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Introduction 

Acute myocardial infarction (AMI) is a general trouble 
that threatens human’s health. AMI is often induced by 
the occlusion of coronary arteries and can cause 
ischemia.1 Ischemia in the heart is characterized by an 
imbalance between heart oxygen demand and supply due 
to occlusion of the coronary artery and then reduction of 
blood flow.2 Ischemic heart diseases are anticipated to 
become the primary reason of death worldwide and it is 
going to precede infectious diseases by 2020.3  
Ischemia without consecutive reperfusion in the end leads 
to cell failure.4 Urgent reperfusion is a definite treatment 
to rescue ischemic myocardium from an expected death.1 
Several studies have shown that reperfusion has the 
potential to extend the degree of myocardial injury, the 
so-called “reperfusion injury”.5,6 Short periods of 
ischemia before long ischemia reduce cardiac injury and 
this cardioprotective effect is called ischemic 
preconditioning. Several pharmacological agents are able 

to imitate the cardioprotective effects of ischemic 
preconditioning.7 Although the triggers and 
intermediaries of preconditioning are not still well 
understood, adenosine is one of the considerable 
pharmacological agents in last two decades. Adenosine is 
a nucleoside that plays several roles in different tissues 
such as heart, nervous system and endocrine system. The 
release of adenosine usually increases in ischemic 
situation with ATP breakdown that includes related acts 
through its several receptors.8  

A recently known adenosine receptor, the A3 subtype, is 
expressed in the heart, and its activation protects the heart 
ischemia.9 Studying the A3 receptors is done using 
various agonists and antagonists and different 
mechanisms are suggested for it.10 It has been revealed 
that mitoKATP has a better operation on cardioprotection 
afforded by preconditioning.7,11 In this method, 
application of 5HD, as a definite mitoKATP channel 
blocker, prevents cardioprotective effect of ischemic 
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Introduction: Ischemia/Reperfusion (IR) injury mainly causes the increase of enzymes 
involved in myocytes injury including CK-MB (creatine kinase-MB) isoenzyme and LDH 
(lactate dehydrogenase). Leakage of CK-MB isoenzyme and LDH from myocardial tissues 
to blood is indicator of acute myocardial infarction. The aim of this study was to assess the 
effect of HEMADO on IR injury and its relationship with mitochondrial ATP-sensitive K+ 
channels (mitoKATP) in rat heart. Methods: Twenty eight male Wistar rats (250-300g) 
were divided into four groups (seven members in each group): control (without ischemia), 
I/R (with ischemia+without HEMADO), ischemia received HEMADO (HEMADO), 
ischemia received HEMADO and 5-HD (5-hydroxydecanoate, specific mitoKATP channel 
blocker) (HEMADO+5-HD). The animals were anesthetized and the hearts were quickly 
removed and mounted on Langendorff apparatus and perfused by Krebs-Henseleit solution 
under constant pressure and temperature of 37ºC. After 20 minutes of stabilization, 
ischemic groups were exposed to 40 minutes of global ischemia and consecutive 90 
minutes of reperfusion. Results: IR injury increased the level of LDH and CK-MB in the 
collected coronary flow during 5 minutes since start of reperfusion. HEMADO reduced the 
enzymes’ levels and using 5-HD abolished the effect of HEMADO. Conclusion: Our 
findings indicated that HEMADO could protect the heart against ischemia-reperfusion 
injury by decreasing the CK-MB and LDH levels. The cardioprotective effect of 
HEMADO may be mediated in part by mitoKATP. 
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preconditioning.12 mitoKATP channels are most 
important signaling routes for A3 receptor’s action. A 
number of similar A3 adenosine receptor (AR) agonists 
including the IB-MECA, Cl-IB-MECA, CB-MECA, and 
CP-532,903 have been exposed to be useful in protecting 
against myocardial IR injury in animal models of 
myocardial Ischemia.13 

The aim of this study was to evaluate the effect of 
HEMADO (2-(1-Hexynyl)-N-methyladenosine), a High 
affinity and selective adenosine A3 receptor agonist, on 
the level of CK-MB and LDH enzymes following cardiac 
IR injury. 

