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Abstract
Introduction: Application of nanoparticles as radio sensitizer is a promising field to improve 
efficiency of radiotherapy.
Methods: This study was conducted to review nano radio sensitizers. PubMed, Ovid Medline, 
Science Direct, Scopus, ISI web of knowledge, and Springer databases were searched from 2000 
to May 2013 to identify relevant studies. Search was restricted to English language. 
Results: We included any study that evaluated nanoparticles, volunteer of radio enhancement at 
radiotherapy on animals or cell lines. Nanoparticles can increase radio sensitivity of tumor cells. 
This effect was shown in vivo and in vitro, at kilovltage or megavoltage energies, in 24 reviewed 
studies. Focus of studies was on gold nanoparticles. Radio sensitizing effects of nanoparticles 
depend on nanoparticles’ size, type, concentration, intracellular localization, used irradiation 
energy and tested cell line. 
Conclusion: Literature suggests potency of nanoparticles for increasing cell radio sensitivity. 
Reviewed results are promising and warrant future clinical trials.

Introduction
Radiotherapy is one of the main modalities for the 
treatment of cancer. From its first reported medical use 
in 1896, radiotherapy is still the most common cancer 
treatment.1  Almost 52% of cancer patients undergo 
radiotherapy at least once during their treatment course.2 
Comparing the radiotherapy with surgical treatment, it is 
not invasive and patients would have easier recovery.
 Radiotherapy mechanism is irradiation with high-energy 
radiation. Radiation (X-rays, gamma rays and fast-
moving charged particle like electron, proton) destroys 
intracellular components like DNA. Irradiation interacts 
with DNA and produces a series of free electrons, ions 
and radicals such as hydroxyl OH•, hydrogen H•, water 
H2O+, H3O+, superoxide O2 −.3 These products especially 
hydroxyl radicals damage DNA.4

One of the greatest challenges in radiotherapy is that ionizing 
radiation affects both healthy tissue and solid tumors. 
Since the tissue around tumor is affected by radiation, 
there is limitation in increasing radiation dose. Hence, 
healthy tissue undergoes less radiation dose. Radiotherapy 
needs some improvement in radiation delivery techniques 
in order to reduce injury to the surrounding tissues. To 
overcome this problem, radio sensitizers are appropriate 
solution. Radio sensitizers are adjunctive treatments 
which make tumor cells more susceptible to radiation. 
They are designed to improve tumor cell killing while 

having much less effect on normal tissues.5

Many substances and materials have been reported as radio 
sensitizers. Recent progresses have been made towards 
nanoparticles to propose them as novel radio sensitizers. 
Nanoparticles (NPs) are defined as particles between 1 
and 100 nm.6 They have more cell penetration and less 
adverse effects than conventional radio sensitizers.7 
Among nanomaterials which have this radiosensitizing 
nature, carbon nanotubes,8 gold nanoparticles (GNPs)9 
and other metallic nanoparticles10 can be mentioned. 
Application of NPs as radio sensitizers is a promising 
strategy to increase the efficiency of radiotherapy. The 
assessment of preclinical studies helps to shape further 
trials. Further, it prevents unnecessary study replication 
and opens way for successful clinical trials. Thus we 
intended to conduct this review with a focus on study 
methods and results. This is the first review of the literature 
which assessed the application of NPs in radiotherapy as 
radio sensitizer.

Methods
Search strategy
Our review was compatible with the PRISMA guidelines.11 
The search was performed in the databases of PubMed, 
Ovid Medline, Science Direct, Scopus, ISI web of 
knowledge and Springer from 2000 to May 2013. Searches 
were restricted to English language. The last search was 
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done on July 11, 2013. The following search terms were 
used: (nanoparticles or nanotubes or nanomaterials or 
“gold nano particles” /gnp or “carbon nano*” or “quantum 
dots”) and (radio sensitizer or radiosensitization or 
“radiation dose-enhancing” or “radiation sensitizing 
agents” or  “enhanced X-ray therapy” or “enhancement 
of radiation sensitivity”) or (radiation therapy or 
radiotherapy). Synonyms and derivates of the terms were 
also used for finding more articles.
To have a comprehensive search and to find possible relevant 
articles, manual search was conducted on the reference 
list of articles. If any single study resulted in multiple 
publications, only the principal paper was reviewed. 

