makes pH to 
be settled at 7.4 and 6.6 respectively in cancer cells cytoplasm and extracellular fluid 
within the tumor microenvironment, which in return triggers secretion of lysosomal 
components (various enzymes in acidic milieu with pH 5) into cytoplasm. All these 
anomalous phenomena make tumor microenvironment (TME) to be exposed to cocktail 
of various enzymes with acidic pH, upon which extracellular matrix (ECM) can be 
remodeled and even deformed, resulting in emergence of a complex viscose TME with 
high interstitial fluid pressure.  Conclusion: It seems that pH dysregulation is able to 
remodel various physiologic functions and make solid tumors to become much more 
invasive and metastatic. It also can cause undesired resistance to chemotherapy and 
immunotherapy. Hence, cancer therapy needs to be reinforced using specific inhibitors 
of bioelements involved in pH dysregulation of TME in solid tumors.
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Introduction
Fundamentally, at the early stage of tumor development, 
two main types of signals resonate the initiation of 
biological damage(s) leading to malignancy. Such 
biological micro-damages appear to be initiated through 
inadvertent enhanced hydrophobicity and undesired 
expression of nucleic acids. Hydrophobic domains 
(Hyppos) of biostructures are intrinsically concealed with 
hydrophilic molecules. While there exists a hydrophobic 
and hydrophilic balance within all cellular bioelements 
in normal condition,1 any precipitously exposed Hyppos 
aggregates may be a sign for initiation of an undesired 
molecular injury. It seems to be the same for nucleic 
acids because the unmethylated CPG sequences can be 
a sign for molecular/cellular damage(s).2 Though the 
mechanisms, by which cancerous cells regulate gene 
expression, are often altered in various tumors, the nuclear 
packaging of DNA is deemed to modulate transcription 

through remodeling and/or modifying DNA, resulting in 
blockage of access to specific sites of transcription. Of 
DNA modifications, methylation of cytosine molecules as 
well as histone acetylation have been shown to regulate 
the gene expression, in which the expressed genes are 
located in highly acetylated chromatin while methylation 
seems to direct gene repression through a histone 
deacetylase complex.3 The concept for damage-associated 
molecular pattern (DAMP) of solid tumors appears to be 
the reflection of danger signals, causing unique genotypic 
and/or phenotypic alterations—as if the damaged cells 
form some kind of recalcitrant biostructure! 
Hanahan and Weinberg have well discussed that most, 
if not all, cancers have inherently acquired almost 
the same set of functionalities during initiation and 
development exploiting various mechanisms.4 All solid 
tumors’ hallmarks show (a) self-sufficiency in growth 
signals, (b) insensitivity to anti-growth signals, (c) 
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evading immunosurveillance and apoptosis, (d) sustained 
angiogenesis, (e) tissue invasiveness and metastasis, and 
(f) limitless replicative potential.4 Hence, solid tumors 
appear to be self-organizing complex adaptive systems. 
The question is how do cancerous cells maintain their 
unique traits? And, why does the immunosurveillance 
system fail to recognize the rebellious biostructures? 
Further, chemotherapy of cancer often fails due to 
initiation of drug resistance and/or severe side effects. 
Based upon the Goldie-Coldmanmodel, the formation 
of chemotherapy-resistant clones (CRCs) can result in 
the failure of the conventional chemotherapy. While the 
main question would be: what is the Achilles’ heel of these 
cells? Having considered the Warburg effect and aberrant 
metabolism of glucose towards significantly high amount 
of lactic acid, cancer cells must maintain the intercellular 
pH (pHi) by pumping out the H+ through functional 
expression of pH regulating transport machineries such as 
Na+/H+ exchanger isoform 1 (NHE1).5 Such pH change 
at very early stage of carcinogenesis seems to be one 
of the main pathophysiological traits of solid tumors, 
resulting in alkalinized pHi and acidified extracellular pH 
(pHe), which is a driving force for various aspects of solid 
tumors’ behaviors.5 In the current review, we discuss the 
developmental process of solid tumors related to energetic 
pathway(s) and initiation of altered TME on the basis of 
pH dysregulation within cancerous cells. 

