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Introduction
The presence of pathogenic bacteria in water, food, and 
environment around human beings  endangers their 
health, and the infections caused by them pose a significant 
threat of morbidity and mortality worldwide. Excessive 
and inappropriate use of antibiotics creates resistance 
and difficulty in treatment.1 This is while progress in 
development of new antibiotics does not match the rise 
in risk of increasing resistance, and fewer options remain 
for physicians and health care specialists  for treatment 
of certain infections.2,3 It is estimated that the annual 

mortality due to antimicrobial resistance will rise to 10 
million cases worldwide by 2050. This problem has been 
addressed globally, where several countries are facing 
with emergence of bacteria that are entirely resistant to 
available antibiotics. Therefore, certain country-specific 
action plans have been prepared based on the worlds̓ 
action plan of the World Health Organization (WHO) to 
deal with  antimicrobial resistance.4

The ability of most pathogenic bacteria to evolve 
quickly allows  them to be adapted and grow in various 
pH, temperature, and pressure conditions as well as a wide 
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Abstract
Introduction: Bacterial infections have always been 
a major threat to public health and  humans' life, 
and fast detection of bacteria in various samples is 
significant  to provide early and effective treatments. 
Cell-culture  protocols, as well-established 
methods, involve  labor-intensive and complicated 
preparation steps. For overcoming this drawback, 
 electrochemical methods may provide promising 
alternative tools for fast  and reliable detection of 
bacterial infections.
Methods: Therefore, this review study was done to 
present  an overview of different electrochemical 
strategy based on recognition elements for  detection of bacteria in the studies published during 
2015-2020. For this purpose, many references in the field were reviewed, and the review covered 
several issues, including (a) enzymes, (b) receptors, (c) antimicrobial peptides,  (d) lectins, (e) 
redox-active metabolites, (f) aptamer, (g)  bacteriophage, (h) antibody, and (i) molecularly 
imprinted polymers.
Results: Different analytical methods have developed are used to bacteria detection. However, 
most of  these methods are highly time, and cost consuming, requiring trained personnel to 
perform the  analysis. Among of these methods, electrochemical based methods are well accepted 
powerful  tools for the detection of various analytes due to the inherent properties.  Electrochemical 
sensors with different recognition elements can be used to design diagnostic system for bacterial 
infections. Recent studies have shown that electrochemical assay can provide promising reliable 
method for detection of bacteria.
Conclusion: In general, the field of bacterial detection by electrochemical sensors is continuously 
growing. It is believed that this field will focus on portable devices for detection of bacteria based 
on electrochemical methods. Development of these devices requires close collaboration of various 
disciplines, such as biology, electrochemistry, and biomaterial engineering.
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consuming and require sample preparation before 
analysis.5,7 Furthermore, low concentration of bacteria, 
limit of detection  (LOD) in the range of 104-105 CFU/
mL  , is a  challenge for these methods.4 In the recent years, 
 new methods have been applied based on electrochemical 
approaches to improve bacterial detection.17-22 These 
methods have  received a great deal of attention due to 
their sensitivity, high selectivity, acceptable precision 
(5-7%), and fast analysis time (5-10 minutes). There is 
also no complicated pretreatment or high skill required 
for analysis.21-23 The electrochemical sensor used in this 
regard is made up of three parts, including a recognition 
element on the sensing platform,  an effective transducer, 
and a digital signal processor (Fig. 1). The receptors  used 
in construction of electrochemical sensors are illustrated 
in Fig. 1.

The present study is a review study on strategies used 
for building sensors developed during 2015-2020. In this 
respect, there are references, including the studies by 
Majdinasab et al24 who presented various aptasensors for 
detection of pathogenic bacteria in food samples, Richter et 
al25 who reviewed different bacteriophage-based methods 
for bacterial detection, Amiri et al26 who published a 
comprehensive overview of the current electrochemical 
methods used for detection of pathogens, and Kuss et al27 
who reported the recent advancements and challenges in 
electrochemical detection of pathogenic bacteria. This 
review study focuses on designing bacteria-detecting 
sensors based on recognition elements that have not been 
reviewed so far. For this purpose, many references in the 
field were reviewed, and the review covered several issues, 
including (a) enzymes, (b) receptors, (c) antimicrobial 
peptides,  (d) lectins, (e) redox-active metabolites, 
(f) aptamer, (g)  bacteriophage, (h) antibody, and (i) 
molecularly imprinted polymers. Explanation is provided 
for detection method in each case in the following.

range of salt concentrations, which makes combating with 
them difficult.4,5 Mycobacterium tuberculosis, Acinetobacter 
baumannii, Bacillus cereus, Brucella, and E. coli are only 
some of challenging bacterial species affecting humans ҆ 
life. M. tuberculosis, causing development of tuberculosis, 
is a common airborne infectious microorganism leading 
to millions of  deaths each year worldwide with the highest 
mortality rate of 1.8  million deaths.5,6 Acinetobacter 
baumannii is a non-motile gram-negative member 
 of the Gammaproteobacteria. These microorganisms 
are responsible for some infections, i.e., bloodstream 
infections, wound infections, ventilator-acquired 
pneumonia, and urinary tract infections.7,8  Bacillus cereus 
is a gram-positive bacillus that causes food-borne diseases, 
i.e., emetic and diarrheal syndromes.9 Brucella bacteria are 
encapsulated gram-negative coccobacilli known to affect 
animals, such as bovines, camels, sheep, and goats. B. 
abortus, B. melitensis, B. canis, and B. suis are the primary 
Brucella bacteria capable of causing diseases in human 
beings.10 The symptoms of these diseases include undulant 
fever, headache, chills, myalgia, and arthralgia. E. coli 
O157: H7 via foodborne poisoning and water pollution 
causes hemolytic uremic syndrome, colitis bleeding, and 
diarrhea.  11 Therefore, there is a need for a simple method 
to detect bacteria so as to improve quality of life and 
 humans̓ health. Early detection of bacterial infections is 
essential for health care; it can prevent propagation of 
infections and antibiotic  resistance and help to choose right 
treatment for patients.12-16 To this end, rapid, easy, cost-
effective, and  accurate detection of infections and correct 
distinguishing between the infected and uninfected people 
have an enormous effect on controlling drug resistance. 
Conventional bacterial diagnosis  techniques, such as 
cell culture, colony counting, polymerase chain reaction 
(PCR), enzyme-linked immunosorbent assay (ELISA), 
and fluorescence-based technique, are inappropriate 
in this case because, they are labor-intensive and time-

Fig. 1. Structure of an electrochemical sensor showing recognition element, interface, transducer and output signal.
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Enzymes 
Enzymes, as catalytic proteins, are common examples of 
biomarkers used in  enzymatic electrochemical biosensors 
for recognition of bacteria.28 Enzymatic biosensors work  
on the basis of reaction of an enzyme with its substrate 
so that, substrate is  metabolized by enzyme or inhibits 
enzymatic reaction.29 Despite the  advantages offered by 
enzyme-based sensors, several restrictions are associated 
with their use.  Cost and instability of enzymes are a part 
of challenges in wide application of enzyme-modified 
assays.28 For overcoming this problem, Mubarok et al,30 
developed a convenient, simple, and rapid electrochemical 
assay  to monitor neuraminidase activity in saliva, human 
blood, urine, and nasal swab samples. The assay was 
based on a  facile synthesized probe N-acetyl-2-O-(4-
aminophenyl)-neuraminic acid (AP-Neu5Ac) as a non-
 protein substrate on sensing platform to determine 
neuraminidase activities. Thus, an electrochemical 
sensor was developed based on cleavage of the AP-
Neu5Ac. Release of p-aminophenol, resulting from the 
neuraminidase-catalyzed hydrolysis of AP-Neu5Ac was 
followed using a differential pulse voltammetry (DPV) 
technique. The  developed sensor showed good sensitivity 
with a LOD of 5.6 ng/mL. The main advantage of the 
proposed method based on AP-Neu5Ac is its applicability 
in real samples.30 

More recently, enzymatic biosensors have been 
used to identify  foodborne pathogenic bacteria. The 
amperometric enzymatic biosensor developed by Huang 
 et al,31 can detect Listeria monocytogenes and determine 
bacterial count and somatic cell count (SCC) in  raw 
milk. Bacterial infection was evaluated through bacterial 
count on the basis of changes in electroactive metabolites 
of  microorganisms. The signals resulting from lactate 
dehydrogenase (LDH)  activity were used to determine 
SCC. LDH, as an enzyme biomarker, can catalyze 
conversion  of lactate acid and NAD+ as substrates into 
pyruvic and NADH as electrochemical active  substances. 
Detection range was found to be from 102 to 108 CFU/
mL within detection  time of 1–10 hours by amperometric 
technique. SCC detection could be performed from 350 to 
780 thousand SCC/mL in about 60 seconds .31

As a biomarker and endogen enzyme, β-galactosidase 
(β-gal) can be applied for detection of microorganisms 
by creating a clear signal. In their study, Tarditto et al32 
reported an  electrochemical magneto immunosensor to 
detect E. coli in swine feces. This immunosensor worked 
based on activity of β- gal to generate p-aminophenol 
(p-AP) from p-aminophenyl-β-D-galactopyranoside 
(p-APG). For this purpose, magnetic beads conjugated 
with enterotoxigenic E. coli polyclonal antibody (anti-
ETEC F4) were used, and LOD of 33  CFU/mL was 
obtained in less than 2 hours by square wave voltammetry 
(SWV) technique.  