Inclusion criteria 
Well designed and executed studies provide the most 
reliable evidence for inclusion in any review. We included 
articles:
1.	 Studying the NPs as the volunteer of a radio sensitizer 

substance.
2.	 In which ionizing radiation was used.
3.	 The aim of study was cancer radiotherapy. 
4.	 In which cell lines/animals were 

tested.                                                                                                                                                

Exclusion criteria
1. Studies that have evaluated drug formulation based on 
NPs or NPs binded drug were excluded, as an example 
“Polymeric Nanoparticle Micelle Formulation of Paclitaxel”. 
2. Thesis, meetings and other unpublished data 
were excluded. 
First, titles and abstracts of the searched studies were read 
to determine their potential eligibility for the review. Then 
the full text of each possibly relevant study was retrieved 
and assessed independently by authors. Relevant articles 
were chosen for more investigation. Articles which met our 
inclusion criteria were included and some were excluded 
based on our exclusion criteria. After the assessment, 
the authors agreed on the reporting of 24 articles in 
a consensus meeting selection and any disagreement 
between the authors was resolved through discussion. 
For assessing the agreement between the authors, Cohen’s 
kappa statistic was used (Cohen’s kappa =0.85).
Independent extraction of articles was performed. 
Following data were extracted: paper citation, publication 
year, type of nanoparticle, radiation dose and type, and NPs’ 
size. We also noted outcomes of studies regardless of author, 
affiliation and journal. We gathered data from all studies 
identified irrespective of nanoparticle synthesis method.
Due to the heterogeneous nature of the studies identified, 
the data available did not allow us to use formal statistical 
techniques such as meta-analysis. Heterogeneity results 
from variations in the studies’ methods, outcome 
measures, sizes and types of NPs and cell line types.

Results
The search of databases yielded 210 publications.  
Duplicates were eliminated (n=75). Leaving 135 

publications for initial evaluation, 116 of articles were 
excluded based on the exclusion criteria. Five articles 
were added after checking the references list of included 
articles. Finally, 24 articles were reviewed. Fig. 1 shows the 
algorithm of the study selection procedure.
Fifteen papers were carried out based on GNPs, one paper 
carried out using nanosilver and nanogold particles and 
eight papers carried out using other NPs. Two papers were 
in vivo, 18 papers were in vitro and four papers were both 
in vivo and in vitro.
Noteworthy studies have been done to show NPs’ radio 
sensitization effect. Table 1 shows a summary of the 
studies’ conclusion. The majority of studies have evaluated 
GNPs. GNPs have received special attention during last 
decade.12 It has been shown that by using GNPs, less 
radiation dose is needed.13 Table 2 shows GNPs’ sizes, cell 
types and radiation doses and types used for each study.
A pioneering study was conducted on mice bearing 
subcutaneous EMT-6 mammary carcinomas by Hainfeld.14 
Mice were divided into two groups: treated with GNPs and 
radiation, treated with radiation alone. These two groups 
had 86% and 20% one-year survival, respectively. Another 
in vivo study was done by Hainfeld recently. He used the 
same size used in the previous study (1.9 nm GNPs). Mice 
bearing murine squamous cell carcinoma (SCCVII) were 
radiated with X-ray (68 keVp, 42 and 30 Gy). Significant 
tumor growth delay and long-term tumor control were 
seen with 42 Gy but not with 30 Gy.15 Moreover, mice 
were radiated with 157-keV photons; more tumor 
radiosenstivity was seen with GNPs accompanied by 50.6 
Gy than 44 Gy.
Another animal study was conducted in 2008.16 They 
injected melanoma cells (B16F10) to mice. After 
GNP injection, mice were irradiated with electron 
(25 Gy). They showed that GNPs radiosensitized the 
melanoma cells. In comparison with control group, 
tumor growth rate was decreased; apoptic signals and 
survival rates were increased.
It is demonstrated that radio sensitization is cell line-
dependent, as Jain et al. showed that GNPs’ radio 
sensitization occurred in MDA-MB-231 cell line but not 
in DU145 or L132 cell line despite GNP uptake.17

