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Introduction  
Many drugs bind with varying degrees of association to 
human plasma protein. Plasma protein binding is the 
reversible association of a drug with the proteins of the 
plasma due to hydrophobic and electrostatic interactions 
such as van der Waals and hydrogen bonding. The bound 
drug exists in equilibrium with the free drug.1 This 
reversible interaction can greatly influence the 
pharmacokinetic properties such as volume of 
distribution, clearance and elimination, as well as the 
pharmacological effect of the drug. Only a fraction of 
unbound (fu) drug is able to pass across cell membranes.2 
Thus, it can be expected that drugs with high protein 
binding tend to have a greater half–life compared to 
those with lower values. The greater the drug is bound to 
plasma protein, the less fraction of free drug is there for 
therapeutic effect. The consequences of protein binding 
are most extensive with drugs that are highly protein 
bound and have a narrow therapeutic index. This is 
therefore a vital attribute for the assessment of human 

risk. Significance of protein binding in pharmacokinetics 
and pharmacodynamics has been reviewed recently.3 
The plasma protein binding (ppb) is therefore of 
paramount importance in the pharmacokinetics 
characterization of drugs. Prediction of the free fraction 
in tissues and plasma is of interest in drug discovery and 
development. 

Plasma accounts for 55% of the human blood’s 
composition. It is an aqueous solution mainly composed 
of water (92%), proteins (7%) and others solutes (1%) 
such as inorganic ions.1 Plasma proteins include 
albumin, globulins, clotting factors and regulatory 
proteins. The most important proteins in terms of drug 
binding are albumin and α1-acid glycoprotein, followed 
by lipoproteins.4 The serum albumin is the primary 
constituent in human plasma proteins with the 
concentration of 600 µM accounting for 60% of total 
plasma protein. There are multiple hydrophobic binding 
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sites on albumin (a total of eight for fatty acid) that 
especially bind not to neutral and negatively charged 
hydrophobic compounds such as NSAIDS, but also to 
some basic drugs such as tricyclic antidepressants.5 
Binding of acidic drugs to albumin is often considered 
restrictive as far as the distribution of the drug is 
concerned.6 Basic lipophilic drugs such as 
antidepressants bind to albumin, AGP and lipoproteins. 
Very lipophilic, water-insoluble compounds bind to 
lipoproteins.  

For drugs and drug-like compounds, there are two main 
binding sites on albumin. Both sites are elongated 
hydrophobic pockets possessing charged lysine’s and 
arginine’s residues near the surface, which serve as 
attachment points for polar ligand features.5 Sudlow siteI 
especially binds bulky heterocyclic anions (e.g. 
warfarin), whilst siteII preferentially recognizes small 
aromatic carboxylic acids (i.e. ibuprofen).7 Albumin also 
has a number of minor binding sites, which allow 
different drug molecules to bind simultaneously, leading 
to higher binding capacity.8 Alpha-1-acid glycoprotein is 
abundant in serum with a concentration of about 0.01-
0.02 mmolar. It binds to a number of endogenous 
compounds such as steroids, retinoic acid and heparin, as 
well as a variety of drugs (not mainly basic or neutral, 
but also some acidic ones e.g. Phenobarbital).1 The 
effect of AAG binding on drug disposition is more 
significant in diseases associated with elevated AAG 
levels, such as cancer. As a result, interaction of AAG 
with antineoplastic agents needs to be studied taking into 
consideration the different levels of the protein in the 
serum of patients suffering from cancer. Finally, apart 
from the elevated AAG levels, depressed HSA levels 
(negative acute-phase protein) should be taken into 
account, as freer drug might be present as a result for 
binding with AAG. Lipoproteins are macromolecular 
complexes containing protein components (apoproteins) 
and polar lipids (phospholipids) in a surface film 
surrounding a neutral core. Their concentrations may 
vary 4-5 folds.9 There are four types of lipoproteins 
which differ in density and size. These are chylomicrons, 
high-density lipoproteins (HDL), low-density 
lipoproteins (LDL) and very low-density lipoproteins 
(VLDL). Their physiological role is the transport of 
cholesterol and triglycerides.1 Although lipoproteins 
have been reported to contribute to the binding of 
extremely hydrophobic drugs, binding occurs when a 
drug is present at very high concentrations. 

