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Introduction
Errors are plausible in every medical related procedures. 
They can occur at a rate of 5.7%, while with a good 
management and predictive and preventive forethoughts 
such errors can be reduced and prevented up to 50%.1 
Drug-drug interactions (DDIs) are main cause of 
pharmaceutical errors, especially in elderly patients and 
patients with poly-therapy procedures, the prevalence of 
DDIs is about 20-40 percent.2 Of note, DDIs occur when 
function of a drug changed or influenced by presence 
of another drug. They can be categorized as two major 
classes including (a) pharmacokinetics (PK) DDIs and 
(b) pharmacodynamics (PD) DDIs.3-5 PK-DDIs are 
attributed to the interactions of drugs during absorption 
(e.g., allopurinol enhances the oral bioavailability of 
mercaptopurine by inhibiting metabolizing enzyme), 
distribution (e.g., interaction of warfarin with other 

protein-bound anticancer drugs such as paclitaxel and 
etoposide), metabolism (e.g., interactions of drugs that are 
substrate to metabolizing enzymes such as CYP3A4 and 
CYP2D6) and elimination (e.g., trimethoprim enhances 
plasma concentration of methotrexate to toxic level 
causing nephrotoxic impacts) processes, in which various 
enzymes and/or transporters could be involved. 
Based upon the rate of pharmaceutical errors as well as 
its financial, social and health costs, prevention of these 
errors has become a global priority.6 It should be pointed 
out that one out of 10 cases of the unexpected hospital 
admissions of patients with cancers are related to adverse 
drug reaction (ADR) problem(s).7 In elder people, most 
of ADRs are resultant form DDIs, in which about 10% of 
all studied ADRs are not related to DDIs.8 Further, usually 
about 20-30% of patients hospitalized have been shown 
to experience ADRs related to DDI.4 On the other hands, 
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Article Info Abstract
Introduction: Health care industry also 
patients penalized by medical errors that are 
inevitable but highly preventable. Vast majority 
of medical errors are related to adverse drug 
reactions, while drug-drug interactions (DDIs) 
are the main cause of adverse drug reactions 
(ADRs). DDIs and ADRs have mainly 
been reported by haphazard case studies. 
Experimental in  vivo and in  vitro researches 
also reveals DDI pairs. Laboratory and experimental researches are valuable but also expensive 
and in some cases researchers may suffer from limitations. 
Methods: In the current investigation, the latest published works were studied to analyze the trend 
and pattern of the DDI modelling and the impacts of machine learning methods. Applications 
of computerized techniques were also investigated for the prediction and interpretation of DDIs.
Results: Computerized data-mining in pharmaceutical sciences and related databases provide 
new key transformative paradigms that can revolutionize the treatment of diseases and hence 
medical care. Given that various aspects of drug discovery and pharmacotherapy are closely 
related to the clinical and molecular/biological information, the scientifically sound databases 
(e.g., DDIs, ADRs) can be of importance for the success of pharmacotherapy modalities. 
Conclusion: A better understanding of DDIs not only provides a robust means for designing more 
effective medicines but also grantees patient safety. 
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one out of every five patients exposed to a potential DDI 
experience at least a related ADR.9

It is deemed that the prediction of DDIs, and hence 
their prevention, can be of great benefits to patients and 
health care systems. Recent researches have shown that 
the number of DDIs are closely related to the number of 
prescribed drugs, leading to an elongated hospitalization 
and consequently high expenditure.10 
The main focus of the current study is to investigate 
the place of in silico approaches in DDIs’ prediction 
and prevention. We will also provide some insights on 
applications and outcomes of utilization of computerized 
techniques in handling DDIs phenomena.

Hurdles and promises
One of the approaches to study DDIs is based on common 
methods using PK parameters that describe what body 
does to a designated drug molecules. PK based DDIs can 
be resultant from drugs interactions during the absorption, 
distribution, metabolism and elimination (ADME) 
processes of drug molecules that are analyzed and studied 
to understand and examine DDIs. Despite precision and 
usefulness of PK based methods for analysis of DDIs, this 
approach may fail to reveal the actual mechanism(s) of the 
DDIs and ADRs. The reason lies in the fact that the end 
point about drugs usually is a serious side effect instead of 
a measurable changes on drug concentration.11 
Also there are some studies that are based on clinical 
evidence and reveals the experienced DDIs,12-15 and these 
types of studies are useful to prevent from experienced 
DDIs. Nonetheless, they cannot be helpful in terms of 
other unexperienced or unreported DDIs.
It should be noted that the number of discovered drugs 
continues to rapidly grow and possible occurrence DDIs 
and ADRs can cause high costs and burdens on health 
systems. Therefore, DDIs prediction, prior to the clinical 
experiences, can offer great benefits to pharmaceutical 
companies in drug designing as well as physicians and 
patients.