Recently, an electrochemical sensor has been presented 
to detect of coliform bacteria on the food samples. This 

voltammetric sensor, reported by Badalyan et al,33 is 
based on indirect sensing of β-gal activity which product 
by coliform bacteria. Detection range was found to be 
from 1.6 log10−6.6 log10 CFU/mL1 for coliform bacteria. 
The screen-printed electrode (SPE) was modified with 
graphene and polyacrylamide gel (GR/PAAGC). In 
this study, 6-chloro-3-indoxyl-β-D- galactopyranoside 
(6-CIGP) was applied as a novel substrate to monitor 
electroactive 6,6′-dichloro-Indigo (6-DI)  generated by 
enzymatic reaction of 6-CIGP with ß-gal. β- gal product 
by coliform bacteria via lacZ gene. The sensor proved to 
have a detection limit of 0.1 log10 CFU/mL in 30 minutes 
by cyclic voltammetric (CV) technique. 

Lightness, biocompatibility, user friendliness, and 
low cost of paper-based sensors have made them a 
top priority to  monitor bacteria through colorimetric 
analysis and electrochemical  sensing.34,35 Adkins et al36 
evaluated enzyme activity in water and food  samples 
containing Enterococcus ssp. and E. coli using the printed 
carbon electrodes on transparency films. Production 
of β-glucuronidase and β- galactosidase by E. coli and 
expression of β-glucosidase by Enterococcus ssp. were 
tracked calorimetrically using a smartphone and a 
cardboard  box (Fig. 2). Alternatively, these bacterial 
enzymes could be directly detected  electrochemically. 
Limit of quantitation (LOQ) was as low as 10 CFU/mL 
for E. coli and 100 CFU/mL for E. faecalis  and E. faecium 
by SWV technique. The electrochemical method did not 
decrease  analysis time, but a comparison of that method 
with the colorimetric method in  terms of detection limits 
demonstrated superiority of the electrochemical method.

Noh et al37 designed an enzymatic biosensor to  detect 
E. coli. This system was established  through redox 
cycling of isopropyl-β-d-thiogalactopyranoside (IPTG) 
and permeabilization treatment simultaneously. The 
expression  level of ß-d-galactosidase (gal) was increased 
by IPTG treatment, and enzymatic reaction of gal substrate 
was facilitated by  permeabilization treatment. The 
electrochemical detection strategy had a high sensitivity 
with a LOD of 1.0 CFU/mL by chronocoulograms without 
a need for DNA amplification.37 

As mentioned before, enzyme-based biosensors 
have been developed to detect pathogenic bacteria, 
but some limitations exist in wide application of those 
biosensors, such as instability of enzymes especially after 
immobilization on a surface and high cost of protein 
production.38,39

Receptor
Regarding the research on sensing, receptor proteins are 
alluring owing to  their generic “receiving functions” as 
well as “sending functions”.40 They are also widely used for 
biosensing because of their high specificity and sensitivity.28 
Toll-like receptors (TLRs) are activated by a broad range 
of microbial  components called as pathogen-associated 
molecular patterns (PAMPs). These components include 
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substances on outer membranes of bacterial walls 
(e.g., lipopolysaccharides (LPS), peptidoglycans, and 
lipopeptides),  bacterial flagellin, bacterial DNA, and 
viral RNA.34,41,42 They are applied to detection of bacteria 
 because, they possess natural detection capabilities.43 
Unlike other  pathogen recognition elements, TLR protein 
has the specific potential to  carry out broad-spectrum 
detection of endotoxins. Utilizing a wide range of available 
 detection strategies can be a step to develop clinical assays 
for early warning  diagnosis and quick treatment.44 

In an attempt, She et al44 designed an electrochemical 
response sensor based  on the interaction between TLR5 
and bacterial flagellins to monitor endotoxins of  both 
gram-negative (S. typhimurium) and gram-positive (B. 
subtilis) bacterial strains with LOD of 0.1  μM for each 
flagellin. Lipoic acid n-hydroxysuccinimide ester (LPA) 
was firstly modified on an  Au electrode. Then, TLR5 was 
immobilized on sensing surface via an amine  coupling 
reaction. The interaction of TLR5 with endotoxin could 
be evaluated  by electrochemical impedance spectroscopy 
(EIS) and voltammetry.  

In another study for detection of endotoxin, Amini 
et  al45 used LPS as a recognition element. A complex of 
TLR4 and myeloid differentiation-2   (MD-2) immobilized 
on a sensing platform was used to detect LPS from E. coli 
and  Salmonella. Modification of the electrode with TLR4/
(MD-2) complex through Lip-NHS as a link  allowed 
detection of LPS from E. coli with a LOD of 1.3×10−4 EU/
mL and  detection of LPS from Salmonella with a LOD of 
1.5×10-4 EU/mL by EIS tecnique.45 

Mayall et al46 successfully designed a biosensor using the 
TLR4 protein to recognize macromolecular LPS and thus, 
to trace gram-negative bacteria. LOD was only 1 ng/mL. For 
the receptor biosensor, a self-assembled thiolated monolayer 
containing carboxylic acid and 11- mercaptoundecanoic 
acid (MUA) was employed. The COOH groups were 
activated via 1-Ethyl-3-(3-dimethylaminopropyl) 
carbodiimide (EDC)/ N-hydroxysuccinimide (NHS)/ 
2-morpholinoethanesulfonic acid (MES), leading to 

formation of amide bonds. This allowed  tethering of 
nitrilotriacetic acid (NTA) to surface of the modified 
Au microelectrode. Then, the NTA  groups could be 
coordinated with Ni2+ ions. TLR-4 proteins were also 
tethered to Ni-NTA functional  groups. When the target 
LPS was added to the solution, electrode impedance 
was rapidly increased due to  dimerization of the TLR-4 
proteins around macromolecular LPS.46

The same authors reported a TLR-4 receptor sensor 
fabricated with various types of thiol sites that had 
different terminal functional groups immobilized on a 
gold surface (Fig. 3). In their study, Mayall et al sought 
to increase and improve signal magnitude and decrease 
detection time sensing of the sensor by employing a  redox-
active functional group (ferrocenyl group). TLR-4 was 
immobilized on the electrode via interactions with a poly-
histidine tag. In the presence of LPS (from lysed Gram-
negative bacteria), the TLR-4 dimerized and blocked 
access of ferrocyanide in the solution to ferrocenyl-
terminated thiols, thus increasing probe resistance. It 
was shown that the ferrocene- based biosensor would not 
respond selectively to gram-positive bacteria or viruses. 
Linear range of this sensor was 100-105 cells/mL based on 
impedance measurements for gram-negative bacteria.47  

Antimicrobial peptides
Antimicrobial peptides (AMPs) form another class of 
recognition components with a positive charge and are 
 composed of 12–50 amino acids with molecular weight of 
1-5 kDa. Due to  their positive charge, AMPs are extremely 
specific for  pathogenic bacteria, allowing electrostatic 
interactions with  oppositely charged  components on 
membranes of bacteria.26

The first application of AMPs in electrochemical sensors 
was reported by Manoor et al,42 who used magainin 
I-immobilized interdigitated gold electrodes to detect E. 
coli O157:H7 and S. typhimurium. AMPs, as synthetic 
 biomolecules, are advantageous for bacterial sensing due 
to their ease of synthesis,  selective  binding to targets, 

Fig. 2. Reaction scheme showing the dual electrochemical and colorimetric detection of formed PNP from reacting bacterially produced β-glucr with PNP-
glucr. Reprinted  with permission from Adkins et al.36 Copyright 2022 American Chemical Society.
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and intrinsic stability. However, it is not possible to use 
AMPs for detection of bacterial strains in real  samples. 
Therefore, a great challenge with this bioreceptor is 
 achieving  sensitivity and especially, selectivity within 
different bacterial strains.48-50  

For AMP-modified biosensors, sensitivity can be 
finely improved and tuned by various   strategies. One 
of strategies for impedimetric sensors is fabrication of 
peptidic modulators.   Liu et al51 developed a multi-domain 
peptide with the sequence of WK3 (QL) 6 K2 G3C for 
  sensitive bacterial detection. In detail, the peptide was 
immobilized on an Au platform via G3C to selectively 
detect S. epidermidis, E. coli, Staphylococcus   aureus, and P. 
aeruginosa with a LOD of 102 CFU/mL by EIS technique. 
This platform had the potential for   differentiation and 
detection of living and dead bacteria. The excellent 
ability of AMP-modified sensors to detect bacteria was 
used in the study by Eissa and Zourob52 to construct 
a dual colorimetric and electrochemical sensor of S. 
aureus protease. In this strategy, a gold sensing platform 
was modified with AMP magnetic nanoparticles, which 
produced black color of the electrode. When, S. aureus 
protease was added onto the sensing platform, peptide 
sequence cleavage and yellow color of the gold electrode 
appeared. In addition, current changed after peptide 
cleavage that was proportional to bacteria. LOD of 3.0 
CFU/mL was obtained by SWV technique after a minute.