Tumor microenvironment
The progression and invasion of solid tumors appear to 
be the consequence of series of unique biological events 
within TME. Important elements of such orchestrated 
phenomena are discussed in the following sections.  
Epithelial and mesenchymal transition
As a rule, the tightness of cell-to-cell junctions is 
considered as determinant of epithelial organization, in 
which such junctional adhesion is largely dependent upon 
transmembrane glycoproteins such as E-cadherin as a 
typical epithelial marker. Epithelial cellular characteristics 
include (a) cohesive interactions among cells forming 
continuous cell layers, (b) membrane architectures (as 
apical, lateral and basal membranes), (c) tight junctional 
interactions, (d) polarized membranes with asymmetric 
dissemination of cellular machineries, and (e) proximate 
immobility of cells in the local epithelial microenvironment. 
Unlike the epithelial architecture, mesenchymal cells 
characteristically show different properties such as (a) 
motility and in some cases invasiveness, (b) no interaction 
between cells, (c) no apical and lateral membranes, and 
(d) no polarization.6

In tumor generation, transition of the epithelial cells 
to the mesenchymal cells emerge malignant cells with 
enhanced motility and increased capability to obliterate 
and penetrate. The epithelial-mesenchymal transition 
(EMT) process, which occurs normally in embryo 
during organogenesis (type 1), enables migration of 

cells, which forms the germ layers such as endoderm, 
ectoderm, and mesoderm. Similarly, upon an incidence of 
an injury within epithelial cells, such transition activates 
myofibroblasts and induces the process leading to re-
epithelialization (type 2).7 Aberrant process of the EMT 
may trigger initiation and progression of tumor (type 3). 
While the type 1 and type 2 EMTs occur respectively 
during the organogenesis and tissue regeneration, the type 
3 EMT appears to be the dominant phenomena in the case 
of aberrant solid tumors development and/or progression. 
Fig. 1 schematically represents the tumor development 
process (TDP).  
In type 3 EMT, various molecular events are deemed 
to happen including activation of several transcription 
factors (TFs) that coordinate the EMT program and some 
important molecular remodeling and signal transductions. 
Important molecular signaling pathways of SMAD and 
mitogen-activated protein kinase (MAPK) are activated 
through TGF-β, while aberrant activity of E-cadherin 
can also occur. Thus, the molecular machineries of this 
transitional step may provide potential target for inhibition 
of type 3 EMT. In a study, the expressions of E-cadherin 
and ZO-1 were investigated in a total of 48 cases (24 
primary colorectal cancers with liver metastasis and 24 
without). It was found that E-cadherin and ZO-1 were 
markedly down-regulated in the cancer cells of tumors 
with liver metastasis, indicating that dedifferentiation and 
decreased expression of E-cadherin and ZO-1 are closely 
related to liver metastasis.8 The miR-200 and miR-205 
families of microRNAs were evinced to regulate the EMT 
as well as cancer cell migration through direct targeting of 
E-cadherin transcriptional repressors ZEB1 and ZEB2,9,10 
in which enforced expression of the miR-200 family alone 
was sufficient to prevent EMT induced by transforming 
growth factor-α (TGF-α).10 In pancreatic cancer, 
caveolin-1 (Cav-1) happens to promote cell differentiation 
and restore membranous E-cadherin through suppression 
of the EMT.11  Besides, mutations of SMAD correlate 
with loss of response to TGF-β, and thus blockage of the 
interaction of TGF-β with the SMAD signaling pathway. 
Some studies revealed that MAPKs (e.g., ERK1, ERK2) 
and isoforms of p38 are involved in cancer progression. 
While it is possible to inhibit elements of these signaling 
pathways, it is not clear that it can prevent occurrence of 
type 3 EMT.12 This clearly implies that EMT is intrinsically 
orchestrated by a set of pleiotropically acting transcription 
factors (TFs). The functions of these EMT-based TFs are 
deemed to enable the early steps of metastasis through 
local invasion and subsequent spreading to other tissues. 
Nonetheless, the subsequent outgrowth of micrometastatic 
cancerous rebellions toward macroscopic colonization 
reveals their adaptation and self-renewal capacity within 
the new microenvironment that is mediated by cancer 
stem cells (CSCs). It is deemed that series of genetic and 
epigenetic mechanisms regulate the activation of such 
process.7 Fig. 2 schematically epitomizes the transitional 
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molecular events from normal cells to adenocarcinoma of 
colorectal cancer.

Morphological changes during epithelial–mesenchymal 
transition
During EMT as a major developmental process, epithelial 
cells undergo some unique changes through (a) developing 

fibroblast-like properties, (b) enhanced motility and (c) 
diminished intercellular adhesion leading to mesenchymal 
cells’ formation. Inherently, similar alterations occur in 
terms of tumor initiation, progression and transformation. 
Such changes can markedly provoke the invasiveness of 
the incipient cancer cells. As mentioned previously, several 
emergent oncogenic factors/pathways (e.g., peptide 

Fig. 1. Schematic representation of tumor development process (TDP). During TDP, the cancer cells within the primary tumor 
achieve some sort of capabilities to strike the neighboring tissue (1: progression). The cancerous cells after destructing the ECM 
get into the lymphatic and blood vessels (2: intravasation), traverse through the vessels (3: dissemination), leave the traveling 
vessels (4: extravasation), negotiate with the new microenvironment, survive and proliferate (5: dormancy) forming micrometastatic 
secondary tumor (colonization). EMT: epithelial–mesenchymal transition. MET: mesenchymal–epithelial transition.