Impacts of computerization and modeling
Considering costs and doability of in vitro and in vivo 
experiments, there is a high tendency to in silico studies 
among researchers. Nowadays, a large number of 
researchers capitalize on the computerized modeling 
and simulations in order to examine hypotheses and 
understand mechanisms related to drug actions and side 
effects.16 The in silico modeling approaches have improved 
the health related sciences as well as pharmaceutical 
industry, in large part because of optimality and cost-

effectiveness of the computerized techniques. Likewise, 
pharmaceutical scientists have exploited the computerized 
modeling methods in different aspects of pharmaceutical 
sciences including drug design and discovery, PK and/
or PD analyses. Accordingly, in addition to commercial 
packages, there are many open source and free tools 
that have been developed by universities or group of 
researchers to satisfy educational and scientific needs. 
Further, genomics, proteomics, metabolomics and 
molecular data related to drugs are great resources of 
information that are available in various molecular and 
biological databases, which can be used to simulate and 
understand drugs and their interactions. Among them, 
there exist growing algorithms and methods of artificial 
intelligence such as machine-learning and data-mining 
techniques that have great impacts on discovery and 
prediction of DDIs. Similarly, there exist many success 
stories in terms of biological simulations and modelings 
in particular for drug design.

Successful stories
In drug development phases,17 as shown in Fig. 1, the 
advantages of computer-aided drug design (CADD) are 
obvious. The blue color shows the stages that CADD 
tools are involved. In each step, various computerized 
techniques are used.
Target identification is considered as the foundation 
of the modern drug discovery process. The selection 
of biological targets is typically based upon some key 
experimental criteria including (a) disease linkage (e.g., 
mutation(s) related to a certain disease), (b) mechanistic 
aspects (e.g., protein involved in a regulatory pathway 
related to initiation and/or progression of a specified 
disease), and (c) genetic screenings using high throughput 
technics such as DNA microarray18-21 and next generation 
RNA sequencing. High throughput screening techniques 
have experimentally been utilized for the generation of 
phage peptide/antibody libraries as well as the synthetic 
oligonucleotide libraries used for the selection of aptamers 
with promising applications in drug discovery.22-26 
In addition, the target must be druggable and drug-
target interaction result is meaningful impact(s). Target 
prediction is based on some key techniques such as 
bioinformatics, reverse docking and protein structure 
prediction. As shown in Fig. 2, the target druggability27 
and tool compound design are the key tasks related to the 
target validation stage, lead discovery stage achievable by 
some approaches such as library design, docking scoring, 
de novo design, pharmacophore and target flexibility. 
Of note, interaction of a designated drug to a biological/

Fig. 1. Involvement of computer-aided drug design (CADD) in drug discovery and development.
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molecular marker (the so-called druggable target) must 
change the functionality of the biological target, resulting 
in certain therapeutic benefit(s) to a specified disease with 
accountability. Up to now, the quantitative structure–
activity relationship (QSAR), 3D-QSAR and structure 
based optimization techniques for lead optimization stage 
and finally in silico ADME-Toxicity (ADMET) prediction 
and physiologically-based PK (PBPK) simulations have 
been employed in preclinical test stages. Of note, in silico 
target prediction work-flow, as portrayed in Fig. 2,28 
shows that, in order to use computational models for the 
prediction of protein targets of small molecules, target 
class models for proteins need to be constructed. It should 
be pointed out that modeling of multiple thousands of 
proteins takes couple of hours for circular fingerprints29 
in combination with naive Bayes classifiers as simple 
probabilistic classifiers. In the next step, for a chemical 
structure as an input (panel A) can be annotated whit most 
probable macromolecular interaction partners (panel C).
Besides, it should be noted that the use of social media 
among people has become extremely popular, upon which 
people share their personal health-related information. 
It is envisioned that such information would be a great 
resource for the pharmacovigilance researches, by 
which ADRs and DDIs can be detected even though 
the obtained information could be preliminary findings 
and considered as informal user-expressed concepts 
that are non-technical. Natural language processing 
(NLP) techniques can be used to extract structured and 
important information from the contents of social media. 
Fig. 3 exemplifies the power of machine-learning based 
NLP techniques named ADRmine.30