Another strategy is the use of three-dimensional 
interdigitated electrode arrays (3D-IDEA) as platforms 
to improve sensitivity of transducers. This is made 
possible through separation of electrode digits with 
insulating barriers. Gil et al reported a similar technique 
implemented on 3D-IDEA platforms  by impedance 
measurements. Hoyos-Nogués et al53 focused on 
N-terminal domain of the   human antibacterial protein 
lactoferrin (LF), or hLF1-11 peptide. Via its N-terminus, 

the synthetic peptide hlf1-   11 was immobilized on surface 
of 3D-IDEA modified with epoxy silane, and its   capacity 
to rapidly bind onto pathogenic Streptococcus sanguinis 
was evaluated by EIS.   LODs of 10 CFU/mL and 100 CFU/
mL were obtained for S. sanguinis in KCl and saliva by 
EIS technique, respectively. The proposed device presents 
a promising tool for   periodontal implants in monitoring 
of infections.

Another strategy to improve sensitivity is signal 
amplification. There are   different signal amplifiers, 
such as carbon nanotubes, organometallic   compounds 
(e.g., ferrocene), metal/metal oxide nanoparticles, and 
magnetic   nanoparticles (MNPs).54-56 In this regard, Wilson 
et al57 used MNPs bioconjugated with   melittin (MLT) 
for bacterial separation. MLT, as a cationic amphipathic 
molecule, shows antimicrobial   properties against different 
microorganisms. They reported a sensitive method to 
  distinguish gram-positive from gram-negative bacteria, 
such as   E. coli, Salmonella typhimurium, and S. aureus in 
food samples. The proposed biosensors detected E. coli 
(LOD: 1 CFU/mL) by EIS technique within 25 minutes 
very efficiently. Furthermore, Andrade et al58 introduced 
a detection assay  composed of carbon nanotubes and 
clavanin A (ClavA) to identify Enterococcus faecalis, 
 Klebsiella pneumoniae, Bacillus subtilis, and E. coli 
based on EIS measurements. This  nanostructured sensor 
showed a wide range of bacterial counts (102–106 CFU/
mL).  Also, LOD of the biosensor was equal to 102 CFU/
mL for Klebsiella pneumonia and E. coli while,  B. subtilis 
and Enterococcus faecalis had a LOD of 103 CFU/mL. The 
results showed that  the proposed sensor can   distinguish 
non-pathogenic bacteria from pathogenic ones as well as 
gram-negative  bacteria from gram-positive ones.36 A few 
years later, the research group made a change in  detection 
system of E. coli, E. faecalis, P. aeruginosa, S. typhimurium, 
and S. aureus using the  same ClavA but, this time, it was 

Fig. 3. Schematic representation of the proposed SAM design containing ferrocenylterminated thiols mixe with similar chain length carboxylic acid and 
hydroxyl-terminated thiols. Reprinted  with permission from Mayall et al.47 Copyright 2018 American Chemical Society.
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conjugated to Au nanoparticles. This allowed a linear 
range of  detection from 101 to 104 CFU/mL. LOD of the 
AMP-based impedimetric sensor was equal to 103 CFU/
mL.59 The same authors modified electrode surface with 
 cysteine (Cys)/AuNPs/4-mercaptobenzoic acid (MBA) 
and then, bound it to ClavA. LOD of the heat-killed 
bacteria was equal to 103 CFU/mL by EIS technique.60

Li et al reported a rapid impedimetric biosensor for 
detection of E. coli.61 In this study, a combination of 
ferrocene and magainin I was immobilized on an Au 
 electrode. This modification led to LOD of 103 CFU/
mL.  Zhang et al62 also developed an electrochemical M. 
tuberculosis sensor based on two-dimensional Ti3C2 
MXenes as a signal-amplifying  material.  The target 
biomarker and capture probe were 16S rDNA of bacteria 
and peptide nucleic acid, respectively. LOD was equal to 
20 CFU/mL in 2 hours.

One of the methods for detection of multiplexed bacteria 
is using microfluidic  systems. Lillehoj et al63 reported the 
use of a microfluidic chip modified and interdigitated 
with two  species-specific AMPs, including G10KHc 
and C16G2cys to detect multiple types of bacteria   (e.g., 
Streptococcus mutans and Pseudomonas aeruginosa). LOD 
of 105 CFU/mL was calculated by EIS technique within 25 
minutes for both strains of bacteria.
 
Lectins
In the category of biomarkers, lectins are the proteins 
that can be exploited to  specifically bind to bacterial 
carbohydrate chains. This biomolecule is used as a 
bimolecular glue to  immobilize proteins and as a 
molecular recognizer in biosensors.45 Lectin molecules 
and carbohydrates in structure of bacteria can recognize 
each other. The main motivations for using  lectin as a 
sensing platform are its intrinsic stability, high sensitivity, 
good grafting, small size,  and cheap assembly process.17  

In this regard, for clinical applications, Estrela et al64 
reported a metal  oxide-based field-effect transistor (FET) 
sensor developed using an extended-  gate FET with an 
interdigitated metal oxide semiconductor (MOS) for 
detection of the  mannose-specific type 1 fimbriae of E. 
coli. The authors proposed an extended-gate FET system 
 immobilized with α-D-mannose to detect a label-free 
target E. coli strain   (i.e., uropathogenic E. coli called as 
UPEC). Using this device, LOQ was found to be 2   × 105 
CFU/mL by EIS technique within about only 2 seconds. 
The results showed that biologically-sensitive FET is 
capable of the initial discrimination between pathogenic 
and non-pathogenic  UPEC strains and also multiplexed 
screening. 

Di Lorenzo et al65 used a paper-based electrochemical 
device to detect bacteria up to 1.9 × 103 CFU/mL in a water 
sample by EIS technique. The paper-based electrode was 
constructed with carbon conductive ink on hydrophobic 
 paper. Then, carbon sensing platform was oxidized 
 electrochemically to generate COOH groups on carbon 

surface. These groups were activated with NHS/EDC to 
allow immobilization of lectin Con A as a carbohydrate-
binding protein and biorecognition element. Con A  was 
chosen due to its potential to selectively link with mono- 
or oligo-saccharides on  bacterial cells.  

In 2016, Yang et al66 designed a label-free Con A-based 
biosensor platform for rapid  identification of E. coli 
strains by EIS technique. Con A tended towards the target 
(E. coli) and  differentiated gram-negative bacteria from 
gram-positive ones. For the biosensor, a binary  monolayer 
was made with a combination of 11-mercaptoundecanoic 
acid and dithiothreitol on surface of an Au electrode and 
then, Con A was covalently immobilized. E. coli binding 
on the electrode was monitored with LOD of 75 CFU/mL 

in a  linear range of 1 × 102-1 × 105 CFU/mL. 
A robust method of detecting bacterial endotoxin on 

a 3D-IDEA platform was  reported by pursuit of charge 
changes in surface of the platform. Changes in charge were 
induced by interaction of the  immobilized Con A and 
LPS as a ubiquitous marker in test solution. The  bacterial 
LPS was detected within 20 minutes. Screening LPS of E. 
coli binding by EIS changes yielded a  low LOD of 2 µg/
mL. Brosel-Oliu   et al67 employed polyethylenimine (PEI) 
polycation as  an initial anchoring layer negatively charged 
at neutral pH. Then,  Con A was immobilized through 
deposition on the 3D-IDEA surface. For evaluation of 
capturing LPS with the PEI interface, several blocking 
strategies were  tried until a selective sensor response 
was gained between LPS and Con A.67  A brief summary 
indicating some of the characteristics of representative the 
sensors covered in the review is presented in Table 1.

Redox-active bacterial metabolites 
Another set of agents in the category of biomarkers are 
secondary metabolites as redox-active compounds. 
 Bacterial species depend on a broad range of factors, such as 
signaling molecules, signal detection  methods, and signal-
transduction mechanisms, which can coordinate gene 
regulation.68 Various pigments as secondary metabolites 
released by bacteria play  vital roles in pathogenesis of 
bacteria. These diagnostic bio-molecules and redox-active 
 biomarkers include integral components of bacterial 
quorum sensing (QS), small secondary  metabolites, and 
virulence factors associated with bacterial functions.69 QS 
molecules  in cell-to-cell communication process are the 
molecules that are involved in production and detection 
of diffusible signaling  molecules. 

In this regard, 2-heptyl-4-hydroxyquinoline (HHQ), 
producing Pseudomonas quinolone signals (PQSs), 
can act as a potential diagnostic biomarker for specific 
detection of P. aeruginosa   (PA) in early-stage infections. It 
is also likely to prevent biofilm formation with well-timed 
medical treatment. One class of QS secondary metabolites 
and controlled extracellular factors is set for phenazine 
compounds, which are present in pyocyanin (PYO), 
phenazine-1-carboxylic acid   (PCA), 5-methylphenazine-
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1-carboxylic acid (5-MCA), and 1-phenazine-1-
carboxamide (PCN).70 PYO, as a redox-active material, 
is both a quorum sensing agent and an extracellular 
virulence factor for PA.  71 Generation of several virulence 
factors by PA and other species is controlled by  cell-
to-cell signaling mediated by QS molecules. PA also 
secretes secondary metabolites as  well as small molecules 
(2’-aminoacetophenone, 2AA) in a culture supernatant.72 
Indeed,  barakacin as a signaling molecule and pyoverdine 
(PVD) as a virulence factor serve as  biomarkers generated 
by PA.73

Clinical diagnostic methods for positive detection 
and  determination of PA involve a time-consuming and 
expensive culture growth process. Therefore, certain 
standard laboratory redox-active biomarkers have recently 
been developed.  Electrochemical detection of PYO 
through transparent carbon ultramicroelectrode arrays 
(T- CUAs) was proposed by Stevenson et al.74 Electro-
active nature of PYO led to  electrochemical conversion of 
PYO at T-CUA using the voltammetric technique. Also, 
through SWV, the sensor could detect PYO with a LOD of 
1-1.6 µM in a linear dynamic range of 1-250 µM. 

