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Biodegradable scaffold systems are a promising tool 
for regenerative therapies.1,2 In addition, scaffold 
constructs are engineered as biomimetic, three-di-

mensional (3D) models to recapitulate and study the cel-
lular and molecular biology underlying various diseases 
in vitro.3,4 However, both in vitro and in vivo application of 
tissue engineering scaffolds have been challenged by the 
difficulty to achieve germ-free biomaterials for safe ther-
apeutic use. Biomaterial-associated biofilm and infection 
have been increasingly identified as one of the primary 
failure mechanisms of implanted medical devices (e.g., 
catheters, stents, and mechanical heart valves), yet these 

phenomena have not been well investigated in the context 
of tissue engineering 3D scaffolds. 
Another factor limiting the clinical application of tissue 
engineering grafts is the lack of efficient, noninvasive 
techniques for in situ-tracking of the scaffold (e.g., its lo-
cation, integration, and degradation) after implantation.5-8 
This would be of significance particularly in the case of 
internal tissue implants, such as cardiac patches, where 
the structural and spatial constraints of the tissue struc-
ture further hamper monitoring the scaffold function post 
implantation. 
We recently demonstrated the use of a bioengineered 
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Article Info Summary
Tissue engineering utilizes porous scaffolds 
as template to guide the new tissue growth. 
Clinical application of scaffolding biomaterials 
is hindered by implant-associated infection 
and impaired in vivo visibility of construct in 
biomedical imaging modalities. We recently 
demonstrated the use of a bioengineered type I 
collagen patch to repair damaged myocardium.
By incorporating superparamagnetic iron 
oxide nanoparticles into this patch, here, we 
developed an MRI-visible scaffold. Moreover, the embedded nanoparticles impeded the growth 
of Salmonella bacteria in the patch. Conferring anti-infection and MRI-visible activities to the 
engineered scaffolds can improve their clinical outcomes and reduce the morbidity/mortality of 
biomaterial-based regenerative therapies.
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cardiac patch, consisting of type I collagen and a cardi-
oprotective (follistatin-like 1) protein, to repair damaged 
myocardium.1,9,10 One potential hurdle for extensive clini-
cal application of the developed patch could be biomateri-
al-associated infection. To address this issue, in this study, 
a revised, infection-resistant generation of the collagen 
scaffold system was designed by incorporating anti-mi-
crobial superparamagnetic iron oxide nanoparticles (SPI-
ONs11,12) into the engineered construct. The embedded, 
biocompatible, spherical SPIONs also yielded a significant 
contrast in the magnetic resonance imaging (MRI) of the 
construct, hence producing an anti-infective, MRI-visi-
ble scaffold system.13 It is noteworthy that we and others 
showed excellent in vitro and in vivo biocompatibility of 
SPIONs with various surface coatings.14,15 
Collagen gels were fabricated by mixing rat tail type I 
collagen solution (1.1 ml of 3.84 mg/ml, Millipore, MA, 
US) with 0.9 ml sterile phosphate buffered saline (PBS) 
and neutralizing by NaOH as previously described.3,16 
Hydrated gels subsequently underwent plastic compres-
sion4,17 by applying a compressive stress of 1400 N/m2 for 5 
min, yielding a dense biomaterial with increased stiffness 
(Young modulus) approaching that to the native myocar-
dium1,4,9,10,16 (Fig. 1A). The iron oxide nanoparticles (di-
ameter of 17.8 ± 2.6 nm with a surface charge of 32.6 ± 0.3 
mv) were coated with aminopropyltriethoxysilane (APT-
ES) and added to the liquid collagen solution at different 
concentrations (1.5, 3, and 6 µg/mL or µg/scaffold) prior 
to neutralization, followed by gelation and plastic com-
pression. We selected APTES coating mainly because of its 
excellent protein-attachment capability which facilitates 
incorporation of SPIONs to the collagen fibers.18 Detailed 
information about synthesis and characterization of the 
APTES nanoparticles is previously described.18 Scanning 
electron microscopy of particle-laden scaffolds demon-
strated rather uniform distribution and incorporation of 
the SPIONs within the collagen fibrils (Fig. 1B). 
The effect of SPIONs incorporation on the MRI-visibil-
ity of engineered collagen scaffolds was tested both in 
vitro and in vivo (Fig. 2). In vitro, T2* weighted images 
demonstrated a remarkable contrast induced by magnet-
ic nanoparticles seeded in the gels, particularly at 3 and 

Fig. 1. Schematic illustration of preparation of the patches laden 
with superparamagnetic iron oxide nanoparticles (SPIONs); A: 
Plastic compression of hydrated collagen gels10,24– with or without 
nanoparticles – produced dense magnetic scaffolds (patches). B: 
scanning electron microscopy of the SPIONs-loaded patch (i and 
ii) and empty patch (iii and iv, control) ultrastructure.