Fig. 2. Schematic illustration of molecular events of the transition of normal cells to adenocarcinoma in colorectal cancer 
(CRC). Transitional stages (from normal colon epithelium to premalignant adenoma then to an invasive adenocarcinoma) are 
characterized through well-described sequence of mutations. Cell adhesion is compromised through loss of function of the 
adenomatous polyposis coli (APC) gene in up to 85% of all cases of CRC. KRAS is mutated in 50–60% of cases of CRC. Cell 
adhesion transmembrane glycoprotein E-cadherin is downregulated. MLH1 and MSH2 gene are mutated. SMAD4, which is 
involved in the transforming growth factor-β (TGF-β) signaling pathway, plays a key role in suppressing the epithelial-cell growth. 
While INK4A gene is involved in tumor-suppressor pathway, the p53 mutation appears to be the late phenomenon that makes 
cancer cells resistant to apoptosis. There exist overlaps between different stages. For detailed information, reader is referred to 
an excellent review by Kerr.13
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growth factors, Src, Ras, Ets, integrin, Wnt/β-catenin, and 
Notch) are involved in EMT. Of these, downregulation 
of the cell adhesion molecules and abnormal activity of 
epithelial marker E-cadherin seem to be the center of EMT, 
even though some other TFs need to activate different cell 
signaling pathways.6 We will briefly discuss some of the 
biological changes that manifest formation of TME during 
tumor development. 

Warburg effect and reverse Warburg effect
Cells produce their energy needs in the mitochondria 
through an oxygen-mediated oxidative phosphorylation 
(OMOP) that exploits oxidation of NADH and FADH2 
along with phosphorylation of ADP to form ATP. 
Alternatively, in contrast to OMOP, ATP can also be 
produced through glycolysis within the cytosol in the 
absence of oxygen, in which one molecule of glucose 
is broken into two molecules of pyruvate generating 
ATP by means of NAD+ and conversion of pyruvate to 
lactate (Fig. 3). In cancer cells, despite the presence of 
sufficient levels of O2, the rate of glycolysis is increased 
– a phenomenon called aerobic glycolysis or “Warburg 
effect”.14 As a “self-governing” disease, cancer cells and 
the related stromal cells are closely connected in terms 
of bioenergetic metabolism standpoint. During this 
scenario, stromal cells, which are subjected to oxidative 
stress and switch to a glycolysis-based metabolism, can 
also generate high levels of lactate and ketone bodies 
that initiate the oxidative phosphorylation process. This 
metabolic circuitry crosstalk, which closely resembles 
the well-known lactate shuttle bridging in cancer cells 
and stroma, is called “reverse Warburg effect”. Cancer 
cells have been shown to secrete high levels of hydrogen 
peroxide (H2O2),

15 by which they can attain a local 
oxidative microenvironment. Stromal cells tend to react 
to such oxidative conditions through enhancing their 
autophagic flux as well as activation of hypoxia-inducible 
factor 1 (HIF-l), which can in return trigger degradation 
of Cav-1 and also activate several important genes (e.g., 
MCT4) related to glycolysis and result in production of 
lactic acids and ketone bodies. These byproducts can be 
taken up by cancer cells through MCT1 to fuel oxidative 
phosphorylation.16

One of the key elements of Warburg effect was shown to 
be HIF-l, whose activation in malignancies can increase 
the transcription of many genes involved in glucose 
metabolism, apoptosis resistance, invasion, metastasis 
and angiogenesis. It seems that the activation of glycolysis 
can favor the biosynthesis process in conformity with 
cancer, supporting cell proliferation. For example, 
glycolytic metabolites such as glucose 6-phosphate, 3- 
phosphoglycerate, phosphoenolpyruvate and pyruvate are 
key precursors in the biosynthesis of several amino acids 
while dihydroxyacetone phosphate is the key precursor 
of glycerol, a necessary metabolite for the synthesis of 
lipids.17 Hence, the hypoxia and HIF-1 will be briefly 

discussed in the following sections.