In another report,75 the same researchers detected some 
PYO secreted on T-CUAs in a biological  growth medium. 
In their previous study, they had conducted tests in a  buffer 

solution without growth media. Recognition of cellular 
PYO agents in biological growth  media indicated that 
bacterial species were exposed to a plethora of compounds 
(e.g., sugars and  proteins); when these compounds were 
adsorbed onto sensing platform,  they probably hindered 
signal of PYO agents. The authors concluded that their 
proposed technique  was a proper one to apply in studies 
of  biotoxins through T-CUAs.  

Inspired by the in-situ use of electrocatalytic current 
for bio-sensing, Yong et al76 pioneered in introduction 
of a whole-cell electrochemical biosensor  based on S. 
oneidensis MR-1 cell as an electroactive type of bacteria 
and a proof and redox cycling  module for detection of 
PYO agents with obviously magnified detection signals. 
This system could achieve  ultrahigh sensitivity (1.3 μA/
nM) and low LOD (47 pM) by CV technique. Redox 
reactivation/cycling  systems are applied as efficient tools 
to enhance electrochemical signals in sensitive detection 
of pathogens for recognition of PYO agents at the point 
of care (POC).  Also, electrochemical signal output can 
be significantly amplified by integration of biochemical 
 redox cycling systems to continuously regenerating 
target analytes. Although the CV technique is not readily 
adapted to a POC device, the speed and ease with which 
CV curves can be obtained make this detection method 

Table 1. Overview of sensors proposed for bacteria detection divided by the type of recognition elements

Analyte Recognition elements Detection method Linear range / CFU/mL LOD CFU/mL Ref.

Listeria monocytogenes LDH Amperometry 102 to 108 - 30

E. coli β-gal SWV 5 × 101 to 5 × 103 33 32

Coliform β-gal CV 1.6 log10−6.6 log10 0.1 log10
33

Enterococcus ssp. β-glucosidase SWV - 100
E. coli Glucuronidase SWV - 10 36

E. coli β-gal Chronocoulometry 1 to 106 1 32

Gram-negative bacteria TLR-4 EIS 102 to 105 - 47

E. coli Peptides EIS 104 to107 - 42

S. epidermidis Peptides EIS 102 to 106 100 51

E. coli Peptides EIS 102 to 106 100 51

Staphylococcus   aureus Peptides EIS 102 to 106 100 51

P. aeruginosa Peptides EIS 102 to 106 100 51

S. aureus Peptide SWV 10 to 108 3 52

S. sanguinis Peptide EIS 102 to 100 10 53

E. coli Melittin EIS 1 to 106 1 57

S. aureus Melittin EIS 1 to 106 10 57

S. typhi melittin EIS 10 to 104 10 57

Enterococcus faecalis Clavanin A EIS 102 to 106 100 58

Klebsiella pneumoniae Clavanin A EIS 102 to 106 100 58

E. coli Clavanin A EIS 101 to 104 103 59

E. coli Peptide EIS 103 to 107 103 61

M. tuberculosis rDNA fragments EIS 102 to 108 20 62

Streptococcus mutans Peptide EIS 104 to 107 103 63

Pseudomonas aeruginosa Peptide EIS 104 to 107 103 63

E. coli Aminoethyl glycosides EIS - 2   × 105 64

Bacteria Con A EIS 103 to 106 1.9 × 103 65

E. coli Con A EIS 102 to 105 75 66
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ideal for ensuring quality control when carrying out each 
step in the sensor surface modification procedure. Under 
 these premises, Yuan et al77 reported an in-vivo two-way 
redox cycling system based on whole-cell bidirectional 
electron transfer for simultaneous recognition of two types 
of warfare toxins. This system provided the simultaneous 
use of lactate (as an electron donor) for reductive  cycling 
reactions and fumarate (as an electron acceptor) for 
oxidative cycling reactions. Using 1-hydroxyphenazine 
(OHP), PYO, and voltammetry as a  recognition method, 
ultrasensitive detection was done in the range of 304 ± 
4 pM for PYO and 1.5 ± 0.2 nM for  OHP. The system 
showed a good linear concentration range of 0.5 - 50 nM 
 for PYO and OHP by CV technique. Also, good rates of 
sensitivity were achieved for PYO (1.85 μA/nM) and OHP 
(4.0 μA/nM).  

Electrochemical sensors for detection of PYO have been 
also reported by other researchers. For instance, Sismaet 
et al78 studied production of a PYO target in the presence 
of various amino  acids (as regulatory molecules). In this 
trial, SWV response was improved due to the presence  of 
amino acids. They also performed SWV scanning of the 
PYO target using commercially available carbon-based 
electrodes linked to an Ag/AgCl reference. They proved 
able to  recognize differences in PYO production rates 
among the clinical strains obtained from various hospital 
 settings.72 Bentley et al79 proposed a novel bio-based redox 
capacitor film for detection of PYO. Chronocoulometry 
signals of PYO molecules were amplified by a catechol-
 grafted chitosan film, and LOD was lowered. The 

researchers designed a miniaturized electrochemical 
system and stabilized it inside a microdevice enclosed in 
a chip holder.  

Cristea et al80 for the first time, integrated chemical 
finger-based  printed sensors onto a glove to simultaneously 
detect PVD and PYO derived from PA through the 
voltammetric method within 4 minutes (Fig. 4). The 
sensors  displayed linearity in the range of 5-50 µM for 
PVD and 0.01−0.1 µM for PYO,  sensitivity of 1.09 nA/µM 
for PVD and 2.51 µA/µM for PYO (R2 = 0.995 and 0.990 , 
respectively), and LOD of 1.66 µM for PVD and 3.33 nM 
for PYO were also obtained by SWV technique.

There are different papers on simultaneous detection of 
PYO and  PQS. In this case, a sensor was applied with a 
conductive polymer film to increase electroactive  surface 
area.81 In a later study, PA strains were grown on surface of 
the electrode to concentrate electrochemical signals of PQS 
and PYO.82 Table 2 presents some electrochemical sensors 
developed for detection of redox-active compounds.

Aptamer
A single strand in a sequence of constitutive units of 
DNA or RNA is called as an aptamer. Favored for its 
selectivity and a low detection limit, it is immobilized on 
 electroactive materials, such as nanoparticles, magnetic 
particles, carbon-based nanomaterials,  and nanofibers 
and is used for biorecognition of elements consisting 
of a DNA sequence.94-96 Biosensors with aptamers, as a 
recognition element, are being developed for various 
infectious diseases, due to their rapidity, small dimensions, 

Fig. 4. Finger-based  printed sensors onto a glove (A) Screen-printed sensing glove: image of the real printed glove (A left, scale bar 3 cm) and the details of 
its electrodes design (A right, scale bar 1 cm). (B) Images of the on-glove swiping approach for sampling P. aeruginosa residues from furniture surfaces (B, 
left) and transmitting the data to a laptop (B, right). (C) SWV data recorded by the middle-finger, detecting PyoV (C, left) and by the index finger, identifying 
PyoC (C, right). Reprinted  with permission from Ciui et al.80 Copyright 2018 American Chemical Society.



Recent advances in bacteria detection 

BioImpacts, 2022, 12(6), 567-588 575

low cost, and compatibility with minimization assay 
scales.97-99 Aptamers are easily modified due to the 
existence of abundant amine functional groups in their 
structures. Also, because of their unique spatial structure, 
they attach to targets, such as bacteria, drug molecules, 
 surface proteins of cells, and viruses.100 An aptamer is 
considered advantageous for its high specificity  and 
easy synthesis. Regarding immunoassay development, 
production of antibodies  requires the use of animals, 
and a further disadvantage is that antibodies have a short 
 lifetime in a working environment or a storage position. 
For this reason, aptasensors are  used to prepare sensors 
in order to study elements, such as bacteria, viruses, and 
biomolecules.101-104 A lot of studies have been done on 
aptasensors to detect bacteria. In 2018,  Shahrokhian et 
al105 reported an electrochemical aptasensor based on Au 
 nanoparticles/carbon nanoparticles/cellulose nanofibers 
nanocomposite for impedimetric detection of S. aureus as 
a photogenic  bacterium. In that study, cellulose nanofibers 
were modified with carbon nanofibers to be used in 
modification of  electrodes, due to their properties, such as 
porosity, high surface area, and biocompatibility. Finally, 
Au  nanoparticles were used to increase  surface area and 

electrical conductivity of electrodes. Strong  binding of Au 
to a thiol group made it favorable for sensor assembly. The 
aptasensor  displayed linearity within the range of 1.2 × 101 
-1.2 × 108 CFU/mL and LOD of 1 CFU/mL for S. aureus 
by EIS technique. Furthermore, the proposed sensor could 
detect Staphylococcus aureus in humans̓ blood serum  as a 
clinical sample with a complex matrix. 