 

Materials and methods 

Animals 

Twenty eight male Wistar rats (12-week old and initial 
body mass of 250-300 g) were obtained from laboratory 
animal house of Tabriz University of Medical Sciences. 
They were housed in an animal room at 22-24ºC and 
given free access to commercial rat chow and tap water. 
The animals were adapted to an inverse 12: 12 h light. All 
the experimental procedures employed, as well as rat care 
and handling, were in accordance with guidelines 
provided by the Experimental Animal Laboratory and 
approved by the Animal Care and use Committee of 
Tabriz University of Medical Sciences. 

Rats were divided into four groups as: control (without 
ischemia), I/R (with ischemia+without HEMADO), 
ischemia received HEMADO (HEMADO), and ischemia 
received HEMADO+5-HD (HEMADO+5-HD). Each 
group was composed of seven members (n=7). Minimum 
dose of HEMADO was 0.1 µM/L; hence the work was on 
three different groups which were obtained for this study. 
In I/R group after 20 minutes of stabilization, animals 
were exposed to 40 minutes of global ischemia and 
consecutive 90 minutes of reperfusion. HEMADO was 
purchased from Tocris Bioscience company and 5-HD 
obtained from Sigma (St. Louis, USA). Remaining 
materials were purchased from Pars Azmoon (Tehran, 
Iran). 

Experimental preparation 

Male Wistar rats were anesthetized with ketamine and 
xylazine and given sodium heparin intravenously. The 
heart was quickly removed following thoracotomy and 
arrested in ice-cold perfusion buffer. The hearts were 
cannulated via the aorta and perfused by the Langendorff 
method using Krebs-Henseleit buffer containing (in mM) 
NaCl 118, NaHCO3 25, KCl 4.7, MgCl2 1.2, CaCl2 2.5, 
KH2PO4 1.2, and glucose 11. The perfusate was 
oxygenated with 95% O and 2.5% CO2. 

Experimental protocol 
All hearts were perfused on Langendorff apparatus and 
were stabilized for about 20 minutes in order to obtain the 
baseline measurements. After stabilization, pretreatment 

was performed with HEMADO for 25 minutes and 
mitoKATP channel blocker 5-HD for 5 minutes in each 
group. Blocking the perfusion to the hearts and global 
ischemia were induced for 40 minutes and followed by 90 
minutes perfusion.  
At the start of reperfusion, samples were collected 
(coronary flow collected in 5 minutes of reperfusion) to 
measure the myocardial enzyme leakage, including CK-
MB and lactate LDH. LDH activity in the coronary 
effluent was estimated by LDH monitoring kit (Pars 
Azmoon, Tehran, Iran) using an auto analyzer apparatus. 
The level of CK-MB was calculated in coronary effluent 
samples at 5 min of reperfusion with a specific CK-MB 
Kit (Pars Azmoon Tehran, Iran), using an auto analyzer. 
Statistical tests 
Data were expressed as means ± SEM. Statistical 
comparison of means between groups was made by one-
way ANOVA and a subsequent Tukey test. Significant 
differences were determined as P<0.05. 

 
Results 

Effect of HEMADO on CK-MB, LDH: CK-MB, and 
LDH was significantly higher in I/R group than that in the 
control group (P<0.05), and we found that HEMADO 
significantly reduced the release of CK-MB and LDH 
from I/R Myocardium. These protective effects of 
HEMADO were completely abolished by 5-HD (Fig. 1, 
2). 

 
Fig. 1. Effect of HEMADO on CK: level of CK-MB in coronary 
effluent in 5 min after reperfusion in control, ischemia/reperfusion 
(IR), HEMADO, HEMADO+5-HD. 