There are varieties of in vitro assays that can be utilized 
to determine the extent of plasma protein binding. Such 
techniques include equilibrium dialysis which is 
considered to be the ‘gold standard’, ultrafiltration, 
ultracentrifugation, chromatographic methods, 
fluorescence spectroscopy, ultraviolet spectroscopy, 
circular dichroism, nuclear magnetic resonance 
spectroscopy, and capillary electrophoresis.1,10  
However, there is a need for reliable in silico techniques 
which will be able to cope with the enormous amounts of 
data available for screening and will also be able to 
predict the plasma protein binding of virtual compounds 
in order to avoid the synthesis of chemicals which do not 
have the potentiality of being approved drugs. One such 
technique is the use of Quantitative Structure-Activity 
Relationship (QSAR) techniques which aim at 
estimation of plasma protein binding levels based on the 
molecular and physicochemical properties of 
compounds. There have been a number of attempts to 
understand the molecular factors that influence binding 
to human plasma proteins. Previous studies of protein 
binding in homologous series have suggested that 
plasma protein binding is only related to ligand 
lipophilicity.11 Recent studies have considered various 
chemical structures for the development of QSAR 
models. Even for the diverse datasets, lipophilicity 
seems to be the most important determinant of binding 
affinity to plasma proteins.12 Among the methods used 
for the estimation of plasma protein binding are: QSAR 
based on pharmacophoric similarity concept and partial 
least square analysis,5 multiple linear regression, 
artificial neural networks, k-nearest neighbors and 
support vector machines,13 and partial least squares 
regression on data limited to binding measurements 
using equilibrium dialysis.14  
The aim of this study was to use several QSAR modeling 
methods in order to improve the accuracy of ppb 
estimation. To this end, a large and diverse dataset of 
drug ppb values were employed and several linear and 
nonlinear data mining methods were used. The validity 
of the models was explored using internal and external 
validation studies. 
 
Materials and methods 
Dataset 
Human plasma protein binding values compiled by 
Votano et al.13 were used in this study. This value 
consisted of a set of 794 compounds literature values of 
percentage compounds bound to plasma proteins (ppb) 
from a variety of literature sources. In the dataset, 41% 
had two or more reported values which were averaged. 
Compounds were not included in the dataset where the 
reported values differed by 30% or more. Dataset was 
partitioned into a training set of 662 and validation set of 
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132 compounds in a way that both sets contained similar 
ranges of ppb values. To do this, compounds were sorted 
in ascending order of ppb values and from each group of 
six, the first 5 were allocated into training and the sixth 
into the test set. 
Molecular descriptors 
Molecular descriptors were calculated for the 794 
compounds using ACD labs/logD Suite version 12, 
TSAR 3D version 3.3 (Accelrys Inc), Molecular 
Operating Environment (MOE) version 2008.10 
(Chemical Computing Group) and Symyx QSAR 
software. Calculation of 3D descriptors was performed 
on the molecular geometries optimized using AM1 
semiempirical method. Descriptors would be removed if 
more than 98% of the values were identical. One of the 
two highly inter-correlated descriptors was also 
excluded. The final descriptor list consisted of around 
450 descriptors.  
Development and validation of QSARs 
Models were developed using Minitab 15.1 statistical 
software and Statistica Data Mining version 9 (StatSoft, 
Inc) for the training set comprising 662 compounds. 
Stepwise regression analysis was used for the 
development of a linear regression model. Data mining 
techniques were general regression tree, interactive tree, 
random forest and boosted trees in Statitistica.  
For the development of general regression tree model, 16 
trees were generated using several combinations of 
stopping criteria and the best tree was selected according 
to the randomly selected internal validation set. In the 
selected model, the stopping parameters were 10 for the 
maximum number of levels, 19 for the minimum number 
of cases in child nodes and 1000 for the maximum 
number of nodes. The minimum number of cases for 
partitioning was set at 79. In addition, an interactive tree 
was generated where the selected general regression tree 
was pruned in order to reduce the risk of overfitting.  
Two random forest tree models were developed in which 
the number of trees used in each model were 100 trees 
and 40 trees. The stopping criteria included the 
minimum number of cases at 19, the maximum number 
of levels at 10, the minimum number in child node at 5 
and the maximum number of nodes at 100. The number 
of predictors at each tree was set to 9 and the subsample 
proportion was set at 0.50. 
Boosted tree methods in Statistica allow multiple tree 
models to be generated for the prediction. It computes a 
sequence of simple trees, where each successive tree is 
built for the prediction residuals of the proceeding trees. 
Two boosted tree models were developed comprising 
200 trees and 80 trees. The stopping criteria included the 
minimum number of cases at 19, the maximum number 
of levels at 10, the minimum number in child node at 1 
and the maximum number of nodes at 3. In addition, the 

