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Personalized cell-mediated immunotherapy and vaccination: 
combating detrimental uprisings of malignancies
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Immunization of cancer
After successful accomplishment of a number of studies 
as “proof-of-concept” upon the cell-based vaccinations, 
the first “proof-of-technology” and more realistically 
“proof-of-marketing” was emerged as sipuleucel-T (also 
known as APC8015/Provenge™) by Dendreon Corp. 
(Seattle, WA, USA). Sipuleucel-T was approved by the 
United State Food and Drug Administration (FDA) in 
2010 for the treatment of prostate cancer, which showed 
evidence of efficacy in lessening mortality risk among 

men with metastatic castration-resistant prostate cancer 
(MCRPC).1-3As the first FDA approved autologous active 
cellular immunotherapy modality, Sipuleucel-T opened 
a new horizon for the cancer therapy and raised great 
hopes for the development of futuristic personalized 
immunotherapies and vaccines. For the proof-of-
technology, Kantoff et al carried out a double-blind 
multicenter phase III trial, in which randomly assigned 
512 patients were administered either sipuleucel-T (341 
patients) or placebo (171 patients) intravenously every 
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Summary
A large number of researchers worldwide have 
conducted various investigations to advance the cell-
based immunotherapies and to examine their clinical 
benefits as an ultimate prevention and/or treatment 
modalities against life-threatening malignancies. 
This dominion needs integration of science and 
technology to change the face of treatment of diseases 
towards much more personalized medicines. It is 
now plausible to reprogram the human cells for the 
prevention and treatment of diseases through various 
mechanisms such as modulation of immune system, 
nonetheless we should understand the complexity 
of biological functions of the cells in a holistic way 
to be able to manipulate the central dogma of the 
life to prevent any inadvertent mistake. We should, 
if not must, comprehend the interrelations of the 
cellular components (e.g., transport machineries) 
in the developmental processes of diseases. Still, 
we do not have a complete image of life, perhaps as 
expressive barcodes, and many pieces are missing. 
While completing this puzzle to picture the whole 
image and examine new treatment modalities, we 
should take extra caution upon unknown/little-known 
biological phenomena  because trifling modulation/
alteration in the complex systems of the life may result 
in tremendous impacts. In short, it seems we need to 
consider malignancies as complex systems and treat 
them in a holistic manner by targeting its hallmarks. 
Taken all, the immune system reinforcement would be 
one of the main  foundations in combating detrimental 
malignancy uprising. 

http://dx.doi.org/10.15171/bi.2015.18
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.15171/bi.2015.18&domain=pdf&date_stamp=2015-04-26


Barar and Omidi

BioImpacts, 2015, 5(2), 65-6966

2 weeks –  three infusions in total. In the group treated 
with sipuleucel-T, in comparison with the group treated 
with placebo, a significant reduction (22%) in the risk of 
death was observed with 36-month survival probability of 
31.7%.2

As the first personalized medicine, sipuleucel-T has 
successfully been used for the treatment of asymptomatic/
minimally symptomatic metastatic hormone-refractory 
prostate cancer (HRPC).3, 4 Fig. 1 schematically epitomizes 
the cell-based immunotherapy process using sipuleucel-T 
modality.
As shown in Fig. 1, the administration of sipuleucel-T 
needs three key steps of (a) isolation of the patient’s 
antigen-presenting cells (APCs) such as dendritic cells 
(DCs) using a leukapheresis system, (b) incubation of 
the isolated cells with the fusion protein PA2024, which 
consists of the antigen prostatic acid phosphatase (PAP) 
and an immune signaling factor granulocyte-macrophage 
colony stimulating factor (GM-CSF), to reprogram the 
patient’s APCs to present the required antigens, and (c) 
infusion of the activated blood product. 
It should be noted that during invasion and metastasis in 
the most, if not all, of malignancies, traveling single cancer 
cells escape the “anoikis” phenomenon that is the main 
mechanism of death program for the homeless single cells 
unanchored the extracellular matrix. In 2004, Douma et 
al showed that the functional expression of TrkB protein 
favors cancer cells to run away the anoikis, in which the 
brain-derived neurotrophic factor (BDNF) stimulated TrkB 
protein can in turn activate the AKT/PKB proteins whose 
functions result in survival and proliferation of separated 
traveling cancer cells.6 Since then, several studies revealed 
that cancer cells recruit various bioelements to escape the 