Bonded GNPs 
Different functional groups can be attached to GNPs such 
as PEG, thiol, peptides and antibodies. Binding ligands 
and molecules bestows numerous characteristics to the 
particle.  Daniel et al. after in vitro experiments showed that 
intravenously injected PEGylated-GNPs radiosensitized 
the human glioblastoma cells to radiotherapy and 
increased mice survival.18 Another study about PEGylated-
GNPs showed that in the presence of this nanoparticle, 
EMT-6 and CT26 cell survival rates were decreased.19

A recent study has evaluated effects of targeted GNPs on 
tumor radiation sensitivity.17 This study had two parts: in 
vivo and in vitro. At the in vivo part, athymic mice bore 
the subcutaneous MDA-MB-361 xenografts. Mice were 
injected Human Epidermal Growth Factor Receptor-2 
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targeted GNPs or saline intratumorally. After 24 hours, 
mice received a single dose radiation of x-rays (100 
kVp, 11Gy). These mice had slower growth rate than 
control mice (which were only radiated). Remarkably, 
in vivo results were in agreement with in vitro’. Survival 
curve of cells exposed to targeted GNPs and radiation 
was significantly lower than that of cells exposed to 
x-radiation alone. But, survival curves for cells exposed 
to GNPs and radiation versus radiation alone were not 
significantly different. Thus, targeted GNPs caused more 
radio sensitivity than neutral GNPs.
Glucose capped GNPs-enhanced (Glu-GNPs) radiation 
sensitivity in radiation-resistant human prostate cancer 
cells study is another bonded GNPs study.20 It has been 
shown that Glu-GNPs activate cell cycle acceleration in 
the G0/G1 phase and restrain cell in the G2/M phase. This 
activation occurs with sensitivity to ionizing radiation. 
Similar studies about Glu-GNPs showed that irradiation 
of HeLa cells with Glu-GNPs results in enhanced 
radiation sensitivity.21 Also similar effects is seen on lung 
cancer cells and ovarian cancer cells.22,23 Another study 
showed that Glu-GNPs have a greater reduction in cellular 
proliferation than neutral GNPs.24

Binding groups bring about changes in GNPs location. Kong 
et al. compared thioglucose and cysteamine-capped GNPs 
in breast-cancer cell line (MCF-7) versus a nonmalignant 
breast-cancer cell line (MCF-10A).25 This study showed 
that cysteamine-capped GNPs were mostly bound to the 
MCF-7 cell membrane, but thioglucose –capped GNPs 
entered the cells and scattered in the cytoplasm. 

Other NPs as radio sensitizers
Apart from GNPs, other NPs are also radio sensitizers. It 
was shown that silver NPs radiosensitized HCC cell lines 

(HepG2) like GNPs.26 A recent research paper showed 
that titanate nanotubes radiosensitized two human 
glioblastoma cell lines.27 Also titanium dioxide NPs 
proved their effect in presence of 60Co gamma rays on 
human breast cancer (MCF-7) and gastric cancer (MKN-
45) cell lines.28

Lin et al. demonstrated that germanium NPs could 
enhance the radiation sensitivity of cell.29 NH2-Silicone 
NPs increased radiation sensitivity of breast cancer 
and mouse fibroblast cells by oxygen free radicals’ 
formation.30 Hafnium oxide NPs have acted as radio 
sensitizers in xenograft mouse.31 The ammonium 
persulfate functionalized multi-walled carbon nanotubes 
have also been introduced as novel radio sensitizers 
due to biocompatibility and bio absorption.32  Also 
fullerene-C60 (nano-C60) is another volunteer for 
possible radiosensitazation effect.33

Since hydroxyapatite NPs (nano-HAPs) had retarded 
glioma growth, a study was conducted to show the 
radiation sensitization induced by hydroxyapatite NPs. 
They concluded that nano-HAPs could increase the 
radiation sensitivity of tumor cells in vitro and in vivo.8