learning rate was 0.1 and the subsample proportion was 
0.50.  
The selected models were used for the calculation of ppb 
values of the external test set comprising 132 
compounds. Mean Absolute Error of prediction and 
correlation between observed and predicted values were 
used for assessing the predictive ability of the models. 

 
Results 
Linear regression and non-linear data mining methods 
were used for the development of QSAR for the 
estimation of ppb. Only training set was used for the 
development of QSAR. The prediction powers of the 
models were compared using the test set compounds. 
The selected models using each statistical technique are 
presented here.  
Stepwise regression model 
The first eight most statistically significant (p < 0.05) 
molecular descriptors selected by stepwise regression 
analysis was used for the development of the regression 
model below (Equation 1).  
ppb = 6.20 LogP + 0.0823 Q_VSA_NEG – 14.6 FiB7.4 
+ 79.6 GCUT_SLOGP_3 – 86.5 GCUT_PEOE_3 – 8.34 
FU7.4 – 0.121 Q_VSA_PPOS – 103 VAdjEq + 125 
N = 662 S = 22.5 R2 = 0.558 F = 103  
In this model the descriptors are LogP, the logarithm of 
octanol/water partition coefficient calculated by ACD/ 
log D Suite; Q_VSA_NEG, total negative van der Waals 
surface area; FiB7.4, fraction of base ionized at pH 7.4 
calculated using Henderson–Hasselbalch equation with 
most basic pKa from ACD/ log D Suite; 
GCUT_SLOGP_3, GCUT descriptor using atomic 
contribution to log P instead of atomic charge; 
GCUT_PEOE_3, GCUT descriptor using PEOE method 
for the calculation of atomic charge; FU7.4, fraction of 
drugs that are unionized at pH 7.4 using Henderson–
Hasselbalch equation with most acidic and most basic 
pKa from ACD/ log D Suite; Q_VSA_PPOS, total 
positive polar van der Waals surface area; VAdjEq, and 
vertex adjacency information (equality). Apart from 
LogP, FiB7.4 and FU7.4, the remaining descriptors of 
this equation are calculated by MOE software. The 
GCUT descriptors are calculated from the eigenvalues of 
a modified graph distance adjacency matrix where the 
diagonal can take any atomic property. The smallest, 
1/3-ile, 2/3-ile and largest eigenvalues are reported.15 
The equation indicates the positive effect of lipophilicity 
measured by LogP and GCUT_SLOGP_3 on plasma 
protein binding. The negative coefficient of FiB7.4 
indicates a lower tendency of basic drugs for binding to 
plasma proteins and in combination with FU7.4 with 
negative coefficient, it can be indicative of higher 
plasma binding of acidic drugs in comparison with basic 
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or neutral compounds. GCUT_PEOE_3 and 
Q_VSA_PPOS with negative coefficients indicate the 
negative effect of hydrogen bonding donor groups as 
these atoms are the main contributors to the positive 
atomic charge.16 On the other hand, Q_VSA_NEG has a 
positive coefficient and indicates the positive 
contribution of negatively charged surface to ppb. 
General regression tree models 
Out of 16 trees, one was selected according to the 
prediction error for the randomly selected internal 
validation set. Moreover, the pruned version of this 
selected tree was examined as the interactive tree 
presented in Fig. 1. The figure shows that similar to the 
regression model, lipophilicity is the major determinant 
of ppb with high log P and high SlogP drugs, and those 
with high hydrophobic interaction field (vsurf_EDmin2) 
have significantly higher average ppb. Similar to the 
regression model, compounds with higher negatively 
charged surface (see the effect of PEOE_VSA_NEG) 