anoikis.7-14 Taken all, some pivotal questions still remain 
unanswered, for example we must know how can really 
homeless single cancerous cells survive the anoikis and 
immunosurveillance?  And, how effective would be the 
applied vaccination/immunotherapy against malignancies 
if some cancerous cells alter its characteristics to evade the 
immune system functions? We believe that the transitional 
alteration of differentiated cancer cells to the undedicated 
cancer stem cells, which can act as progenitor for the 
second colonization and relapse, is possible mechanism 
for the survival of single cancer cell invaders even though 
the detailed mechanism(s) by which invading tumor cells 
survive the anoikis process are yet to be fully understood.
So far, the chemotherapy of cancer has associated with 
some important shortcomings such as inadvertent 
side effects in the healthy cells, leading many scientists 
including our group to search for more cancer-specific 
treatment modalities such as multimodal nanomedicines 
and seamless theranostics.15-21 In addition, success of 
the currently used immunotherapy of cancer appears 
to be associated with some difficulties,22-25 so are the 
gene therapy modalities, while the gene delivery viral 
vectors26,27 and nonviral vectors28-34 respectively induce 
intrinsic immunogenicity and genotoxicity.  
In the case of cancer immunotherapy, two key strategies 
have currently been utilized for the tumor targeting, 
including (a) the antibody-directed targeting of toxic 
agents or cytolytic activity and (b) intensification of cellular 
immune responses against malignant cells. However, 
these approaches have resulted in limited successes, 
largely because of (a) the inadequate penetration and 
dissemination of antibodies (Abs) or Ab-conjugates in the 
tumor microenvironment (TME) as well as cancer cells 

Fig. 1. Schematic representation for the cell-based sipuleucel-T immunotherapy of prostate cancer. A) Necessary steps applied for 
accomplishing the cell-based treatment modality. B) Sipuleucel-T (Provenge™) mechanism of action. Treatment commences with the 
isolation of dendritic cells (DCs) as antigen presenting cells (APCs) from the patient undergone for Provenge™ therapy. Then, after in vitro 
cultivation of the DCs in the presence of fusion protein PAP–GM-CSF composed of prostate acid phosphatase (PAP) and granulocyte–
macrophage colony-stimulating factor (GM–CSF) as immune responses enhancer (panel A), the reprogramed DCs expressing CD54 
and PAP are re-infused into the patient to activate T cells response against the prostate cancer cells (panel B). Image was adapted with 
permission form our previously published work.5 Note: not drawn to scale.
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and (b) the trivial activation of tumor-specific cytotoxic 
lymphocytes.35 In fact, in the solid tumors, the TME 
forms a permissive milieu with unique characteristics, 
inclusing (a) altered energetic pathways; for example 
glucose is hugely metabolized via  glycolysis in favor of 
fueling of the lenient milieu of TME and remodeling of 
the extracellular matrix (ECM), (b) acidified extracellular 
fluid within the TME to reprogram the ECM and stromal 
cells in favor of the further invasion and metastasis, (c) 
transformed metabolism profile for some important 
biomolecules; for example, L-tryptophan is metabolized 
to produce kynurenine to favor the cancer cells to escape 
the anticancer immunosurveillance function of immune 
system and immunotherapies, (d) reprogramed stromal 
cells, (e) altered tumor interstitial fluid with high oncotic 
pressure, and (f) changed pattern of drug penetration 
into the core of solid tumor, in which passive diffusion 
no longer is the key player, and convection and migration 
phenomena of molecules/macromolecules impact 
dissemination of endogenous/exogenous compounds/
particulates within TME.36,37  
Within the TME, even the transportation of the 
macromolecular nanosystems (NSs) through different 
paths (e.g., diffusion, migration and/or convection) would 
entirely differ from that of the normal tissues/cells. The 
tumor interstitial fluid pressure (IFP) is markedly high 
and hence the penetration of macromolecular anticancer 
agents into the deep core of solid tumor, where encompasses 
the cancer stem cells, appears to be intriguingly low in 
solid tumors. Further, the high microvascular density 
in the primary tumor is often associated with increased 
incidence of lymph node metastases as well as poor clinical 
outcome,38 and tumors with high IFP were reported to be 
dense in microvasculature in the periphery but possess 
large hypoxic fractions centrally. Hence, all these issues 
can limit the anticancer activity of immune system and 