In another study by this group, an electrochemical 
 aptasensor was reported for detection of Salmonella 
typhimurium based on nanoporous gold. This aptasensor 
showed some significant advantages, such as the ability 
to distinguish  between living and dead bacterial cells and 
detect S. typhimurium in linear range of   6.5 × 102 - 6.5 × 
108 CFU/mL with LOQ of 6.5 × 101 CFU/mL and LOD of 
1 CFU/mL by EIS technique.  106 

Au-based materials have been widely used for 
immobilization of aptamers via a thiol group to efficiently 
amplify electrochemical signals while maintaining 
biological activity. In this regard, Lai et al100 used Au 
nanoholes on indium tin oxide (ITO) to identify S. 
aureus 16 sRNA. The Au nanoholes were formed 
through spin-coating of an AuNP solution on ITO 
covered with a monolayer of polystyrene to create a 

Table 2. electrochemical pathogen sensors based on the redox-active bacterial metabolites

Analyte Detection method Sensitivity LOD Linear range Ref.
PYO SWV 19.1-267.0 µM 0.13-1.81 µM 1-100 µM 71

PYO Amperometry - 125 nM 125 nM–100 μM 83

PYO CV - 2µM 2–100 µM 84

PYO
HHQ 
PQS 

DPV -
50 nM

250 nM
250 nM

2–100μM
2–75

2–100

68

PYO
HHQ
PQS

DPV -
2.06 µM
3.61 µM 
4.85 µM 5 - 50 µM 

85

Barakacin DPV - 5, 100, 125, and 10 nM in different pH 1–10 μM 70

IQS CV - 46, 20 and 12 nM in different pH 14, 12 and 15 μM 86

2-AA CV 4.86 mM 10 - 60 mM 87

 PCA CV - 50 mM 1.52 - 50.0 mM 88

PVD DPV 0.14 µA/µM 66.90 nM 0.5 - 100 µM 73

PVD ESI, DPV, CV 0.076 µM 0.33 μM 1 - 100 μM 89

PVD DPV 0.134 µM 0.33 μM 1–100 μM 90

PYO DPV - - 5-50 μM 91

PYO
HHQ
PQS
2-AA

CV, SWV - - - 69

PYO SWV
0.0234, 0.0841 and

0.0588 μA/μM 
respectively

0.17 μM, 0.15 μM and 0.09 μM in HS, 
BRB and SWF respectively

0.183–20 μM, 0.336–10 
μM, and 0.336–20 μM 

respectively

92

PYO
PCA
PCN
5-MCA

SWV - 2.6 mM - 93

PYO, Pyocyanin; HHQ, 2-Heptyl-4(1H)-quinolone; PQS, Pseudomonas Quinolone Signal IQS, 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde; 2-AA, 
2-aminoacetophenone; PCA, Phenazine-1-carboxylic acid; PVD, Pyoverdine; HS, human serum; BRB, Britton-Robinson buffer; SWF, simulated wound 
fluid; PCA, phenazine-1-carboxylic acid; PCN, phenazine-1-carboxamide; 5-MCA,  5-methylphenazine-1-carboxylic acid.



Khoshroo et al

BioImpacts, 2022, 12(6), 567-588576

nanosphere lithography (NSL) patterned-ITO substrate. 
 Then,  a single strand of a thiolated oligonucleotide 
probe (ssHS probe for targeting S.  aureus 16S rRNA) 
was immobilized on the electrode. Performance of the 
aptamer on the Au nanohole-modified ITO was studied 
to detect Staphylococcus aureus through  CV techniques. 
The Au-nanohole arrays could enhance electrochemical 
signals, compared to non- template AuNP structures, 
which improved DNA hybridization tracing by 23% with 
low LOD of 10 pM. Moreover, in the presence of non-
 complementary sequences, the proposed sensor showed 
high selectivity for distinguishing S. aureus 16 sRNA from 
E.  coli and PA. 
McLamore et al107 presented the functionalized  graphene-
nitrocellulose paper with platinum nano-cauliflower to 
immobilize a thiolated 64-mer  RNA aptamer for  detection 
of E. coli O157:H7. This  aptasensor showed LOD of ≈4 
CFU/mL for E.  coli O157:H7 by EIS technique. Abbaspour 
et al108 developed a sensitive dual-aptamer-based sandwich 
immunosensor for detection of S. aureus. The sandwich 
 aptasensor was prepared from a primary biotinylated 
anti-S. aureus aptamer (on streptavidin-coated magnetic 
beads) and a secondary aptamer (on silver nanoparticles). 
 S. aureus was captured in a particular interaction with the 
 aptamer. Then, the sandwich system was completed by 
addition of secondary anti-S. aureus aptamer-conjugated 
AgNPs. Finally, the sandwich separated via a magnet was 
analyzed by differential pulse stripping voltammetric 
signals resulting from silver particles, which was 
proportional to the S. aureus. This  electrochemical sensor 
showed wide dynamic range of 10 to 106 CFU/mL with 
LOD of 1.0 CFU/mL.  
 Since, pathogen bacteria are menacing to humans ҆ 

health, detection and treatment of bacterial infections is 
important. Antibiotic resistance is increased  if diagnosis 
and treatment of infectious diseases is prolonged. In this 
respect, Yoo et al109 prepared an aptamer-functionalized 
capacitance sensor array to follow real-time  bacterial 
growth and antibiotic susceptibility. They cultured S. 
aureus and E. coli and observed the increased capacity in 
proliferation of bacteria. When the bacteria were exposed 
to certain MIC (the minimum inhibitory concentration) 
of antibiotic, capacity in  the capacitance sensor was 
decreased because the antibiotic prevented bacterial 
growth.109 LOD was equal to 10 CFU/mL within an hour. 
Ozkan-Ariksoysal  et al110 reported a genosensor based 
on DNA-wrapped multi-walled carbon nanotubes for 
detection of E. coli from PCR-amplified real samples. The 
capture probe was immobilized on carbon nanotubes and 
twisted on carbon nanotubes by π-stacking interactions. 
Then, chitosan was used to stabilize the designed sensor 
via covalent bonds  between amine group of chitosan and 
carboxyl groups on carbon nanotubes. This sensor had 
LOD of 17 nM with a linear section in the range of 7-12 µg/
mL by DPV technique. Sheikh- Zeinoddin et al reported an 
electrochemical DNA sensor without PCR amplification 

of samples.9 It was used to  detect B. cereus with LOD of 
9.4 × 10−12 mol L-1 by EIS technique, which was better 
than those reported  for antigen-antibody and cell-based 
sensors. The sensing platform consisted of PGE-gold 
 nanoparticles self-assembled with single-stranded DNA 
of the nheA gene. An increase in charge transfer resistance 
in EIS technique due to hybridization  of the ssDNA with 
the target DNA served as an electrochemical signal.  In 
the same year, Gonzalez-Rodriguez et al111 reported a 
sensitive  electrochemical DNA biosensor for detection 
of pathogenic Bacillus anthracis. Mercaptohexanol was 
used to backfill the electrode after DNA immobilization, 
thus regulating the probes̓ surface density. The sensor 
could detect DNA samples with LODs as low as 10 pM 
by CV technique and identify DNA of Bacillus anthracis. 
Heli et al112 reported a sensitive biosensor based on gold 
nanoribbons  covered by gold nanoblooms, which emerged 
to be a dense p-ssDNA layer (Fig. 5).  MB could interact 
with  both ssDNA and dsDNA through different modes 
,including electrostatic  attractions and intercalation. 
Changes were recorded by the DPV method to produce 
 signals before and after hybridization of the DNA and 
ssDNA probes. The  biosensor showed a linear range 
from 10 zmol dm−3 to 10 pmol dm−3 and LOD of 1.71 
zmol dm−3 for Brucella genome. In 2016, the same authors 
 published another paper,10 entitled “An Ultrasensitive 
Electrochemical Genosensor for Brucella Based  on 
Palladium Nanoparticles”. The genosensor could detect 
complementary sequences and had a high sensitivity of 
  0.02 µA dm3 mol−1 to  detect brucellosis in real samples even 
without using PCR amplification. Linear concentration of 
the genosensor was from 1.0×10−12 to1.0×10−19 mol dm-3 
with LOD of 2.7×10-20 mol dm−3 by the DPV method.  

In 2016, Bachmann et al113  conducted the first label-
free and  amplification-free EIS-based detection of 16S 

Fig. 5. Fabrication protocol of the genosensor and detection of t-ssDNA.112 
(Creative Commons CC BY license).
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ribosomal RNA (E. coli 16S rRNA).  The assay was a screen-
printed dual gold electrode modified with thiol-peptide 
nucleic acid. LODs of the employed fluorescence-based 
microarray and the EIS assay were equal to 20 pM and 
50 pM, respectively. However, a kinetic EIS assay  format 
allowed specific detection of E. coli 16S rRNA within 10 
minutes.  

Hamidi-Asl et al114 developed an aptasensor based on 
core-shell Ag@Au nanoparticles  for detection of E. coli 
cells. The nanoparticles were fixed on the electrode via 
cysteamine and then, a thiolated  aptamer was immobilized 
on the nanoparticles. This structure provided chemical 
stability and biocompatibility to stabilize the aptamer. The 
sensor also showed LOD of 90 CFU/mL  while the LOD 
reported for this aptamer in the literature is equal to 370 
CFU/mL by EIS method.