have higher binding tendency. Moreover, compounds 
with more than 9.5 aromatic rings (as calculated by 
MOE) have a significantly higher percentage bound. 

Boosted tree models 

This is based on Stochastic Gradient Boosting method. 
The method computed a sequence of very simple trees, 
where each successive tree is built for the prediction of 
residuals of the preceding tree. Then the average 
prediction by many trees is used. The boosted tree 
analysis was first performed using 200 trees. In this 
analysis, ensemble of 163 trees was selected as the 
optimum number of trees by the software (Fig. 2). This 
figure shows the change in training and test set error 
with increasing number of trees. It can be seen that after 
80 trees, the increase in the number of trees reduces the 
training set error, but the test set error does not change 
significantly. Therefore, a second analysis was 
performed using only 80 trees. 

 

 

 
Fig. 1. The interactive tree diagram for protein binding (ppb); each node is identified with an ID number; Mu is the average ppb; Var is the 
variance; N is the number of compounds in each node. The descriptors used for the classification are Log P, octanol water partition 
coefficient calculated by ACD/logD; SlogP, the log P calculated using the Wildman and Crippen SlogP method;17 a_aro, number of aromatic 
atoms, LogD (5.5), apparent partition coefficient measured by ACD/logD; PEOE_VSA_NEG, Total negative van der Waals surface area 
where atomic charge is measured by PEOE method; vsurf_EDmin2, Volsurf descriptor18 indicate ng the second lowest hydrophobic energy; 
and vsurf_HB5 is a Volsurf descriptor18 indicating hydrogen bonding interaction. Apart from ACD/logD calculated descriptors identified 
above, the remaining descriptors are calculated by MOE software.  
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Fig. 2. The effect of number of trees on the average error in boosted tree analysis. 

 

 

 
Fig. 3. The effect of number of trees on the average error in random forest analysis. 
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Random forest models 
Random forest consisted of a collection of simple trees 
generated using a subset of 9 descriptors. Fig. 3 indicates 
the effect of the number of trees on the training and test 
errors, indicating insignificant changes of test set error 
with tree numbers >40. Therefore, a second random 
forest analysis employed only 40 trees. 
 
Discussion 
Interpretable models 
Plasma protein binding is an extremely important 
pharmacokinetic parameter which needs to be 
investigated in early stages of drug development. 
Although a number of attempts have been made to 
investigate the factors that affect plasma protein binding, 
there is still not a clear picture. The purpose of this study 
was to produce in silico QSAR models which could 
assist in finding the molecular factors affecting ppb. This 
was achieved in this investigation by two simple and 
interpretable models, namely multiple regression 
equation and regression tree.  
According to both Regression Tree (Fig. 1) and Equation 
1, lipophilicity has a positive effect on plasma protein 
binding meaning in that the more lipophilic drugs have 
higher ppb values. In these two models, lipophilicity has 
been represented by a variety of molecular descriptors 
including logP, logD at pH 5.5, GCUT_SLOGP_3 and 
vsurf_EDmin2. Effect of lipophilicity has also been 
indicated by a number of other studies including those of 
Votano et al.,13 and Colmenarejo et al.12 
In the regression equation, the negative effect of FiB in 
combination with the negative effect of FU in Equation 
1, shows that acidic drugs have higher affinity for 
plasma proteins and basic drugs are less likely to bind to 
albumin. This has also been suggested by a volume of 
distribution models that indicate higher apparent 