Molecular similarity based detection of DDIs is another 
successful computational approaches to identify potential 
interaction(s). In this approaches, molecular similarity 
between drugs is computationally compared. For instance, 
if drugs A and B known as DDI pair, then, drug that is 
chemically similar to drug A or B can be considered as 
a drug that can interact with drug A or drug B.31 The 
prediction of DDIs through protein-protein interactions 
(PPIs) network is another successful methodology.11 As 
demonstrated in Fig. 4, drugs can be connected to the 
PPI network by their target protein(s). Existence of shared 
proteins between two drugs and number of links reveals 
possible interaction(s) between two drugs.

Common computerized techniques applicable in DDIs 
Of the computerized strategies and algorithms used 
in pharmaceutical sciences for the prediction of DDIs, 
networking techniques such as network analysis or 
network mining have recently been shown to be emerging 
technologies.32-34 Further, different biological networks 
are now available, which can satisfy information needs for 
the prediction and interpretation of DDIs. Classification 
and clustering techniques are another category of 
techniques that have been being used for the supervised 
and unsupervised learning methods to foreseeing the 
biological facts.27,35,36 
Text-mining and data-mining approaches consist of many 
different techniques can also be used for the pattern 
recognition and knowledge discovery from available 
big biological data bases and texts.37-39 Altogether, it can 
concluded that the integration of mathematic, biology, 
computer science and visualization techniques provides 

Fig. 2. Target prediction for development of orphan drugs. The new drug candidate (NDC) is considered as an input for perform exploratory 
analysis (A). The relevant database for target class models is constructed and compared (B). The NDC and most probable macromolecular 
interaction partners’ prediction is achieved (C).

Fig. 3. Detection of adverse drug reactions (ADRs) by means of  natural language processing (NLP) technique based on users’ tweets – a 
methodology so-called ADRmine.30
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comprehensive modeling and simulation tools in different 
aspects of life science at molecular, cellular and dynamic 
behavior levels.40,41

Common modeling and simulation used in pharmaceutical 
science is ADMET modeling, while there are registries 
and other information systems such as the FDA adverse 
event reporting system (FAERS) that have been used 
to benefit patients to some points.42-44 Table 1 lists the 
available computerized techniques that are applicable in 
the management of DDIs. We will briefly discuss some of 
these approaches that are most relevant in terms of DDIs 
analysis.

Machines and DDIs
Currently more than 8,200 type of drug substances are 
available, including more than 2,300 FDA-approved 

Fig. 4. Prediction of drug-drug interactions through network of 
protein-protein interactions.

Fig. 5. Problem space of known drug-drug interactions (DDIs). A) DDI network consisting of 1,441 nodes and 45,530 edges (our unpublished 
data). B) A maximized region of known DDIs network. C) DDIs network of prednisolone with other drugs (about 92 different drug substances). 
Data were produced by means of Cytoscape ver. 3.3.0 freely available at: http://www.cytoscape.org/. Drug-drug interaction information was 
collected from the Canadian drug bank freely available at: http://www.drugbank.ca/.

drugs and over 6,000 experimental drugs.45 Considering 
such huge number of drug substances, their possible 
interactions between pairs of drugs can result in emergence 
of huge DDIs network. If we consider just reported DDI 
pairs network for FDA approved drugs, then we will face 
with a network of 1,441 nodes and 45,530 edges (Fig. 5). 
Intriguingly, if we consider all possible interactions for 
all drugs, then the network will consist of over 2,000,000 
edges. Taken all, capitalizing on such approach, we can get 
huge amount of data, for which the problem space is big 
enough to employ computerized techniques for analyzing 
DDIs. Of the computational in silico approaches, similarity 
measures are the core element of most pattern recognition, 
classification and clustering algorithms. In fact, the binary 
representation vectors favor complex matters such as 
DDIs to be more computer interpretable. Therefore, 
different binary feature vector similarity systems have 
been developed. While the inner-product based measures 
consider only positive matches in vectors (e.g., Jacquard, 
Dice), some other measures are based on both negative 
and positive matches. These measures consider equal or 
variable weights for the positive/negative matches. Fig. 6 
shows different categories and measures for binary feature 
vector similarity

Applications of machine based DDI analysis
Adding all properties of drugs biological functions to 
aforementioned network of DDIs make it so big, yet more 
informative, so that one can use it to analyze DDIs. As 
shown in Fig. 7, there exist some key steps for applications 
of computerized techniques in management of DDIs 
including (a) detection, (b) prediction, (c) interpretation, 

http://www.cytoscape.org/
http://www.drugbank.ca/
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(d) alarming, and (e) determination of strength and 
seriousness of DDI.