 
Fig. 2. Effect of HEMADO on LDH: level of LDH in coronary 
effluent in 5 min after reperfusion in Control, ischemia/reperfusion 
(IR), HEMADO, HEMADO+5-HD. 
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Discussion 

This study shows that HEMADO induces 
cardioprotection in the ischemic rat heart by a significant 
decrease in CK-MB and LDH release from coronary 
effluent. These protective effects of HEMADO were 
inhibited when 5HD was applied before ischemia. 
Therefore, we demonstrated that HEMADO conferred 
cardioprotection from IR injury by activation of the 
mitoKATP channels. The amount of LDH and CK-MB 
level is an index for identifying the cell injury and 
membrane integrity in current research. When ischemia 
destructs cell membrane, these enzymes are leaked out of 
cells.14 So the level shows the injury rate and cell 
necrosis.15  

HEMADO significantly decreased the CK-MB and LDH 
levels of coronary flow in HEMADO group. Another 
research on ischemic hearts of dogs reduced the CK-MB 
level by using IB-MECA that is consistent with our 
result.16 The heart cells were contracted by Reperfusion 
due to an increase in some factors. this situation is seen in 
severe or long ischemia which causes mechanical 
stiffness and tissue necrosis.17 Contracted cells put 
pressure on neighboring cells and cause the 
decomposition of them and development of contraction 
which causes widespread necrosis.17 In this study capacity 
of balloon in left ventricle was fixed during ischemia and 
reperfusion, so increase in end diastolic pressure resulted 
from stiffness in left ventricle wall or ventricle 
contracture.18  

HEMADO prevented end diastolic pressure from rising in 
reperfusion period, so it could be said that HEMADO was 
reduced in contracture and accordingly it significantly 
decreased the subsequent necrosis. This outcome is 
obtained indirectly for this research as using HEMADO 
caused the reduction in level of LDH and CK-MB. Based 
on several studies, mitochondria is one of the important 
locations for drug where it can work well and protect 
heart in ischemia duration. mitoKATP channels exist in 
the mitochondrial membrane of cardiomyocytes. It has 
been recently revealed that preconditioning induces 
activation and trafficking of mitoKATP channels,19 
which, in turn, decreases the duration of membrane action 
potential and Ca2+ influx, thus promoting cell survival 
during ischemia.20,21  
It was shown that pretreatment with diazoxide, a definite 
opener of the mitoKATP channel, induced useful 
cardioprotection against IR injuries and this effect was 
prevented by 5HD, a putative specific blocker of this 
channel.22-24 It has been found that other pharmacological 
agents such as bradykinin, acetylcholine, opioids and 
phenyephrine open mitoKATP channels and then activate 
preconditioning in the isolated rabbit heart.25 Our study 
also indicated that HEMADO can produce 
cardioprotection through opening of mitoKATP channel 
in the isolated rat heart. 5-HD has complex metabolic 

actions in cardiomyocytes.22 It has been reported that 5-
HD blocks sarcolemmal KATP channels26 and it seems 
that 5-HD contributes in preconditioning through diverse 
mechanisms and does not act only as inhibitor of 
mitoKATP channels. Most drugs affect two parts of 
mitochondria: mitoKATP channels27 and mitochondrial 
permeability transition pore (MPTP).27 Activation of 
mitoKATP channels protected the heart against ischemia 
and activation of MPTP released apoptosis factors 
causing death of myocardial cells;28 so injury increased.29  

Generally it is imagined that calcium increases and ROS 
fulfills a main role in activation of MPTP having major 
role in tissue injury.30,31 Opening MPTP prevented ATP 
building; so the intercellular ATP decreased. This 
reduction resulted in ionic and metabolic Homeostasis 
perturbation and activation of destructive enzymes such 
as nucleases, proteases and phospholipases. All these 
variations resulted in not returnable cellular injury and its 
necrotic death.29,30,32,33 If mitoKATP channels were 
activated in this duration, they could prevent opening 
MPTP and decreasing IR injury by stopping ATP 
hydrolyze and reducing calcium entry to cell.34 
Observations in this study showed that protective effects 
of HEMADO after IR injury are reduced by mitoKATP 
channels’ blocker. These results stated that HEMADO 
caused opening the mitoKATP channels. This opening 
probably resulted in MPTP closing and also applying its 
protective effect indirectly. 

 

Conclusion 

This study indicated that HEMADO decreases level of 
CK-MB and LDH maybe through reduction in Leakage 
of CK-MB and LDH from myocardial tissues to blood 
and can have a cardioprotective effect after I/R injury. 
Possible mechanisms of this protection may be due to the 
effect of HEMADO on mitoKATP channels. 
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