Hypoxia and HIF-1
Hypoxia epitomizes the unique characteristic of all 
solid tumors, in which an imbalance between enhanced 
oxygen consumption by cancer cells and insufficient oxy-
gen delivery from the aberrant tumor vasculature appear 
to be the main reason for such phenomenon though it 
happens even in the presence of oxygen. Given the fact 
that the metabolism of glucose in cancer cells is mainly 
through glycolysis, the acidic byproducts are pumped out 
of the cytoplasm resulting in pH dysregulation within the 
TME; that is, alkalinized intracellular fluid and acidified 
extracellular fluid. Such transformed metabolism in 
cancer cells is reported to enhance the resistance of the 
cancer cells to radiation and chemotherapy.18

The Warburg effect and the hypoxia are associated with 
activation of HIF-1 that is a transcription factor critically 
involved in cellular responses to hypoxia and tumor 
progression and modulate the expression of a large number 
of genes within TME under hypoxic conditions. As a 
heterodimeric protein comprised of an aryl hydrocarbon 
receptor and a nuclear translocator, the α subunit of HIF-
1 is regulated by oxygen concentrations. Accordingly, 
there exist evidences showing that the HIF-1α is over-
expressed in various malignancies. It is associated with 
a range of genetic alterations such as loss of function of 
tumor suppressor genes (VHL, PTEN and CDKN2A) 
along with increased activity of some oncogenes (RAS, 
SRC, BCR-ABL, TWIST1 and MET).19-21 HIF-l has been 
being considered as one of the attractive oncomarkers for 
the development of novel cancer therapeutics. Table 1 
represents some selected inhibitors of HIF-1.
Moreover, in invasive breast cancer, HIF-1α was shown 
to be associated with angiogenesis and expression of 
growth factors such as basic fibroblast growth factor 
(bFGF) and platelet derived growth factor-BB (PDGF-
BB), and epidermal growth factor receptor (EGFR). 
Hence, it is possible to control the breast cancer growth 
(both angiogenesis and growth factors) through inhibition  
of HIF-1.32 Gefitinib, an EGFR inhibitor, was also shown 
to decrease the expression of vascular endothelial growth 
factor (VEGF) through downregulation of HIF-1α.33 Some 
other known target genes affecting activity of HIF-1 are 
carbonic anhydrase IX (CA IX), matrix metalloproteinase 
2 (MMP2), endothelin 1, and enolase 1.27

Aberrant metabolism: some selected paradigms
Aberrant metabolism of glucose and hypoxia are the 
main characteristics of TME. Tumor cells possess specific 
enzyme-regulatory mechanisms, by which they can direct 
the main flux of glucose carbons towards the signaling 
elements that are instantly required for their survival/
progression under challenging external conditions such 
as varying substrate availability, presence of anti-cancer 
drugs or different phases of the cell cycle.34 Inherently, 
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glucose trafficking by cancerous cells is in favor of the 
generation of biomass and regulation of the cellular 
signaling that are critical for oncogenic progression. Such 
specialized trafficking, demands specific transporters 
such as glucose transporters (GLUTs), which are key 
rate-limiting transport machineries. Of various GLUTs, 
the expressions of GLUT1, insulin-responsive GLUT4 
and GLUT9 happen to be enhanced as enigmatic class 
of proteins.35 Once in the cytoplasm, glucose is subjected 
to metabolism, and the glycolytic intermediates fuel 
several biosynthetic pathways necessary for duplication 
of biomass during cellular proliferation (Fig. 3). Glucose 
is first phosphorylated to glucose-6-phosphate through 
hexokinases (HKs), and then it can be subjected to 
glycolysis, glycogen metabolism and pentose phosphate 
pathway. In the case of solid tumors, the dominant pathway 
by cancerous cells for glucose metabolism is glycolysis 
(Fig. 3), where nicotinamide adenine dinucleotide 
(NAD+) is involved in redox reactions that are essential 
for conversion of pyruvate to lactic acid produced by 
cancer cells. Unlike the metabolic redox reactions that 
reversibly oxidize/reduce pyridine nucleotides, NAD+-
dependent signaling processes continuously use NAD+. 
Thus, maintenance of the cellular NAD content seems to 
be a crucial homeostatic process.36

As shown in Fig. 3, the ratio of NAD+ to NADH is 
balanced in normal cells, while in cancer cells lactate 
dehydrogenase isoform A (LDHA) favorably converts 
accumulating pyruvate to lactate, thus regenerating NAD+ 
from NADH in support of glycolysis.36 In fact, certain 
bioelements are involved in the enzymatic breakdown 