Discussion
Reviewed studies have demonstrated radio enhancement 
effect of NPs. NPs particularly GNPs have been developed 
for cancer radiotherapy. They have unique properties like 
biocompatibility and modifiable surfaces that make them 
great volunteer for radio sensitization. The sensitizing 
characteristics of NPs have been tested on various cell 
lines and animals.  Different sizes, concentrations, cell 
lines, radiation sources and doses have been used at 
the reviewed studies. Radiation sensitivity using NPs 
depends on nanoparticle type, cell line, irradiation 
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energy, nanoparticle size, concentration and intracellular 
localization. Great studies were done on GNPs and 15 out 
of 24 reviewed articles had assessed the GNPs. Thus our 
focus was on GNPs.
Among NPs, GNP is the most studied nanoparticle in 
cancer therapeutics. In vitro radio sensitization and in 
vivo tumor growth retardation accompanied by longer 
survival give researchers the proof of using GNPs. All 
reviewed studies showed consistency of their result and 
confirmed the enhancement of radiotherapy by using 
GNPs. Such enhancement takes place as long as GNPs are 
accompanied by radiation. GNPs without radiation result 
is similar to no treatment.14

Probable mechanism involved in GNP radio enhancement 
is cell cycle changes and elevated reactive oxygen species 
production.20,23  In the presence of GNPs, more radicals 
and electrons are produced.34 It is suggested that radio 
sensitivity of GNPs can be attributed to enhanced localized 
absorption of X-rays, release of low-energy electrons from 
GNPs and efficient deposition of energy in the form of 
radicals and electrons.35 Most of studies have compared 
using the GNPs with none-use of them.

Six factors affecting GNPs as radio sensitizer
1-Intracellular localization
Accumulation of GNPs inside the cells and intracellular 
localization enhance the radiation effects as probable 
photon and electron interaction increase. Study of Kong et 
al. and Chattopadhyay et al. suggested that localization of 
GNPs within the cells is an important factor in increasing 
the radiation cytotoxicity.17,25 
2-Size
GNPs can be synthesized over a wide range of sizes (0.4-
5000 nm). Some of GNP properties are attributed to size. 
Size is a strong factor in presence time in blood. Smaller 
GNPs are filtrated through kidneys quickly, while larger 
ones avoid clearing. Toxicity can be controlled by size. 
Although Gold is inert, it can be toxic at high levels as any 
other substance.
GNPs’ size affects cellular uptake. Since only GNPs of 
size 1-100 nm can enter cells, optimal size design can 
increase the cell internalization.35 The majority of studies 
point out that size is an influencing radiation sensitivity 
parameter. Large-sized GNPs have the most efficient dose 
enhancement factor (DEF).36,37 It is demonstrated that 
GNPs with 50-nm diameter could have the highest radio 
enhancement factor (REF) (1.43 at 220 kVp) compared 
with GNPs of 14 and 74 nm (1.20 and 1.26, respectively).35 
This diameter has also the highest cellular uptake.38 

Although a recent report has shown that 18 nm GNPs 
have more cell internalization than larger particles of 35 
and 65 nm.39 
3-Concentration
The effect of GNPs’ concentrations on dose enhancement 
is much greater than GNPs’ size.39 Increasing the GNPs’ 
concentration decreases cells growth rate.40 This reduction 
seems logical as increasing the concentration of GNPs 
causes an increase in the number of GNPs, and in turn, 

the number of gold atoms. Therefore, more photoelectric 
interactions between photons and gold atoms occur.39 
Higher GNP concentrations seem to carry higher risk of 
toxicity. Therefore, the balance between dose enhancement 
effect and toxicity should be set. 
4-Radiation dose
Several reports have shown GNPs’ radio sensitization 
with kV (proton and X-ray) and KeV. Also such 
radio enhancement is shown at MV X-rays and MeV 
energies.9,13,16,21,35,41 Dose enhancement factor (DEF) 
depends on radiation energy and amount of GNPs.42  Such 
following DEF for different radiations have been reported: 
DEFs of 2.9 and 3.7 using 0.5 mM, a concentration of 1.9 
nm GNPs at 6 MeV and 12 MeV were reported.13 DEFs of 
1.66, 1.43 and 1.17 were observed with 105kVp, 220kVp 
and 6MV X-rays, respectively.35 DEFs of 1.44, 1.1 and 
1.32 were achieved with 8keV, 160kVp and 6MV X-rays, 
respectively.43 DEF=2-3.7 and DEF=1.8-3 were noted 
while using 90 keV and 50 keV, respectively (for different 
sizes and concentrations).39 DEF of 2 was reported using 7 
mg AU/g with 140 kVp.44