The key step is DDI detection
In most of patient’s treatment procedures, co-admiration 
of drugs is an inevitable decision. However, lack of 

knowledge about the exact functional behavior(s) of 
administered drugs and uncompromising side effects 
results in inadvertent drug interactions. To gather all 
necessary information, some DDIs registry systems 
have been established to collect information about 
experienced DDIs that can be used by the health care 

Table 1. List of the available computerized techniques applicable in the management of DDIs

Techniques Description Examples/ Methods

Network Mathematical analysis based on graph theories 
for biological system in terms of nodes and 
edges beneficial for understanding and 
discovery in biology.

• Protein–protein interaction networks
• Gene regulatory networks (DNA–protein interaction networks)
• Gene co-expression networks (transcript–transcript association 

networks)
• Metabolic networks
• Signaling networks
• Neuronal networks
• Food webs
• Between-species interaction networks
• Within-species interaction networks

Classification Two groups of statistical and Machin learning 
algorithms, that provides possibility of 
predicting unseen biological behaviors 
according to known biological facts.

• Logistic regression 
• Naïve Bayes
• Support vector machine
• Neural networks
• Decision trees
• Random Forest

Clustering Clusters in biology used for grouping a set of 
biological elements in such a way that elements 
in the same group (cluster) are more close/
similar to each other. It helps to stratifies and 
grading biological evidences too. 

• Connectivity-based clustering (hierarchical clustering)
• Centroid-based clustering
• Distribution-based clustering
• Density-based clustering
• Recent developments

Data/text 
mining

Knowledge discovery in databases (KDD) vastly 
used to pattern discovery and knowledge 
discovery among large amount of biological 
data/texts.

• Anomaly/outlier/change detection
• Association rule learning
• Factor analysis
• Sequence mining
• Structured data analysis
• Text mining
• Agent mining

Modeling/ 
simulations

A task in systems biology and mathematical 
biology, with the goal of visualization and 
computer modelling of biological systems 
including cellular subsystems.

• Molecular modelling 
• Model of the immune system
• Pharmacokinetics and pharmacodynamics modeling 
• Brain modelling 
• Protein folding
• Virtual liver

Registries and 
clinical systems

All software systems used in health 
pharmaceutical industries to provide 
information retrieval resources.

• ADR/DDI registries
• Drug monitoring systems
• Pharmaceutical information systems
• Computerized physician order entry systems

Fig. 6. Different categories and measures for binary feature vector similarity.
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providing specialists, while unknown DDIs are often 
neglected causing undesired outcomes. Thus, there exists 
an intensive need for the development of automated DDI 
detection systems. Two types of resources can be used 
for the automated DDI detection systems, including (a) 
medical records and (b) social networks. Medical records 
contain information about received medication and 
outcomes of the treatment, for which huge amount of 
data is available by the aid of electronic medical records. 
Accordingly, different computational approaches such as 
data-mining techniques, machine-learning techniques 
and pattern recognition protocols can be applied to these 
data to detect and collect all emerged DDIs. Further, 
crawling web and social network mining of user posts 
and comments about their experienced side effects of 
medications may lead to some new DDI discovery though 
such information needs to be revalidated. 

Computerized modeling for management of DDIs
By prediction of DDIs, especially for the investigational 
new drugs (INDs), emergence of ADRs and DDIs can be 
circumvented resulting in much more improved clinical 
corollaries and patient safety. Computational PK and/
or PD modeling of drugs behaviors within body and use 
of drugs associated biological signaling pathways and 
elements such as drugs target proteins and target ligands 
help to discovering new DDIs. Patterns and algorithms 
such as artificial neural networks (ANN) can reveal the 
hidden prototypes of DDIs that may result in ADRs and 
hence failure of the pharmacotherapy modality. 
Given that the complexity of human metabolism makes 
interpretation and etiology of DDIs an intricate task, 
computer based modeling an in silico approaches 
provides a set of high throughput information in favor of 
understanding DDIs. However, the resultant DDIs need 
to be fully understood and interpreted prior to putting 
them into clinical practice. For example, data found for 
the cellular behaviors and drug biological functions for 
a designated drug must be interpreted in terms of the 
etiology of the interactions occurred.