Fig. 2. Magnetic resonance imaging (MRI) of empty (negative 
control) and SPION-loaded collagen patches at 1.5, 3.0, and 
6.0 µg/scaffold concentrations. T1 weighted image from top 
(A) and T2* weighted image from side (B) views demonstrated 
the resulting remarkable contrast in the magnetic patches. The 
dashed green line and arrow highlight the boundary of the patch. 
C: In vivo manganese-enhanced MRI imaging of healthy mouse 
heart with no treatment (i), or grafted with empty patch (ii), 
SPION-loaded patch (iii), and loaded-empty-loaded sandwich 
patch (iv). Schemes and arrows show the location and structure 
of the patch construct grafted onto the myocardium.

6 µg/mL, in comparison to the control (empty) scaffolds 
(Fig. 2B). For the in vivo imaging, collagen scaffolds were 
grafted onto the epicardial surface of the heart in male, 12 
weeks old C57BL/6J mice (Jackson Laboratories, Bar Har-
bor, ME, USA) via left thoracotomy.1,10 All procedures in-
volving animal use, housing, and surgeries were approved 
by the Stanford Institutional Animal Care and Use Com-
mittee (IACUC). The animal groups included: 1) empty 
(control) patch, 2) SPION-laden patch, and 3) a sandwich 
structure consisting of empty and particle-loaded patches 
(Fig. 2C, n=2). Manganese Enhanced MRI (MEMRI) im-
aging, conducted 2 h following the implantation, demon-
strated a significant contrast in SPION-laden scaffolds 
(groups 2 and 3). Arrows in Fig. 2C point to the location 
of the SPION-laden patches on the myocardium. 
SPIONs have been recently used for the treatment of a va-
riety of antibiotic-resistant biofilms (e.g., gentamicin-re-
sistant staphylococci) in monolayer culture conditions.19-21 
Whether addition of SPIONs to 3D culture systems con-
fers them antibacterial activity has not been investigated. 
Nanoparticles can disrupt bacterial membrane and enter 
into their intracellular environment.22 Membrane disrup-
tion and release of toxic ions are considered as the main 
mechanisms of anti-bacterial effect of nanoparticles.22 
SPIONs have shown significant anti-bacterial effect on 
different types of bacteria; here, we used Salmonella as 
model bacteria19,23. 
We tested the bacteria-resistivity of SPION-laden 3D 
collagen scaffolds by growing Salmonella bacteria in the 
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scaffolds containing varying quantities of particles (4 to 16 
µg/scaffold, n=3, the data for highest particle concentra-
tion is shown here). Remarkably, collagen scaffolds with 
or without SPIONs demonstrated a favorable microenvi-
ronment for the bacterial growth at 24 and 48 h post in-
fection, when compared with those grown in PBS or the 
inoculum (controls) (n=3, Fig. 3A). This can be attributed 
to the highly porous ultrastructure of the scaffold which 
provides ample surface area for the bacteria to anchor. The 
presence of SPIONs within the collagen matrix yielded no 
significant effect on the Salmonella growth when com-
pared to that in the empty scaffolds. This could be due to 
the insufficient dose of particles in the patch, or the fact 
that the particles added prior to collagen polymerization 
could be potentially captured within the fibrillar struc-
ture, hence, reducing their capability to penetrate into the 
bacteria. The latter hypothesis was confirmed by scanning 
electron microscopy (Fig. 1). Addition of 10% antibiotics 
(v/v, penicillin-streptomycin) to the culture fully demol-
ished the infections. Consistent with previous reports, 
direct administration of SPIONs to the bacteria culture 
partially inhibited their growth (Fig. 3A,B).
SPIONs titration assay (Fig. 3B) demonstrated that parti-
cle concentrations greater than 32 µg/mL could effectively 
inhibit the Salmonella growth in the PBS environment. 
However, this value exceeded the maximum particle con-
centration that could still allow collagen gelation (16 µg/ 
mL). To load the collagen scaffolds with greater quantities 
of unbound SPIONs (not captured within nano-fibrillar 

Fig. 3. Antibacterial effect of superparamagnetic iron oxide 
nanoparticles (SPIONs) embedded in collagen patch. A: 
Salmonella growth in various environments including empty 
patch, patch loaded with SPIONs (16 µg/ml or /patch), SPIONs 
alone (16 µg/mL in PBS), pure PBS, PBS + 1% antibiotics 
(Abx: penicillin-streptomycin), patch in PBS + 1% Abx, and the 
inoculum. Growth data (CFUs/ml) are reported after 24 and 48 h 
of incubation. B: Fold change in Salmonella growth (compared to 
inoculum) in PBS containing varying levels of SPIONs, ranging 
from 8 to 512 µg/mL.