of glucose to pyruvate while some other enzymes appear 
to play central roles in the metabolism of pyruvate. In 
cancer cells, pyruvate is converted to lactate by lactate 
dehydrogenase (LDH), which is then released into the 
extracellular space where HIF-l regulates cell adaptation 
to hypoxia through pyruvate dehydrogenase kinase 1 
(PDK1) that inhibits pyruvate dehydrogenase (PDH), and 
accordingly the conversion of pyruvate to acetyl-CoA and 
mitochondrial respiration. 
NAD+ as an essential part of bioenergetic processes 
is routinely synthesized from the vitamin B3 (niacin) 
and the related nucleosides. Given that nicotinamide 
(Nam), the main energy source, arises from NAD+-
dependent signaling paths, the enzymatic function of 
the nicotinamide phosphoribosyl transferase (NamPRT) 
is pivotal for conversion of salvages Nam into NAD+. 
Thus, to block the synthesis of NAD+, NamPRT and 
nicotinamide mononucleotide Adenylyl transferases 
(NMNATs) as potential oncotargets must be inhibited. 
Further, NAD+ dependent protein deacetylases (Sirtuins) 
such as SIRT1, SIRT3, SIRT6 and SIRT7 appear to 
provide another possibility for cancer therapy.36 For 
example, thiazolidinediones (also known as glitazones 
used in the treatment of diabetes mellitus type 2, have 
been introduced as a novel class of energy restriction-
mimetic agents. They are able to induce hallmark cellular 
responses that are characteristics of energy restriction 
such as (a) induction of silent information regulator 1 
(sirtuin-1 or SIRT1), (b) activation of the intracellular fuel 
sensor AMP-activated protein kinase, and (c) endoplasmic 
reticulum stress, resulting in activation of autophagic 

Table 1. Selected inhibitors of HIF-1

Inhibitor Mechanism of action Reference

FK228, a histone deacetylase inhibitor Inhibition of angiogenesis through suppression of HIF-1α in Lewis lung 
carcinoma induced by hypoxia

22

R59949, a diacylglycerol kinase inhibitor Blockage of accumulation of HIF-1α in the presence of von Hippel-
Lindau (VHL) by activation of HIF prolyl hydroxylases 

23

Vitexin, a natural flavonoid compound 
identified as apigenin-8-C-b-D-glucopyranoside

Inhibition of HIF-1α in PC12 cells by blockage of c-jun N-terminal kinase 
(JNK) and diminished levels VEGF, smad3, aldolase A, enolase 1, and 
collagen type III

24

YC-1, a HIF-1αsiRNA Inhibition of tumor invasion or metastasis in nude mice through 
suppression of HIF-1α

25

RX-0047, a HIF-1α antisense Inhibition of metastasis of human lung in xenograft mice 26

KC7F2, a lead compound with a central 
structure of cystamine

Down-regulation of HIF-1α protein synthesis along with suppression of 
phosphorylation of factor 4E binding protein 1 and p70 S6 kinase (key 
regulators of HIF-1α)

27

Caffeic acid phenethyl ester (CAPE), an active 
component of honeybee’s propolis

Inhibition of HIF prolyl hydroxylase (the key enzyme for von Hippel-
Lindau-dependent HIF-1α degradation)

28

PX-478 (S-2-amino-3-[4′-N,N,-bis(chloroethyl)
amino]phenyl propionic acid N-oxide 
dihydrochloride)

Reduction of HIF-1α mRNA and inhibition of its translation 29,30

Pantoprazole, a proton pump inhibitor Inhibition of HIF-1α in human gastric adenocarcinoma sgc-7901 cells 31
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and apoptotic death.37 Table 2 represents some selected 
inhibitors of NAD biosynthesis/function.

Dysregulation of pH in cancer cells
For transitional stages to malignancy, the rate of glycolysis 
within cancerous cells is substantially increased, which 
results in high generation of lactic acid. Cancer cells pump 
out the acidic byproducts through upregulation of some 
special transporters. In fact, during Warburg phenomenon, 
many molecular elements are consistently upregulated by 

HIF-l and hypoxia in association with glucose metabolism. 
It seems that Warburg effect is able to upregulate the 
expression of crucial transporters for glucose uptake 
and to induce expression of transporters involved in 
transportation of byproducts of glucose metabolism, upon 
which cancer cells can control intracellular pH at 7.4 
whilst acidifying the extracellular fluid within the TME 
(Fig. 4).
During glycolysis, tumor cells enhance their enzymatic 
activities and/or increase transcriptomes of glycolytic 
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Fig. 3. Glucose metabolism path in normal cells and cancer cells. Cells transport glucose through GLUT1 and phosphorylate it 
to G6P through hexokinases (HK2). G6P is further metabolized through glycolysis path (1–15), glycogen metabolism (23–26) 
and pentose phosphate pathway (27–32). Cancer cells exploit the glycolysis path, which results in production of lactic acid that is 
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Table 2. Selected inhibitors involved in inhibition of NAD biosynthesis/function.