DDI alarming system
Computer-based DDIs prediction of co-administrated 
drugs is useful in their prevention, and accordingly there 

What is current knowledge?
√ Most of the ADRs appear to be due to DDIs. 
√ DDIs could be involved in PK and/or PD parameters. 
√ PK/PD based analyses reveal some evident DDIs, but not 
the unknown DDIs.

What is new here?
√ Valuable drug information is accessible by social media 
and social networking with aid of natural language 
processing techniques.
√ Protein-protein interaction network can reveal hidden 
interaction between drug pairs.
√ Better understanding of DDIs are possible by high 
throughput computing techniques.
√ DDIs can be predicted by machine based analysis such as 
machine learning techniques.
√ Personalized medicine needs to be empowered by 
computer-based prediction and interpretation of DDIs.

Review Highlights

Fig. 7. Schematic representation for application of computerized 
modeling in management of drug-drug interactions (DDIs).

is a tendency towards computerized prescription in health 
industry. Use of the computerized physician order entry 
(COPE) can assist medical professionals to avoided DDIs 
as much as possible. However, as part of public education 
systems, the DDI detection platforms could be used by 
patient who has to undergo multiple therapies. Further, 
the pharmaceutical companies are another users of 
DDI systems to inform their customers upon possible 
occurrence of DDIs for a designated drug. 

Prediction of outcome and seriousness of DDI
Despite knowledge about known DDI, in some cases co-
administration of several drugs is inevitable. For example, 
in the case of chemotherapy4 or patients who have to use a 
special drug for a long time period or even permanently, 
some DDIs seem to be deliberately neglected. In these 
cases, having a good estimation from the outcomes 
and seriousness of interactions is vital for the success 
of treatment modality. Besides, some interactions may 
directly endanger the patient’s life. As a result, estimating 
the outcome, diversity and risk of drug interactions with 
the aid of computational and algorithmic approaches 
could result in higher patient safety in case of multi 
therapies.

Final remarks and outlook
Many clinical complications can emerge from DDIs 
after inaccurate combination therapy. To avoid such 
problems, several steps can be helpful including (a) 
use of computerized models for prediction of possible 
DDIs qualitatively and quantitatively, (b) careful design 
of treatment modality, (c) interpretation of patients 
pharmacotherapy profile, and (d) translation of preclinical 
data to rationalized clinical use. 
Ideally, the main objective of any treatment modality 
is to maximize the therapeutic effects with minimized 
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side effects. Thus, in addition to the in vitro and in 
vivo correlation approaches, biological simulation and 
modeling can be of great help in terms of drug discovery. 
Accordingly, accurate computational modeling and 
simulation helps to foster the drug discovery approaches 
and in particular to understand the DDIs mechanisms. 
The relation between clinical and molecular information 
can be revealed with the aid of data graph and data 
networks constructed with different type of information. 
For instance, we are now aware of existence of direct 
relations between pharmacogenetics/pharmacogenomics 
and drug-induced toxicities such as nephrotoxicity in 
renal transplant recipients.46 Therefore, to attain rational 
treatment modalities in various diseases, all possible 
detrimental DDIs/ADRs, drug-protein interactions, 
pharmacogenetics and drug metabolite interactions must 
be taken into consideration. However, from translational 
and personalized medicine viewpoints, effective standard 
protocols need to be codified and applied for these 
matters.47

 Taken all, incorporation of data science with computerized 
techniques of modeling and simulation brings new facilities 
for researchers to predict and understand DDIs and hence 
avoid the occurrence of ADRs that may jeopardize patient 
safety especially when combination therapy is inevitable. 
This could be deemed as one of the main steps in terms 
of personalized medicines. Finally, careful considerations 
upon the potential undesirable drug interactions in drug 
development and administration processes (i.e., drug 
design and discovery, drug prescription and selection 
of the most effective treatment modalities in multi-
therapies), will significantly warrant the success of 
treatment modalities, improve the patients’ safety and 
lower the burden of health systems. 
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