Pividori et al115 designed an electrochemical genosensor 
 based on silica magnetic particles to detect Salmonella, 
Listeria , and E. coli .   For the first time, they used  silica MPs 
as a platform for DNA immobilization and obtained the 
tagged  amplified DNA by choosing gene targets, including 
the invA gene (tagged  with fluorescein)  for S. enterica, 
the prfA gene (tagged  with biotin) for L.  monocytogenes, 
and the eaeA gene (tagged  with digoxigenin) for E. coli. 
The sensor could detect and distinguish 0.04, 0.13, and 
0.05 ng/mL of  S. enterica, L. monocytogenes, and E. coli, 
respectively within 3 hours.  In 2018, Tamand et al116 
developed an electrochemical DNA sensor based on core-
shell cerium oxide nanorod@polypyrrole composite to 
detect Salmonella by EIS method. This  nanocomposite 
was synthesized by polymerization of pyrrole monomer 
on  cerium oxide nanorods. Then, an ssDNA sequence 
was immobilized on it. This  DNA-based sensor had 
a linear range of 0.01–0.4 nM with low LOD of 0.084 
nM. Luo et al117 used E. coli O157:H7 aptamer (apt-E) 
to construct an aptasensor based on aptamer-induced 
catalyzed hairpin assembly. In this method, signals were 
amplified using apt-E, hairpin H1, and H2. Concentration 
of E. coli O157:H7 was proportional to amount of apt-E, 
and apt-E, in turn, was proportional  to amount of H1/
H2 complexes. Thus, concentration of bacteria could be 
determined by detection of H1/H2 complexes with the 
fabricated aptasensor. LOD was equal to75 CFU/mL for 
this aptasensor by electrophoretic method.

Bacteriophage
Bacteriophages were first investigated by Twort in 
1915 and were studied later by Deherelle.111 They are 
viruses attacking bacteria but do not affect eukaryotes. 
Each virus has its  bacteriophage. After this discovery, 
it was immediately used to eliminate bacterial  cells as a 
therapeutic agent against bacterial infections. Although, 
Deherelle used phages for   treatment of dysentery in 1919, 
they were re-introduced 2 years later by  Bruynaghe Maising 
to treat staphylococci.112 In the 1940s, bacteriophages were 
mostly  replaced by antibiotics, and then phage studies 

continued. Nowadays, they are used as suitable tools for 
 phage display vaccines in the field of biotechnology of 
biosensors and control factors. Phages are  encapsulated in 
DNA- or RNA -encapsulated proteins in various shapes. 

In the recent years,  bacteriophages have emerged in 
electrochemistry as scaffolds and molds  for new electrode 
materials. They gain a natural ability to connect selectively 
to specific and  adaptive agents and to be incorporated 
into certain chemical applications through genetic 
modification. This has introduced various attractive 
topics  to the field of electrochemical research. Due to 
their  durability and ease of preparation, phages are widely 
used as diagnostic elements in biosensors  and scaffolds. 
The use of bacteriophages for sensing of bacteria  is very 
important because, they act in a specific way.118   

In 2013, Shabani et al119 performed some magnetic 
manipulations to improve detection of  bacteria by EIS 
method. In this method, bacteriophage T4 coated with 
beads was  used specifically to detect and capture E. coli 
k12 cells. The biosensor was tested in real milk  samples. 
For capturing a high amount of bacteria in the sample, 2% 
milk was mixed with 108 CFU/mL of E. coli k12 elicited 
from milk. Surface modification of magnetic  beads by 
phages and bacterial attachment were confirmed in a 
fluorescence analysis. The fluorescein isothiocyanate 
  (FITC) and fluorescence labels serve to ensure binding of 
phages T4 to  magnetic beads. 

Also, flow cytometry was conducted as a conventional 
method to check magnetic beads  and the phages coated on 
them. In another study, Tlili et al120 designed a biosensor 
based on  T4 phages for identification and measurement 
of E. coli count from living cells of bacteria by EIS method 
(Fig. 6). The  sensor was used in two ways. The first one 
involved survival assays and tests and the  use of phages as 
diagnostic elements through free-labeled electrochemical 
impedance. The second  way was loop-mediated isothermal 
amplification (LAMP) to reinforce selectivity of the E. 
coli’s Tuf  gene. As the impedance results indicated, the 
E. coli bacteria could be detected rapidly  and accurately 
with LOD of 800 CFU/mL while well isolated from other 
types of E. coli bacteria even the dead ones. Overall, the 
aim of this study was screening in the shortest possible 
time. Integration of LAMP to modify the biosensor so as 
to sense phages in less than 1 hour helped to achieve this 
 goal.

In 2016, Moghtader et al121 effectively diagnosed 
 pathogenic bacteria using bacteriophages and graphite 
electrodes decorated with gold  nanoparticles. In this 
study, EIS was used for rapid, inexpensive, and selective 
detection of pathogenic bacteria. The bacterium type 
studied was T4  phage. Indeed, it served as a diagnostic 
probe. Also,  E. coli was studied as a target bacterium for 
T4 phage. The phages were absorbed onto the  electrode 
by simple incubation at room temperature, and rate of 
absorption was increased with an increase in charge-
 transfer resistance value (Rct). The increase in Rct value 
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was due to the effect  of absorbing layers in the bacteria. 
In case of non-target bacteria,  conductivity was reduced 
significantly. Impedance measurements showed  that 
the electrode employed as an electrochemical device 
was fast, direct, and low-cost enough for detection 
of bacteria. In 2016, Wang et al122 published a paper 
entitled "Macrophage-Based  Electrochemical Sensors", 
in which they evaluated toxicity of LPS in pathogens. 
They investigated LPS and showed that dose-dependent 
toxicity exists in mouse macrophages.  Electrochemical 
signals changed as concentration of [Ca+2] ions changed. 
In addition, a sensor was developed in  a simple mouse 
macrophage cell to detect LPS rapidly and  investigate the 
effect of its toxicity. Properties of MNPs facilitated  reuse 
of the sensor. The results showed a significant reduction 
in amount of LPS at a dose-dependent electrochemical 
 impedance rate in the range of 1-5 µg/mL. Value of 
impedance at various concentrations of LPS was between 
1-50   µg/mL with a LOD of 0.15 µg/mL. Impedance 
was correlated with concentration of  calcium in cells, 
indicating that calcium production occurs in cells after 
incubation, and its  presence on LPS induces an electrical 
signal. Another study was conducted in the same  year by 
Neha Bhardwaj et al, who investigated the immobilized-
free graphene in bacteriophages for susceptibility  to 
Staphylococcus. The aim of study was designing a sensor 
for the family  of coagulase-negative Staphylococcus. This 
biosensor had a linear range  of 2-2.2 ×106 CFU/mL and 
a low LOD of 2 CFU/mL by EIS method. Response time 
was about 2 seconds. The sensor also proved to have 
advantages, such as long half-life of about 3 months, 
fine dimensions,  good coating, as well as being portable, 

disposable, and environmentally  friendly. Owing to its 
satisfactory test results with real samples, such as apple 
juice, application of the sensor can be extended to detect 
other pathogens. In 2017, Yan et al, 123 conducted a study 
on natural origin of S. aureus-specific lytic  bacteriophage 
P-S. aureus-9. Bacteriophage of a water sample was used to 
perform specific  palaeomagnetic assembly and capture S. 
aureus in the sample. S. aureus cells were identified  by the 
horseradish peroxidase (HRP) label that interacted with 
protein A and the Fc region  of immunoglobulin (IgG) in 
a mouse.

The phage was mixed with magnetic beads, and S. 
aureus was linked  to the phage after the HRP-labeled goat 
anti-mouse IgG was added to the S. aureus- bacteriophage. 
Finally, absorbance value was found to be 450 nm. This 
device was  successfully used in real samples, such as 
phosphate-buffered saline (PBS) and apple juice. In 
another study by Zhang  et al,11 phages were mixed with 
magnetic beads and were used for rapid detection of E. 
coli  O157:H7. Advantage of this study was application of 
natural phages for  preparation of phagomagnetic beads. 
Using this system in food samples was useful to  detect 
contamination. The purpose of working with a simple 
bacteriophage, such as O157-IOV-4 is removing (E. 
coli) O157:H1 contamination from water and purifying 
it. Finally, once the magnetic beads were produced in 
the presence of (E. coli) O157:H1, they  had the highest 
absorbance of 450 nm, compared to other bacteria. Zhou 
et al124  developed a new type of carbon nanotube-based 
biosensor for rapid identification of living  bacterial cells. 
In this regard, T2 Phage-based biosensors were used 
to diagnose E. coli. The T2 Phages  acted as biosensing 

Fig. 6. Schematic representation of the T4-bacteriophage biosensors. (A) Cysteamine-assembly, (B) Activation with 1,4-dithiocyanate, (C) Immobilization of 
the T4 phage, (D) Capturing of the E. coli cells. (E) Detection method for E. coli based on the impedimetric/LAMP dual-response.  Reprinted  with permission 
from Tlili et al.120 Copyright 2013 American Chemical Society. 
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elements covalently bonded to the functionalized carbon 
nanotubes on  the electrode surface. As fluorescence 
microscopy indicated, the immobilized T2 phage 
particles were highly capable of capturing bacteria. In 
this method, an electric field-induced (EFI) charge was 
used to  immobilize the bacteriophage onto surface of the 
modified electrode to detect E. coli. This sensor had a 
LOD of 103 CFU/mL by EIS method.