Inhibitor Pharmacological effect(s) Reference

FK866/K22.175, inhibitor of nicotinamide 
phosphoribosyltransferase (NamPRT) Potent antiangiogenic effects in murine renal cell carcinoma 38

APO866, inhibitor of NamPRT
Potent inhibition of most cancer cells (acute myeloid leukemia [AML], 
acute lymphoblastic leukemia [ALL], mantle cell lymphoma [MCL], 
chronic lymphocytic leukemia [CLL], and T-cell lymphoma)

39

GMX1778, inhibitor of NamPRT Neuroblastoma regression and vessel maturation without inducing 
drug resistance in engrafted mice 

40

Beta-lapachone, an orthonaphthoquinone

Induction of cell death by activation of a futile cycling of the drug by the 
cytoplasmic two-electron reductaseNAD(P) H: quinone oxidoreductase 
(NQO1), DT-diaphorase and Xip3. Production of reactive oxygen species 
(ROS) at higher drug concentrations 

41

Retinoic acid

Induction of apoptosis by all-trans-retinoic acid and N-(4-hydroxyphenyl)
retinamide in MCF7 cancer cells through transient increase in NADH 
level and mitochondrial oxidative turnover and a slow decline in 
reduced thiol level and mitochondrial membrane potential

42

Mycophenolic acid, a inhibitor of inosine 
5'-monophosphate dehydrogenase (IMPDH)

Enhanced cytotoxicity in tumor cell lines by binding to IMPDH at the 
nicotinamide sub-site of the NAD cofactor binding domain

43

Dicumarol, a NQO1 inhibitor Inhibition of NADPH: quinone oxidoreductase induces growth inhibition 
of pancreatic cancer via a superoxide-mediated mechanism

44

Sirtinol, a SIRT1 inhibitor

Induction of senescence-like growth arrest, increased expression of 
plasminogen activator inhibitor, and impaired activation of mitogen-
activated protein kinase (MAPK) pathways in human breast cancer 
MCF-7 cells and lung cancer H1299 cells.

45

Sulindac Induction of carcinogen metabolizing enzymes in human colon cancer 
cells

46

Salermide, a Sirtuin inhibitor Induction of cancer-specific proapoptotic effect in cancer cell s and 
mice by inhibiting SIRT1 and SIRT2 

47

enzymes (e.g., HKII, PFKs, LDH-A) and GLUTs. Of the 
elevated enzymes, some were found to have anti-apoptotic 
function, resulting in promotion of chemoresistance in 
cancer cells. Glucose transportation is mediated via GLUTs 
that are an important family of membrane-associated 
proteins with isoform-specific tissue distribution. While 
novel engagement of the insulin-responsive GLUT4 
in myeloma and identification of GLUT9 as a urate 
transporter open new avenues on this large class of 
proteins,35 GLUTl and GLUT5 have been shown to be 
overexpressed in most solid tumors such as human small 
intestine and colon,48 cervical and ovarian cancers,49, 50 and 
kidney cancer.51 Overexpression of GLUT1 in stage I-III 
colorectal cancer was independently associated with poor 
prognosis in colorectal cancer.52 In breast cancer, GLUT1 
overexpression has been shown to correlate with carbonic 
anhydrase IX (CAIX) and monocarboxylate transporters 

1 (MCT1) and 4 (MCT4) as well as their chaperone 
CD147.53  Fig. 4 represents pH regulation in hypoxic and 
normoxic cells.
Physiologically, mammalian solute carrier (SLC) proteins 
control trans-membranous inward and/or outward 
traverse of nutrients, electrolytes, vitamins, endogenous 
metabolites and some drugs. As epitomized in Fig. 4, a 
number of plasma membrane transporters expressed by 
cancerous cells are H+-coupled transporters that control 
the local H+-electrochemical gradients and play a key role 
in trafficking of some drugs.54 Table 3 represents some of 
the transporters expressed in plasma membrane of cancer 
cells.
Having enhanced glucose uptake via induction of GLUT1 
and SGLT1, to prevent intracellular acidification, tumor 
cells upregulate MCT4, a member of solute carrier family, 
which is an H+-coupled lactate transporter (Table 3). 
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glycolysis produces lactic acid, dysregulating pH in cancer cells. B) Glucose metabolism in normoxic condition through oxidative 
phosphorylation uptake lactic acid trough MCT1 transporter and consume it via   oxidative phosphorylation. Expression of various 
transporters (MCT4, Glut1, CA-IX, V-ATPase, NHE1) at plasma membrane and mitochondria of hypoxic cancer cells favor alkalization 
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Nevertheless, the Na+-coupled lactate transporter SMCT1 
(SLC5A8), which transports butyrate and pyruvate, 
functions as a tumor suppressor factor.60,72