distribution volumes for basic drugs while acidic drugs 
are retained more in the plasma.19 These molecular 
descriptors are not seen in the regression tree, but 
instead, hydrogen bonding interaction (vsurf_HB5) 
shows a positive effect on ppb of highly lipophilic drugs 
in terminal node 15.  
A third finding from both regression equation and the 
nonlinear regression trees is the higher binding tendency 
of compounds with higher negatively charged surface 
(see the effect of PEOE_VSA_NEG in Equation 1 and 
Fig. 1). This also agrees with the traditional idea that 
albumin binds mainly to acidic compounds.1 

Prediction accuracy of models 
Fitting a model into a dataset does not fully achieve the 
ultimate goal of a modeling exercise. Any computational 
model needs to be proven successful by correctly 
predicting the external compounds (validation set) which 
have not been used in any stage of the model 
development.20 In this investigation, one out of six 
compounds in the dataset (132 compounds) was kept for 
external validation of models. Table 1 shows the 
accuracy of the selected QSAR models in terms of the 
Mean Absolute error (MAE) for the training and 
validation sets and the correlation coefficient between 
the observed and the predicted ppb. The table shows 
that, for the training set, the order of accuracy according 
to MAE is boosted tree one, general regression tree and 
boosted tree two. The accuracy order changes for the 
validation set with boosted tree model two showing the 
second most accurate estimation for the external 
validation set after boosted tree model one, while the 
general regression tree is in the third place. Moreover, 
the boosted tree models, along with all the other models 
presented in Table 1, do not show overfitting to the 
training data. This is indicated by the small gap between 
training and validation set MAE values. 

 
Table 1. The summary of prediction accuracy of QSAR models; N, number of cases; S, standard deviation, slope, 
intercept and R2 of the correlation between observed and predicted ppb; MAE, the mean absolute error 

Model Name N S Slope Intercept R2 MAE 
Training/internal test set 

1 Stepwise Regression 662 22.38 0.530 30.05 0.589 17.07 
2 General  Tree 662 19.83 0.653 22.50 0.653 14.21 
3 Interactive Tree 662 21.90 0.577 27.44 0.577 16.30 
4 Random Forest Tree One 662 19.01 0.486 33.50 0.681 16.90 
5 Random Forest Tree Two 662 18.97 0.494 33.29 0.683 16.64 
6 Boosted Tree One 662 17.93    0.681 20.62 0.717 13.25 
7 Boosted Tree Two  662 20.46 0.615 25.02 0.631 15.16 

Validation set 
1 Stepwise Regression 132 21.30 0.504 34.55 0.626 17.01 
2 General  Tree 132 23.02 0.579 29.76 0.538 16.86 
3 Interactive Tree 132 24.16 0.512 34.79 0.491 18.15 
4 Random Forest Tree One 132 21.92 0.413 39.32 0.581 18.91 
5 Random Forest Two 132 21.75 0.424 38.94 0.588 18.56 
6 Boosted Tree One 132 20.16 0.641 25.13 0.646 14.96 
7 Boosted Tree Two 132 20.65 0.622 26.47 0.629 15.34 
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Boosted tree model one has employed a large number of 
small trees (163 trees in total) in order to correctly 
predict ppb values for the compounds. Ensemble 
methods such as boosted trees and random forest have 
the advantage of flexibly employing many predictors in a 
non-linear fashion which can aid prediction accuracy. On 
the other hand, this improvement in estimation accuracy 
is accompanied by a loss in the interpretability. Although 
it must be noted that the most significant descriptors that 
have an influence on ppb can be identified from the 
descriptor ranking results of the boosted tree analysis. 
 
Conclusion 
The range of simple to more complicated QSAR models 
developed in this investigation resulted in encouragingly 
low prediction errors. In particular, the boosted tree 
models proved to have considerably lower estimation 
error for the external validation set. 
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