
Alizadeh et al., BioImpacts, 2022, 12(4), 295-299
doi: 10.34172/bi.2021.22179
http://bi.tbzmed.ac.ir/

Optogenetics: A new tool for cancer investigation and treatment  
Siamak Alizadeh1,2 ID , Abolghasem Esmaeili1, Jaleh Barar2 ID , Yadollah Omidi3* ID

1 Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 
Isfahan, Iran
2 Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
3 Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328, USA

Introduction
There are many treatment methods for cancer, including 
chemotherapy, surgery, radiotherapy, hormone therapy, 
and biological therapy. However most of them associate 
with harmful impacts on the healthy cells/tissue of the 
body, imposing a collective undesirable side effects 
in the patient under such treatment courses.1-3 In the 
verge of emerging new cancer treatment techniques era, 
optogenetics provided exciting opportunities for scientists 
with the ability of (i) spatial-temporal control of cell 
function and behavior, (ii) fewer off-target cytotoxicity, 
and (iii) simple application with no/trivial undesired 
impacts.4 The optogenetics concept is based on the 
combination of genetic and optical techniques for the 
rapid and reversible control of precise events in specific 
cells or tissues.5 Given that light is a low-cost entity and 
nearly harmless, if used correctly, it can be delivered to 

the cells or organs with different wavelengths and in a 
controlled manner.6 Photosensitive modules can reversibly 
activate or deactivate gene expression or effector proteins 
without causing long-term adverse effects in contrary 
to the traditional genetic perturbation approaches 
(knockout/knockdown or mutagenesis) that disturb the 
spatiotemporal features of the signaling network forever.7 
Light-controlled gene expression systems have been 
recognized for several cell types such as mammalian cells, 
yeast, and bacteria. 8 Optogenetics approaches are used 
more than a decade in neuroscience. However,  over the 
last few years, optogenetics lines have been expanded 
dramatically.9 

Cells can be considered analog robots, with a complex 
array of sensors and actuators (e.g., cell signaling and 
biomolecular circuitry) that function among the cell’s 
exterior and interior.10 Therefore, various numbers of 
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Abstract
Despite the progress made in the diagnosis and 
treatment of cancer, it has remained the second 
cause of death in industrial countries. Cancer is a 
complex multifaceted disease with unique genomic 
and proteomic hallmarks. Optogenetics is a biological 
approach, in which the light-sensitive protein 
modules in combination with effector proteins that 
trigger reversibly fundamental cell functions without 
producing a long-term effect. The technology was first 
used to address some key issues in neurology. Later on, 
it was also used for other diseases such as cancer. In the case of cancer, there exist several signaling 
pathways with key proteins that are involved in the initiation and/or progression of cancer. Such 
aberrantly expressed proteins and the related signaling pathways need to be carefully investigated 
in terms of cancer diagnosis and treatment, which can be managed with optogenetic tools. Notably, 
optogenetics  systems offer some advantages compared to the traditional methods, including spatial-
temporal control of protein or gene expression, cost-effective and fewer off-target side effects, and 
reversibility potential. Such noticeable features make this technology a unique drug-free approach 
for diagnosis and treatment of cancer. It can be used to control tumor cells, which is a favorable 
technique to investigate the heterogeneous and complex features of cancerous cells. Remarkably, 
optogenetics approaches can provide us with outstanding tool to extend our understanding of how 
cells perceive, respond, and behave in meeting with complex signals, particularly in terms of cancer 
evasion from the anticancer immune system functions.
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mesenchymal transition which is one of the principal 
mechanisms in the cancer cell metastasis initiation and 
promotion.2 Furthermore, a light-activatable form of G 
protein-coupled receptor (GPCR) family that plays the 
most important role in cell survival and apoptosis and 
is often dysregulated in most cancerous cells has been 
developed and used successfully by scientists.26 In addition, 
optogenetics tools have been recently extended to remotely 
control immune responses by modulating dendritic cell 
(DC) maturation, inflammasome activation, lymphocyte 
trafficking, and photoactivation of calcium channels 
and engineered chemokine receptors for antitumor 
immunity.27 Design of light-switchable immune cells 
(opto-immunoengineering) allows selective activation of 
these cells only at the desired time and location (e.g., a 
tumor tissue), thereby reducing off-target special effects.28 
For instance, an optogenetic controllable T cell system has 
been developed based on melanopsin for hepatocellular 
carcinoma immunotherapy which accurately regulates 
the functions of T cells via a calcium-NFAT pathway in 
response to blue light illumination.29 Aside from the 
mammalian cells, optogenetics tools can be used in 
cancer therapy in combination with beneficial probiotic 
or engineered bacterial species.30,31 Indeed bacterial cells 
are intelligent biological entities, which can sense various 
environmental changes (e.g., glucose, pH, oxygen, light, 
temperature) and respond properly.30,32 Recently light 
responsible plasmids such as pDawn and pMars have 
been developed and used successfully by scientists. These 
constructs can express and produce anticancer genes or 
agents in the appropriate host bacterial species under the 
blue and red light illumination respectively.33-35 Likewise, 
optogenetics tools have extended cancer drug discovery 
and delivery approaches.36 Different kinds of screens are 
applied to drug candidates before subjecting to the clinical 
studies. These processes include in vitro and cell-based 
assays, tissues and primary cells screenings, and in vivo 
organism scale trials.37 Currently used biochemical and 
cell-based assays are not specific, cost-effective, and rapid 
as they require testing a large number of small molecules.37 
Moreover, the employment of invasive measurement 
devices (for single-cell electrical measurements) or 
chemical addition may interfere and alter cellular activity 
in many cellular assays.14,38 Hence, the development of 
optogenetics tools that address appropriate targets with 
reduced cost and ‘contactless’ activation or inhibition 