It should be highlighted that most solid tumors contain well-
oxygenated (normoxic) and poorly oxygenated (hypoxic) 
regions that respectively utilize glucose for oxidative and 
glycolytic metabolism (Fig. 4). While hypoxic cancer cells 
convert glucose to lactate and extrude it into the TME, 
the normoxic cancer cells take up lactate via SMCT1 and 
consume it via oxidative phosphorylation. It is deemed 
that, upon inhibition of SMCT1, normoxic cancer cells 
take up glucose rather than lactate and hypoxic cancer 
cells die due to glucose deprivation. Treatment of tumor-
bearing mice with an inhibitor of SMCT1 was shown to 
retard the tumor growth.73

Fascinatingly, a genome-wide haploid genetic screening 
has recently been conducted to identify the resistance 
mechanisms to 3-bromopyruvate (3-BrPA), a small 

molecule that inhibits glycolysis in a poorly understood 
fashion. It has been evinced that MCT1 is the main 
transporter for the uptake of 3-BrPA, and its elevation in 
cancer cells results in sensitivity of in vivo tumor xenograft 
to 3-BrPA treatment. As H+-coupled transporter, MCT1 
catalyzes the movement of many monocarboxylatesand 
therefore its mRNA level (SLC16A1 mRNA) as the 
most elevated bioelement in glycolytic cancer cells can 
be considered as the best predictor of cancer response 
to 3-BrPA therapy.74 Presumably, this is the first report 
on identification of a potential biomarker for 3-BrPA 
sensitivity, which provides proof of concept that the 
selectivity of cancer-expressed transporters can be 
exploited for delivering toxic molecules to tumors.
Of the pH dysregulating transporters, perhaps, the 
Na+/H+ exchanger 1 (NHE1) is one of the best studied 
bioelements. NHE1 regulates acidity of both intracellular 
fluid (pHi) and extracellular fluid (pHe). As an integral 
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membrane transport protein, it is activated during 
oncogene-dependent transformation by various stimulants 
such as growth factors, hormones, enzymes, the metabolic 
bioelements in microenvironment (low serum, acidic pH 
and hypoxia).75,76 The exocytosis of lysosomes to the cell 
periphery can substantially be induced at pHe 6.4-6.8, which 
depends on PI3K pathway, GTPase RhoA and sodium-
proton exchange activity. Accordingly, NHE1 and NHE3 
play a key role on the trafficking of lysosomes.64 Taken all 
together, dysregulated pH in cancer cells can be reverted 
via inhibition of NHE1/NHE3 by specific inhibitors such 
as amiloride, troglitazone and cariporide.64,77,78

As demonstrated in Fig. 4, another pH dysregulator of 
cancer cells is carbonic anhydrase (CA) that is mainly 
involved in intracellular catalysis. The catalytically-active 
intracellular CA isoforms are CAl, CA2, CA3, CA7 and 
CAl3, while there exist a number of extracellular-facing 
catalytic sites such as CA4, CA9, CA12, and CA14. 
Of these, CA9 and CA12 are hypoxically induced and 
correlate positively with various malignancies.66-70 
Therefore, targeting enzymes and transporters involved in 
pH dysregulation may be considered as logical therapeutic 
strategy as shown in Fig. 5.
Further, together with other transport machineries, the 
V-ATPase appears to be also responsible for development 
of TME through proton extrusion to the extracellular 
fluids,which results in activation of destructive enzymes 

and thereby remodeling of the extracellular matrix.79 
Hence, specific inhibition of this transporter may reduce 
tumor metastasis and prevent the resistance of cancerous 
cells to chemotherapy and immunotherapy such as the 
HER2 targeting trastuzumab.80

Final remarks and expert opinions
The dysregulation of pH within TME has been shown 
to provoke a series of intrinsic functions which triggers 
progression and invasion of the solid tumors. Warburg 
effect induces HIF-1 which can in return elicit upregulation 
of series of TFs, enzymes and transporters. As a result, 
even in the presence of oxygen, glucose metabolism is 
shifted toward glycolysis that produces lactic acids as 
byproducts of such aberrant energetic metabolism by 
cancerous cells. The upregulation of glucose transporter 
GLUT-1 and several enzymes involved in glycolysis 
exacerbates this phenomenon. The accumulation of lactic 
acids in cancer cells provokes upregulation of several 
transport machineries (MCT-1, NHE-1, CA IX and H+ 
pump V-ATPase) and results in reinforced efflux of 
proton into extracellular fluid. This deviant event makes 
pH to be settled at 7.4 and 6.6 respectively in cancer 
cells cytoplasm and extracellular fluid within the tumor 
microenvironment, which in return triggers secretion of 
lysosomes’ components into cytoplasm. The exocytosis 
of lysosomes to the cell periphery can substantially be 

Table 3. Selected transporters involved in pH dysregulation of cancer cells.