5-Cell type
Cytotoxicity of GNPs alters in different cell types.25,45 
GNPs could enhance the sensitivity of some cells to 
irradiation but not all cells, as glucose capped GNPs did 
not radiosensitize human diploid fibroblast cells but did 
enhance human prostate carcinoma cells.20 As another 
proof, despite cellular uptake in human prostate cancer 
cells and lung epithelial cells, radio sensitization was not 
observed in neither of them.9

 GNPs’ cellular uptake levels and cell cycle phases might 
justify it. Metallic materials block cells at the G2/M 
phase, the most radiosensitive phase of the cell cycle, and 
therefore augment cell radio sensitivity.46

6-Modifing GNP’s Surface
A 0.8-nm GNP has seven ligand sites, a 2-nm has ~100, 
and a 15-nm has approximately 4000. PEG, carboxyl 
or amino groups, thiol, derivative drugs, DNA, lipids, 
carbohydrates, antibodies, peptides or organic moiety 
can be attached to GNPs. Any of these bindings confer 
beneficial properties to GNP. As an example, PEG binding 
helps GNPs to avoid reticuloendothelial system uptake.42 

Glucose binding GNPs enter the cells and spread in the 
cytoplasm more than neutral GNPs,25 as  it was shown 
in 6 out of 15 review studies.202-5 Cancer cells have more 
metabolisms than normal cells, which render a greater 
need to glucose. Therefore, when glucose is coated on 
the surface of GNPs, cancer cells take up the glucose with 
GNPs attached to it. Glucose increases cell internalization 
and afterwards increases radio sensitivity. 
GNPs’ surface can be modified for targeting of cancer cells 
by antibodies or hormones.44 If GNPs can be localized 
in cancerous cells, cancerous tissue receives higher dose 
compared with normal tissue during a radiotherapy 
treatment. Also, less radiation dose is needed.

Rationale behind other NPs
High-Z NPs absorb more radiation, therefore more 
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beam energy deposits in tumor loaded with NPs. Final 
outcome is local dose enhancement. In addition, free 
radicals are produced as a result of radiation and metallic 
NPs interaction. They damage DNA, thus cell apoptosis 
occurs. Cell damage by free radicals could be the principal 
mechanism involved in the sensitivity of metallic and 
also non-metallic NPs. Raised production of cellular 
ROS causes radio enhancement activity of nano-C60.

8 
TiO2 nanoparticle and amino silanized oxidized 
silicon NPs provoke oxidative stress by embedding in 
mitochondrial membranes and thus cause generation 
of ROS.28,30 Multi-walled carbon nanotubes modified 
by ammonium persulfate possess negatively charged 
carbonyl and hydroxyl groups. While radiation, these 
groups produce free radicals. Free radicals destroy cancer 
cells directly. Besides, multi-walled carbon nanotubes 
modified by ammonium persulfate are soluble and can 
enter cancer cells.32

Hafnium oxides NPs (NBTXR3) have been established 
for enhancing the radiation sensitivity of nine folds and 
tumor growth delay.31 The rationale for choosing NBTXR3 
was its capacity to deposit high energy within tumors 
and their chemically inert style in vivo, thus decreasing 
potential damages.
Another novel radio sensitizer is TiO2 nanoparticle. It 
has a lot of water, oxygen and hydroxides in its structure. 
While TiO2 NPs interact with radiation, free radicals 
such as OH•, H• and HO•

2 (which are well known radio 
sensitizers) are generated.47 Also,TiO2 NPs  increase 
number of cells in the G2/M cell cycle phase.27 

There are some other NPs such as CaF,48 LaF,49 ZnS,50 
ZnO,51 quantum dots and carbon dots,52 volunteer of 
having possible effects of radio sensitizer but further 
efficacy and toxicity studies are needed. 
In the dearth of nano clinical trials, novel nanomedicines 
are being introduced for cancer therapy and there is a need 
to bring these products to clinical trials, after considering 
ethical issues.

Conclusion
Up-to-date literature supports using NPs as radio sensitizer 
for neoplasms irradiation. By altering factors affecting 
radio sensitivity, desirable result in clinical applications 
would be achieved. These findings show signs of future 
success of the NPs in cancer treatment.
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