signaling pathway effectors, which are crucial for cancer 
expansion and progression and play an important 
role in cell fate and functions, became traceable for the 
management by light.11 Considering this fact, a range of 
variants of optically activated signaling pathway initiators 
(e.g., Rho A, Raf 1, and Rac) have been established and 
used to study the cellular events with extraordinary 
precision. Table 1 lists some slected signaling pathways 
established with photoactivatable proteins.12

On the other hand, there are various numbers of protein 
modules such as cell surface receptors, extracellular 
proteins, and intracellular kinases that have been detected 
to spatially assemble into higher-order complexes. All 
these proteins can be managed by different inducible 
elements even though such phenomena are still poorly 
understood.10,19 Although chemical stimuli have been 
extensively used in cancer research, their applications 
have been limited by some drawbacks, including 
difficulties in eliminating the inducer and diffusion-based 
transportation.20 Hence, replacing light with chemical 
inducers offers an ideal gene expression system due to its 
extraordinary tunability and spatiotemporal resolution 
and received considerable attention.21,22 Different 
types of light-inducible gene expression systems have 
been developed recently in mammalian cells.23 By the 
development of gene editing technologies, optogenetics 
can be used in combination with the light-sensitive 
systems for cancer research and therapy.20 In view of this, 
an optimized CRISPR-Cas9-based light-inducible gene 
expression system was used in bladder cancer cell models 
using the tumor suppressor p53 gene. Their result indicated 
effective inhibition of bladder cancer cell 5637 and UMUC-
3 proliferation in vitro.20 As well, a light-controlled caspase 
(the main regulator of programmed cell death) has been 
created by combining a photoactivatable protein, light/ 
oxygen/voltage (LOV) domain to the apoptosis-executing 
domain of caspase-7. Under blue light induction, LOV 
domain undergoes conformational change and releases 
caspase-7 domain, triggering apoptosis within 1 hour.24 
Recently, a light-controllable variant of receptor tyrosine 
kinases (Opto-RTKs) family, which is fundamental for 
cancer evolution and angiogenesis, has been reported 
by different research groups. Considering the clinical 
significance of RTK inhibitors, Opto-RTKs offer unlimited 
potential in the oncology field.16,25 To this end, Opto-
RTK has been used successfully to study the epithelial-

Table 1. Some signaling pathways established with photoactivatable proteins

Signaling pathway Light-activatable protein Activation/deactivation wavelength (nm) Signaling protein References