In 2020, Lee et al125 developed a wild-type T4 
bacteriophage sensor for detection of viable pathogenic 
bacteria. Capturing efficiency of the phages immobilized 
on sensing platform reached a maximum when the Debye 
length was comparable to the phage size. A low LOD 
of 14 ± 5 CFU/mL and a wide dynamic range of 1.9 × 
101-1.9 × 108 CFU/ mL were obtained by DPV method. 
Furthermore, the electrochemical sensor modified with 
T4 bacteriophage proved to have the ability to distinguish 
viable and dead bacterial cells.

Antibody  
 Immunosensors are the devices working based on the 
interactions between antibodies and antigens on  a 
converter surface.126-129 Either an antibody or an antigen 
can be considered as the species immobilized on a 
 sensing platform to detect an antigen or an antibody, 
respectively.130 Antibodies are glycoproteins, referred  to 
as a heavy chain of the same Doppler peptides, and two 
smaller identical polypeptides, called as a  light chain. 
Protein chains are connected by disulfide bonds to form 
heavy chains. Amino-terminal pairs of heavy chains and 
light  chains provide bonds to antigens. Antibodies are a 
group of functional  glycoproteins produced in response to 
a foreign body in human and animal serums.  Immobilized 
antibodies create immune responses through certain 
steps; so that, they bind to  antigens, prevent them from 
binding to target cells ,and cover them so that immune 
system can identify  and destroy them. 

Viswanathana et al131 reported an electrochemical 
immunosensor based on a metal sulfide  and multi-walled 
carbon nanotube poly(allylamine) to simultaneously 
detect pathogens in foods. This electrochemical 
immunosensor consisted of three antibodies (i.e., E. 
coli-CdS, Campylobacter-PbS, and Salmonella-CuS) 
immobilized on a specific  nanocrystal with releasable 
metal  ions. Corresponding non-overlapping curves were 
obtained by electrochemical measurements. Multi-walled 
carbon nanotubes  improve electrochemical performance 
of substrates in reactions and increase sensitivity  and 
detection of multiple bacteria. This type of sensors is 
used to control quality of food, although  valid laboratory 
tests are required to determine its sensitivity and 
diagnostic properties.131    Over the last few years, various 
nanoparticles have been used to enhance performance 
of electrochemical sensors.132-135 Xiang et al136 used bio-
compatible nanocomposites to detect Salmonella. In this 
study, chitosan and GNPs were mixed  up  to improve 

performance of a film of gold composite. As a result, a 
linear range of 10-105 CFU/mL and a  LOD of 5 CFU/mL 
were achieved by DPV method. Also, the immunosensor 
provided satisfactory results in detection of Salmonella 
in  real-life samples.   In 2016, Marion et al137 used silica 
nanoparticles to connect  antibodies and a poly-electrolyte 
layer. They manufactured a miniaturized electrochemical 
 biosensor (lab-on-a-chip device) to detect and degrade 
E. coli. Detection of E. coli cells will finally be estimated 
through CV and quartz crystal microbalance (QCM) 
measurements. Farka  et al138 used a specific antibody on 
a screen-printed electrodes activated with a cysteamine 
monolayer. Microbial cells were treated  by sonication and 
heat, and the effect of treatment was studied by atomic 
force  microscopy (AFM). Wide linear response was 
obtained in the range between 103-108 CFU/mL by EIS 
method. Around the same time, Altintas et al139 reported a 
microfluidic-based  electrochemical sensor for detection of 
pathogenic bacteria. Integration and electrical  connections 
of microfluidic materials are a great challenge in the field 
of designing and manufacturing  sensors. Concentration 
range of detection was between 0.99 × 104 - 3.98 × 109   
CFU/mL. This sensor was used to determine E. coli  in 
water through functionalization of its AuNPs. In 2015, 
Xinai et al140 studied an amplified  immunoassay for E. coli 
in dairy products using the  functionalized gold nanorod-
based labels. In this diagnostic method, rapid response 
time and high  sensitivity was achieved by DPV method. 
In another study, Zhong    et al141 described application of 
 cadmium sulfide quantum dots (CdS QDs)-encapsulated 
metal-organic frameworks as signal- amplifying tags 
for ultrasensitive electrochemical detection of E. coli 
O157:H7. In optimal conditions, they achieved a linear 
range of 108 CFU/mL and a LOD of 3  CFU/mL for E. coli 
by DPV method. This method has not been investigated 
for other immune  sensors  yet. In 2016,    Krithiga et al142 
reported application of an immunosensor to detect  PA 
in water. Monoclonal antibody immobilized on surface 
of the sensor was  modified with CCLP (calcium cross 
-linked pectin) and gold nanoparticles. Detection range of 
101-107 CFU/mL and LOD of 9 CFU/mL were calculated 
by linear sweep voltammetry (LSV) method. 

In the series of studies on biosensors, the  principle of 
G-EFT (graphene FETs) was first established by  Mao et 
al.143 On the basis of this principle, bonding of probes 
and target proteins can significantly change electrical 
conductivity of sensors (Fig. 7). For detection of E. coli with 
 such devices vertically-oriented   graphene (VG) sheets are 
directly grown on sensing platforms through the plasma-
enhanced chemical vapor deposition (PECVD) method. 
These sheets function as a sensing  channel. Sensitivity of 
this type of biosensors was found to be 2 ng/mL.

Following this method, in 2016,  Wu et al144 reported the 
use of the G-EFT principle for detection of E. coli. Maria et 
al145 used an electrochemical magnetic microbeads-based 
sensing platform for POC diagnosis of brucellosis in 
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human beings and animals. An antigen-coated magnetic 
 microsphere was used as a solid support phase for detection 
of biomolecules, such as antibodies,  peptides, and proteins. 
On this platform, there were supermagnetic micro-toads 
coated with  antigens, which were then used with HRP-
conjugated antibodies. Also, electrochemical scans were 
performed on 8- channel cell-electrode cartridges with 
potentiometric acetate. This system allows detection  of 
many pathogenic microorganisms like parasitic protozoa, 
bacteria, and viruses in the shortest  time and lowest cost. 
In 2016, Wang et al146 reported an electrochemical sensor 
for detection of Salmonella using a  redox cycling-based 
electrochemical method. Antibodies were immobilized on 
magnetic beads and were used to separate Salmonella from 
real samples.  LOD was equal to 7.6 × 102 CFU/mL and 10 
CFU/mL, which was calculated by choronocoulograms. 
In another study,147 magnetic beads modified with anti-
Salmonella antibodies were used to  separate Salmonella 
from a saline buffer and agricultural water. The sensing 
platform was a screen-printed carbon electrode  modified 
with Au nanoparticle-RGO and magnetite beads.  First S. 
pullorum antibody was added to magnetic beads coated 
with silica and then, reaction was done by reduction of 
chloroauric acid and graphene oxide. LOD of 89 CFU/mL 

was calculated by DPV method.
Along the same lines, an electrochemical sensor was 

used to quickly detect E. coli O157:H7 in pure culture 
media and food samples based on bifunctional  glucose 
oxidase-polydopamine nanocomposites and Prussian 
blue. LODs within an hour were obtained as 52 and 190 
CFU/mL by amperometric detection in the culture media 
and food samples, respectively. This sensor needed just 
a short detection time with a low LOD value owing to 
efficient amplification with the bifunctional composite.148     
 In 2014, this bacterium was again diagnosed  with another 
modified electrode. An attempt149 was made for sensitive 
detection of bacteria using an electrode modified with 

sulfonated graphene poly-(3,4- ethylenedioxythiophene) 
gold nanoparticles (SG-PEDOT-AuNPs).  This antibody 
has  immunodeficiency properties, which increase 
connectivity and the ability to select  biosensors. With a 
LOD of 3.4   ×  10 CFU/mL, the tests were conducted in real 
 samples, such as milk and spring water by DPV method. 
The electrode proved to have a good selectivity for E. coli 
0157:H7. 

In 2018, Tufa et al150 reported a  biosensor for detection 
of TB with Fe3O4 nanoparticle and AgNO3. A core-shell 
structure with graphene quantum dot (GQD) was used to 
enhance performance of the biosensor. Gold nanoparticles 
were conjugated to the CPE antibody to amplify signal. 
These layers had three different roles; AgNO3   was used 
to increase conductivity, Fe3O4 NPs were used to increase 
surface-to-volume ratio, and GQD was used  to load 
CFP-10 antibody. Jasim et al151 used microfluidic- based 
biosensors to detect low levels of Salmonella in poultry 
and fresh products. This method   actually intended to 
simultaneously detect multiple Salmonella serotypes with 
high sensitivity and  determine sensitivity of the antibody-
antigen binding process; this bond is an indication of 
 change in impedance and the presence of bacteria. The 
microfluidic device consisted of three micro channels, 
each of which contained a site for a high concentration of 
Salmonella cells and was used for  positive electrophoresis. 
The biosensor could also eliminate false-positive results. 
The sensing spot of   bacteria contained an electrode array 
of 10 finger pairs.  