Transporter Description Function Cancer type

MCT1 (SLC16A1)
MCT3 (SLC16A3)
MCT4 (SLC16A4)

Proton-linked 
monocarboxylate 
transporter (MCT) 
characterized by 12 
predicted transmembrane 
domains

Plasma membrane rapid transportation of  
monocarboxylates (lactate, pyruvate, branched-
chain oxo acids derived from leucine, valine and 
isoleucine, ketone bodies acetoacetate, beta-
hydroxybutyrate and acetate)

Colorectal 55; breast 56; 
prostate 57; lung 58; gastric 
59

SMCT1 (SLC5A8)
An electrogenic Na+ and 
Cl‾-dependent Na+-coupled 
(SMCT) solute transporter 

Transportation of monocarboxylates such as 
short-chain fatty acids including L-lactate, 
D-lactate, pyruvate, acetate, propionate, 
valerate and butyrate, lactate, mocarboxylate 
drugs (nicotinate, benzoate, salicylate and 
5-minosalicylate) 

Acute myeloid leukemia 60

NHE1 (SLC9A1)
NHE2 (SLC9A2)
NHE4 (SLC9A4)

A Na+/H+ exchanger (NHE) 
as an antiporter that is 
a member of the solute 
carrier family

Involved in pH regulation to eliminate acids 
generated by active metabolism in cancer cells 
as a major proton extruding system driven by 
the inward sodium ion chemical gradient

Cervical 61; breast 62; colon 
63; prostate 64; gastric 65

CA IX (CA9)

Carbonic anhydrases (CAs), 
as a large family of zinc 
metalloenzymes,  catalyze 
the reversible hydration of 
carbon dioxide

Reversible hydration of carbon dioxide Most cancers 66-70

GLUT1 (SLC2A1) Glucose transporter (GLUT)  
Transportation of glucose as an essential source 
of energy for mammalian cells, involved in an 
aerobic glycolysis - often observed in tumor cells

Most solid tumors 35, 71
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induced at acidic pH of extracellular fluid, which is also 
in close relation with PI3K pathway as a GTPase RhoA 
and sodium-proton exchange activity. Further, some 
proton exchangers, specifically NHE1 and NHE3 have 
been reported to play a key role  in the trafficking of 
lysosomes.64 It is well-defined  fact that immunotherapy 
through targeting of various oncomarkers such as 
epidermal growth factor receptors,81,82 G-protein 
coupled receptors83 and many others84 is one the most 
effective approaches for cancer therapy.85 However, 
targeted therapy of cancer may result in better clinical 
outcome if the pH dysregulation is synchronically 
inhibited. All these anomalous happenings make TME to 
be exposed to cocktail of various enzymes with acidic pH, 
upon which ECM can be remodeled and even deformed 

resulting in emergence of a viscose TME with high 
interstitial fluid pressure that also acts as an obstacle to 
cancer therapy.86

In conclusion, it appears that pH dysregulation within 
TME remodels many normal physiologic functions and 
makes solid tumors to become invasive and metastatic, 
while induces chemoresistance and immunoresistance 
in cancerous cells. Therefore, the next step for cancer 
therapy seems to be the combination therapy using specific 
inhibitors of bioelements involved in pH dysregulation 
along with conventional anticancer agents. To have a 
successful combination therapy, it is crucial to deliver the 
agents into TME using appropriate drug/gene delivery 
systems (DDSs/GDSs) ideally through passive and/or 
active targeting approaches. However, it should be pointed 
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Fig. 5. The key players of the pH dysregulation and main transport machineries involved in cellular trafficking of chemotherapeutics 
in solid tumors. Glucose is mainly taken up by glucose transporter 1 (GLUT1) and metabolized through glycolysis mechanism 
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out that there exist intrinsic bio-signature for many DDSs/
GDSs,87 which need to be considered  during delivery 
of the active agents into TME to avoid any inadvertent 
impacts as previously shown for several non-viral 
GDSs.88-94 Biodegradable polymers such as poly (lactic-
co-glycolic acid) (PLGA) and some other biodegradable 
block copolymers (e.g., poly(ethylene glycol)-block-
poly(ε−caprolactone) methyl ether) may provide safer path 
for delivery of the active agents into TME.95 Therefore, 
we envision that targeted nanoparticles, engineered using 
biodegradable polymers/lipids encapsulating designated 
drug(s), should be employed for specific delivery of 
the components of combination therapy into TME to 
circumvent undesired sides effects of such cocktail within 
the normal tissues. 
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