MAPK LOV Blue light Ste5 13

Ras/ERK PhyB–PIF6 650-750 nm s/s SOScat 14

Raf/MEK/ERK CRY2–CIBN Blue light (~450–480 nm) Raf1 15

Opto-RTKs LOV Blue light(~450–480 nm) FGFR 16

Apoptosis LOV Blue light(~450–480 nm) Caspase-7 17

PI3K CRY2–CIB1 Blue light(~450–480 nm) SH2 of p85a 18
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of cellular activity promise to disclose new therapeutic 
codes.14,39 A major challenge in the light-based activation 
process especially for in vivo applications has been the 
safety and penetration ability of the light deep into the 
tissue since visible lights are not able to penetrate more 
than several millimeters in tissue.40 By the emerging 
advanced optogenetics toolkits, using implanted internal 
light sources such as fiber-light emitting diodes and optic 
light sources, this problem could be solved frequently.41-43 
Moreover, by using lanthanide-doped upconversion 
nanoparticles (UCNPs) which are capable to convert 
near-infrared (NIR) light into visible and ultraviolet 
emission, remote stimulation, and deep penetration into 
tissue are achievable.44 These nanosacle transducers can 
up-convert several lower-energy photons into one high-
energy photon which can activate nearly all current 
optogenetic constructs (e.g., CRY2, LOV2, and ChR2).27,45 
In this line, the NIR-stimulable optogenetic platform 
(named 'Opto-CRAC') in conjugation with NIR-to-blue 
emitting UCNPs, has been used effectively to improve 
the antitumor response with external NIR light in living 
animals.46 Another strategy is the use of bioluminescence 
from luciferases as an alternative light source for the 
photoactivation of blue/green photosensitive proteins in 
a procedure that is named bioluminescence resonance 
energy transfer (BRET). In this method, luciferases are 
fused to microbial rhodopsin, giving rise to luminopsin 
which can convert high energy substrate coelenterazine 
into the low energy product coelenteramide. The light 
generated in this process is transferred simultaneously to 

the neighboring chromophore in a photosensitive protein 
(Fig. 1).28, 29 Likewise, utilizing photosensitive proteins 
(PhyB–PIF and BphP1–PpsR2) that are excited by longer 
wavelength (red and NIR) and are able to penetrate tissue 
simply, could be an alternative approach.28

Nevertheless, some important parameters should be 
exploited experimentally, including (i) the reversibility 
and dynamics of the optogenetic tools, (ii) the endogenous 
availability of chromophores, and (iii) the precise degree 
of light with the particular wavelength and duration 
time.6,47 For instance, a shorter wavelength (e.g., blue and 
UV lights) is appropriate for the surface of the skin, cell 
culture, and tissue explants whereas the red light (620–
750 nm) and a part of the NIR light (750–1100 nm) are 
suitable for therapeutic application.8 It should be noted 
that the long time exposure of the cell or tissue to the light 
might raise the temperature and cause tissue damage by 
severing alteration of cellular nucleic acids and proteins.48 
As well, optogenetic modules that need long exposure time 
might cause cell death by sustenance or over-activation 
of signaling pathways.6 However, the development of 
more sensitive optogenetics modules with better kinetics 
could resolve this problem.49 The optogenetic application 
could be extended by combining newly emerged genome-
editing techniques with the photoactivatable domains for 
the precise editing of genome sequences.50
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Fig 1. Different strategies for the in vivo application of optogenetics tools. (A) UCNPs which can convert near-infrared (NIR) light into visible and 
ultraviolet emission. (B) µLED implants that can provide wireless light power in deep layers of tissue by means of radio frequencies. (C) Luminopsin 
which can be created by fusing luciferases with the photoactivable protein can utilize exogenously provided chemical energy existed in small 
molecules to promote light-powered reactions. Luminopsin oxidases the high energy coelenterazine into the low energy product coelenteramide 
while transferring the light-energy to the photosensitive protein. UCNPs, upconverting nanoparticles;   µLED, Micro LED; NIR, near-infrared; Luc, 
luciferases;  PA,  photoactivable  protein; CRY2, cryptochrome 2.
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