immunotherapies.39

Up until now, a large number of clinical trials have 
been conducted for the cell-mediated vaccination of 
solid tumors, most of which were based on the use 
of tumor cells vaccines, modified lymphocytes and 
reprogramed APCs such as DCs to stimulate the immune 
responses through both CD4+ T helper cells and CD8+ 
cytotoxic T-lymphocytes (CTLs).40-44 Of these studies, 
implementation of fused DCs and tumor cells hybrids (the 
so-called dentritoma) seems to be a promising strategy 
even though some important inadequacies may limit its 
clinical usefulness as reported for DCs-based vaccination 
in the late stage melanoma.45 Combined immunotherapy 
and antivascular therapy has been proposed as an effective 
therapeutic modality in mice model bearing B16-F10 
melanoma tumors to polarize the TME using a tumor 
cell-based vaccine (CAMEL peptide as a B16-F10 cell 
death-inducing agent). The combined therapy was found 
to induce profound inhibitory impacts as compared to 
monotherapies, resulting in lessened angiogenesis and 
increased tumor-infiltrating CD4+, CD8+ and NK cells 
with lowered suppressor T-lymphocytes (Tregs).46 Table 1 
represents some selected clinical trials on the cell-based 
vaccination of cancer.
Taken all, to tackle such hurdles, most of the strategies 
have been based on the enhancement of the immune 
system activity, for which the cell-based modalities against 
malignancies have been capitalized on the modulation 
of dendritic cells and/or lymphocytes.41,43,47-49 In these 
approaches, the foundation of immunotherapy is based on 
the reprograming of cellular elements of immune system 
towards modulation of both the innate and adaptive 
immunity of the patient. 
Despite accomplishment of a large number of promising 
translational researches and clinical trials on the cell-based 
vaccination, still we do not have an ultimate immunization 

Table 1. Selected clinical trials for the cell-based vaccination of solid tumors

Vaccination modality Trial description Cancer Phase, status Clinical trial 
identifier

Autologous Ad HER2 dendritic cell 
vaccine

Ad/HER2/Neu dendritic cell cancer vaccine testing Breast I, recruiting NCT01730118

Aldesleukin, filgrastim, anti-p53 
T-cell receptor-transduced 
peripheral blood lymphocytes, 
autologous dendritic cell-adenovirus 
p53 vaccine

Gene-modified lymphocytes, high-dose 
aldesleukin, and vaccine therapy in treating 
patients with progressive or recurrent metastatic 
cancer

Various solid 
tumors

II, terminated 
with results 

NCT00704938

DEC-205/NY-ESO-1 fusion protein 
CDX-1401

Vaccine therapy with or without sirolimus in 
treating patients with NY-ESO-1 expressing solid 
tumors

Various solid 
tumors

I, active, not 
recruiting

NCT01522820

CAP 1-6D and CMVpp65 peptide-
pulsed, autologous dendritic cells

Vaccine therapy in treating patients with refractory 
stage IV cancer

Unspecified 
adult solid 
tumors

I, completed NCT00057915

Dendritic cell vaccine loaded with 
autologous tumor

Autologous OC-DC vaccine in ovarian cancer Ovarian 
cancer

0, recruiting NCT01132014

Tumor Associated Peptide Antigens 
(TAPAz)-pulsed DC vaccine

Treatment of patients with progressive and/or 
refractory solid malignancies

Various solid 
tumors

I/II, just 
initiated 

NCT02224599

Dendritic cell-gp100-MART-1 antigen 
vaccine

Vaccine therapy in treating patients with high-
risk stage III or completely resected metastatic 
melanoma

Stage III/IV 
melanoma

II, completed NCT00019890
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strategy against solid tumors. We believe that the status 
of TME in different solid tumors and penetration of 
macromolecules and immune system cells into such 
microenvironments must be fully understood. Further, we 
must address some pivotal issues to make sure upon the 
clinical benefits of the cell-based vaccination strategy. We  
need to answer some key questions. How effective would 
be the cell-based vaccination strategy if the core of solid 
tumors hosts some undedicated cancer stem cells (CSCs)? 
If such assumption is true, then what would be the best 
strategy for targeting CSCs? What would be the behavior 
of immune system components within TME with acidified 
tumor interstitial fluid and high oncotic pressure? Ideally, 
the use of panel of cancer molecular markers (CMMs) 
involved in TME50,51 can be beneficial for the development 
of the cell-based immunotherapies and vaccination 
which will literally benefit both the antibody-directed 
and cell-mediated immunotherapy, and hence improve 
the survival rate. Thus, key CMMs of TME should be 
recognized. To this end, we need to comprehend the whole 
panel of molecular event in the TME as complex systems 
and design the cell-based immunization/vaccination in a 
holistic manner for each cancer patient exclusively.
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