Molecularly imprinted  polymers
A rather different approach for monitoring pathogenic 
bacteria is entrapment of  bacteria itself or bacterial 
recognition ligands in sol-gel and polymer phases or 
matrixes referred to as molecularly imprinted  polymers 
(MIPs). Indeed, this system is nothing but an artificial 
receptor ligand.26 To  date, MIPs, as recognition elements, 

Fig. 7. Schematic of the VG FET sensor by direct growth of VG between the drain and the source electrodes. Probe antibody is labeled to the VG surface 
through Au NPs.
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have been resistant to degradation and inactivation. Also, 
as  artificial receptors, they have attracted enormous 
interest owing to significant advantages, such as 
predictability of structure, recognition specificity, and 
application universality.26,152 Some researchers  have used 
MIPs for electrochemical monitoring of pathogens. 153-157 
Microorganism imprinting offers certain advantages for 
pathogen detection, including simplicity,  rapidity, excellent 
stability, high selectivity, eco-friendliness ,and low cost.  158 
The first attempt for microorganism imprinting was made 
by Dickert’s team in 2001159 using yeast as a  template 
molecule via surface imprinting of polyurethane, which 
was considered as a salient application of MIPs.  

Khan et al160 offered an approach for detecting protein 
A   (PA) from S. aureus by EIS method with a LOD and a 
recovery factor of 16.83 nM and 91.1 ± 6.6%, respectively. 
The imprinted polymers were assembled on a film 
of single-walled carbon nanotubes (SWCNTs)-SPEs. 
Synthesis of   MIP materials took place via 3-aminophenol 
electropolymerized with the trapped target molecules 
and a  protein template (PA) on surface of SWCNTs-
SPEs using CV. The PA biomolecules were  entrapped in 
polymeric layers and were digested by proteolytic activity 
of  proteinase K. They were subsequently removed from 
surface polymer to create vacant places.

Some bacteria, e.g., Proteus mirabilis, have flagellar 
fragments as markers located on their  outer surface. 
Khan et al161 employed SWCNTs-SPEs with a homemade 
carbon- printed electrode. The electrode printing was 
done by coating of a filter paper with hydrophobic paraffin 
wax  and manual printing of the formed electrodes with 
carbon ink. Some artificial receptors were  formed on this 
platform using polyphenol mixed with flagellar fragments 
as template  molecules. LOD of the platform was equal to 
0.7 ng/mL and 0.9 ng/mL, which was calculated through 
the EIS and SWV  methods, respectively. There was also a 
negligible interference from flagellar filaments or globular 
 proteins of other bacteria.

Some bacteria, such as Bacillus anthracis are able to 
survive in harsh conditions and  generate endospores 
when they undergo environmental stress. On this basis, 
Lahcen et al162 produced a sensing platform on  a carbon 
paste electrode to discover Bacillus cereus spores. This 
system was based on the use of MIPs, polypyrrole as a 
conducting  polymer and a certain amount of B. cereus 
spores as a template. The  platform showed concentration 
range of 102-105 CFU/mL by CV method. In 2016, an 
 electrochemical method was used to detect protein levels 
of bacteria. In this study, an MIP  was used to indirectly 
detect bacteria by targeting their outer membrane protein. 
For this purpose,  the protein A was placed on outer 
surface of S. aureus directly on SWCNTs. The nanotubes 
were also laid on a film pressed on a printed electrode 
 plate. Efficiency of the electrode was investigated through 
EIS. This biosensor had a  low LOD (16.83 nM) and a low 
cost.160 

Jiang et al163 fabricated an economical sensing platform 
for synthesis of magnetic  MIP so as to quantify the Gram-
negative bacterial quorum signaling  molecule N-acyl 
homoserine-lactones (AHLs). The assay was formed on 
an amino group- functionalized Fe3O4@SiO2 surface, and 
AHLs were absorbed into cavities through connecting 
 sites of MIPs. The platform could detect oxidative current 
of AHLs via DPV in the  range of 2.5 -100 nM and with a 
LOD lower than 0.8 nM. 

Golabi et al164 utilizing cell-imprinted polymers 
(CIPs) as recognition  receptors successfully fabricated 
an aminophenylboronic acid (3-APBA)- based CIP for 
detection of bacterial cells. The boronic acids̓ functional 
 groups in the 3-APBA monomers, with their ability to 
reversibly and specifically attach and  interact with cis-
diol-containing molecules, allowed creation of a polymeric 
matrix that had  both chemical and morphological 
recognition abilities. This matrix could facilitate release of 
 the entrapped bacterial cell templates and then regenerate 
the CIPs. The researchers used S. epidermidis as a target 
and the EIS method for measurements. They gained 
detection range  of 103-107 CFU/mL.

Mugo et al165 also reported an imprinted polymer 
electrochemical sensor for detection of E. coli. The 
sensing platform was based on layer-by-layer assembly of 
multi-walled carbon nanotubes, or nanocellulose films, 
integrated with poly (aniline)-doped phenylboronic acid. 
A pathogen-imprinted polymer layer was coated on the 
prepared films. The proposed sensor exhibited a low LOD 
for detection of E. coli (8.7 ± 0.5 CFU/mL) and a rapid 
response of ≤ 5 minutes by CV technique.

Idil et al166 designed and employed a type of sensor 
chips to monitor E. coli  cells. The chips were based on a 
combination of capacitive biosensing approach and micro-
contact imprinting  methodology. An imprinted substrate 
was prepared using an amino acid-based biorecognition 
 site and a mixture of monomers and cross-linkers under 
UV-polymerization. The real-time monitoring of  E. coli 
was conducted within the range of 102–107 CFU/mL. Also, 
a LOD of 70 CFU/mL was obtained in spiked apple juice 
and river water samples.

Chen et al167 proposed a novel electrochemiluminescence 
(ECL) biosensor to monitor E. coli  O157:H7. Dopamine 
was electropolymerized to produce an N- GQDs/
polydopamine film on surface of an electrode and 
then, immobilization was performed with the E. coli 
 O157:H7 cells as a template on polydopamine film in 
electropolymerization step. Finally, a surface-imprinted 
polymer was extracted. The captured target molecules, 
i.e., E. coli  O157:H7 cells, were labeled with N-GQDs 
antibody, and LOD of 8 CFU/mL was achieved for the E. 
coli O157:H7 cells. There was also a linear relationship 
between the E. coli O157:H7 cells and ECL intensity of 
 GQDs from 10 to 107 CFU/mL.  In another recent work, 
Wu et al168 selected E. coli O157:H7 as target bacteria and 
transferred them onto a polypyrrole layer on surface of an 
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electrode (Fig. 8). Since, the layer was  conductive; they 
monitored binding of the target bacteria through EIS. 
The impedimetric sensor measured the target in drinking 
water, milk, and apple juice samples. The sensor displayed 
a  recovery range from 96 to 107.9%, with relative standard 
derivations (RSDs) less than 4% and a LOD of about 103 
CFU/mL within an hour.

Jafari et al169 reported an impedimetric  sensor to 
recognize E. coli cells (E. coli UTI89) using artificial 
receptors. In that study, imprinting  of the cells as templates 
with a rod-shaped morphology was done using thin sol-
gel films  of organically modified inorganic silica coated on 
gold electrodes. These imprinted sites had  complementary 
cavities to identify the target bacterial species; thus, high 
binding affinity  was achieved. The biosensor showed 
a linear range of 1×101 - 1×104 CFU/mL and a LOD 
below than 1 CFU/mL by EIS method.  A brief summary 
indicating some of the characteristics of representative the 
sensors covered in the aptamer, bacteriophage, antibody 
and MIP sections are presented in Table 3.

Concluding Remarks
Bacterial infections pose important threats to public health 
and  humans̓ life. Ttraditional techniques for detection of 
bacteria are  labor-intensive and time-consuming. For 
overcoming these limitations,  electrochemical methods 
can serve as appropriate ways of detecting bacteria rapidly 
 and sensitively. The great versatility presented by such 
methods is based on wide range of biosensor designs 
and their various applications. However, several issues, 
including reproducibility and working stability remain 
to be solved. Addressing these technical problems will 
allow electrochemical sensors to become reliable tools for 
rapid diagnosis of bacteria in various samples. Detection 
limits at the level of 1 to 103 CFU/mL for various bacteria 

were achieved by electrochemical sensors, which, in 
general, are below the maximum accepted level by the 

Fig. 8. Schematic illustration showing the construction of BIP film based sensor for E. coli O157:H7 detection. Reprinted  with permission from Wu et al.168 
Copyright 2018 American Chemical Society.

What is the current knowledge?
√ Previous reviews on this topic covered modification and 
strategies to develop electrochemical sensor for bacteria.

What is new here?
√ This review presents  an overview of different recognition 
elements on an electrochemical diagnostic for bacteria.

Review Highlights

WHO. In general, the field of bacterial detection by 
electrochemical sensors is continuously growing. It is 
believed that this field will focus on portable devices for 
detection of bacteria based on electrochemical methods. 
Development of these devices requires close collaboration 
of various disciplines, such as biology, electrochemistry, 
and biomaterial engineering. Furthermore, the emerging 
technologies of lab-on-chip devices offer opportunities 
for the development of commercial sensors. Commercial 
analytical devices have, small size and simple construction 
that made them perfect for point-of-care sensing. How to 
simply and successfully decrease size without affecting 
their performance, has become a critical step.
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