Fig. 4. Loading collagen scaffolds (patches) with SPIONs by direct immersion of the patch in a rich source of particles; A: loading phase; 
Atomic absorption of the supernatants show a decrease in [SPIONs] in the rich source (blue, from ~300 to ~135 µg/ml), associated with an 
increase in [SPIONs] in the patch (green, from 0 to 214 µg/scaffold). B: release test; release of SPION-loaded patches into fresh, empty 
PBS medium showed a decrease followed by a plateau in [SPIONs] in patch (green) after 4 days of incubation on a shaking plate. This 
was accompanied by an increase of [SPIONs] in PBS (blue).  C: Salmonella growth test in the patch loaded with SPIONs, in comparison 
to the empty patch and PBS.
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What is current knowledge?
√ The application of superparamagnetic nanoparticles in 
regenerative medicine has advanced rapidly, offering great 
promise to develop novel technologies for the diagnosis and 
therapy of various diseases, in particular, cardiovascular 
disorders. 
√ Engineered 3D tissue constructs, however, are primarily 
associated with poor in vivo traceability which in turn limits 
their clinical applications. 
√ The risk of biomaterial-associated infections has been 
always a limiting factor. 

What is new here?
√ By incorporating superparamagnetic iron oxide 
nanoparticles into 3D collagen scaffolds, it was found that a 
new generation of tissue engineering scaffolds with unique 
antimicrobial and MRI-visible properties can be developed. 
√ This technology provides a versatile platform for generating 
a large number of bioengineered complex 3D tissues for 
clinical and translational applications. 

Study Highlightscollagen matrix), polymerized and compressed scaffolds 
were immersed in a rich source of nanoparticles (300 µg/ 
mL) for the duration of 24 h (Fig. 4A). This resulted in 
loading particles at a concentration of 214 ± 46 µg/ mL or 
scaffold as measured by atomic absorption (from superna-
tants). While the former approach (adding SPIONs during 
gelation) resulted in entrapment of particles within the 
3D fibrillar structure of scaffold, the latter (immersion) 
method loaded the particles into the porous construct via 
a diffusion process driven by the concentration gradient 
of SPIONs.
The particle release from loaded scaffolds was assessed by 
immersing them in fresh PBS environment and measur-
ing the iron oxide concentration in the supernatant via 
atomic absorption in a timely fashion (Fig. 4B). SPIONs 
concentration in the patch reached a plateau after 2 h of 
incubation in PBS, suggesting that the remaining SPIONs 
were stable within the scaffold construct for longer terms. 
Therefore, following 2-hour incubation in PBS, loaded 
scaffolds were used for the bacteria growth study (Fig. 
4C). Remarkably, the SPION-laden scaffolds demonstrat-
ed a significant effect (p < 0.05) in reducing the bacterial 
growth (relative to inoculum) when compared to those 
grown in PBS. Consistent with previous set of data (Fig. 
3), the empty scaffolds yielded the highest level of Salmo-
nella growth among all groups. Since SPION concentra-
tions equal or greater than 6 µg/patch were sufficient to 
yield distinguishable contrast in T2* weighted MRI im-
ages (up to 300 µg/patch was tested), the collagen patches 
loaded with 200µg/patch SPIONs can provide an optimal 
scaffold system with both MRI-visibility and anti-infec-
tive properties.
In summary, here we introduce a new generation of tissue 
engineering scaffold systems, laden with superparamag-
netic iron oxide nanoparticles that are MRI-visible both 
in vitro and in vivo. While the typical (empty) collagen gel 
scaffolds demonstrated to be radically cultivating environ-
ment for bacterial growth, the embedded nanoparticles in 
these scaffolds significantly impeded the scaffold infec-
tion. Incorporating anti-infection and MRI-visible prop-
erties into regenerative medicine therapies could improve 
clinical outcomes and reduce the morbidity and mortality 
associated with biomaterial implant-associated infections. 
Investigating the fate/biodegradation of the SPION-load-
ed patch in vivo, the effect on inflammatory markers and 
oxidative stress, and potential effect of particles on the in-
herent function of the engineered patch are some of the 
future research directions.
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