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Introduction
Bone repair in clinical therapy is still challenging which 
needs further research.1 So far, although various methods 
have been developed for effective treatment to promote 
bone regeneration, such as conventional pharmacological 
treatments or grafting materials, the toxicity issues and 

bioavailability limitations are still of concern.2 On the 
other hand, autologous or allogeneic transplants have 
also failed to present an effective and satisfying treatment 
because of major disadvantages of these methods due to 
the secondary damage and immunological rejection of the 
transplant, respectively.3-6 
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Abstract
Introduction: This study 
focused on preparing a 
multiscale three-dimensional 
(3D) scaffold using tricalcium 
phosphate nanoparticles 
(triCaPNPs) in a substrate 
of poly(acrylic acid) (PAA) 
polymer for controlled release 
of exosomes in bone tissue engineering.
Methods: A scaffold was fabricated with a material mixture containing acrylic acid (AA) monomer, 
N,N’-methylenebisacrylamide (MBAA), ammonium persulfate (APS), sodium bicarbonate 
(SBC), and triCaPNPs called composite scaffold (PAA/triCaPNPs) via cross-linking and freeze-
drying methods. The synthesis process was easy and without complex multi-steps. Through 
mimicking the hybrid (organic-inorganic) structure of the bone matrix, we here chose triCaPNPs 
for incorporation into the PAA polymer. After assessing the physicochemical properties of the 
scaffold, the interaction of the scaffold with human umbilical cord mesenchymal stem cells (UC-
MSCs) such as attachment, proliferation, and differentiation to osteoblast cells was evaluated. In 
addition, we used DiI-labeled exosomes to verify the exosome entrapment and release from the 
scaffold.
Results: The polymerization reaction of 3D scaffold was successful. Based on results of 
physicochemical properties, the presence of nanoparticles in the composite scaffold enhanced 
the mechanical stiffness, boosted the porosity with a larger pore size range, and offered better 
hydrophilicity, all of which would contribute to greater cell penetration, proliferation, and then 
better bone differentiation. In addition, our results indicated that our scaffold could take up and 
release exosomes, where the exosomes released from it could significantly enhance the osteogenic 
commitment of UC-MSCs. 
Conclusion: The current research is the first study fabricating a multiscale scaffold using triCaPNPs 
in the substrate of PPA polymer using a cross-linker and freeze-drying process. This scaffold could 
mimic the nanoscale structure and chemical combination of native bone minerals. In addition, our 
results suggest that the PAA/triCaPNPs scaffold could be beneficial to achieve controlled exosome 
release for exosome-based therapy in bone tissue engineering. 
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phosphate nanoparticles (triCaPNPs) as the main 
inorganic compound of native bone mineral, for 
incorporation into PAA matrix.17,36-39 Calcium phosphate 
(CaP) has been widely used as a bone substitute in clinical 
practice.40 Apart from different phases, sizes, preparation, 
and formulation methods, in terms of application, 
CaP can be classified as nanoparticles (NPs), coatings, 
cement, and scaffolds.41 Among all, calcium phosphate 
nanoparticles (CaPNPs) have shown good functional 
potentials in the field of nanomedicine. One of the great 
advantages of using CaPNPs is that these NPs are found 
in relatively high concentrations in the body, especially 
as the major constituent of bone and tooth enamel. They 
also have excellent biocompatibility, biodegradability, 
and osteoconductive properties.41 However, pure NPs, 
because of their easy agglomeration and the instability of 
their suspension, cannot be used alone; so in the current 
study, we incorporated these NPs into the PAA polymer 
matrix.38,40,41 Unlike many methods of synthesizing 
hydrogels, our synthesis process is straightforward and 
without complex or tedious steps. Based on the published 
article,42 the present study aimed to fabricate a new 
scaffold formed from PAA and triCaPNPs via the freeze-
drying process as a simple porous scaffold preparation 
method. Then, we explored the structural and mechanical 
properties of the scaffold, as well as the attachment plus 
differentiation of human UC-MSCs to osteoblast cells on 
the scaffold via in vitro study. Meanwhile, CaP biomaterials 
are only osteoconductive, not osteoinductive.43 In this 
regard, previous studies have suggested that through 
adding these materials with bioactive proteins, growth 
factors, or osteogenic drugs, osteoinductivity to CaP 
biomaterials can be obtained.17,44,45 Thus, considering the 
functional roles of exosomes in osteogenic differentiation, 
we carried exosomes (extracted from the UC-MSCs) 
with scaffold to evaluate osteogenic commitment of UC-
MSCs. To the best of our knowledge, the current research 
is the first study to fabricate a nanocomposite scaffold 
formed from PAA and triCaPNPs to release exosomes for 
achieving accelerated bone differentiation. 

Materials and Methods
Materials 
All chemical reagents including acrylic acid (AA), 
triCaPNPs synthetic powder, nitric acid (HNO3) 65%, 
sodium bicarbonate (NaHCO3), sodium hydroxide 
(NaOH), ammonium persulfate (APS), paraformaldehyde, 
4′, 6-diamidino-2-phenylindole stain (DAPI), dimethyl 
sulfoxide (DMSO), tetrazolium salt (MTT), and Alizarin 
Red S (ARS) dye were purchased from Sigma-Aldrich, 
Germany. N, N’-Methylenebisacrylamide (MBAA) with 
CAS no:110-26-9 was purchased from Merk, Germany. 
DiI dye (CAS no: 41085-99-8) was purchased from 
Beyotime, China. BCA Protein Assay Kit was purchased 
from Bio Basic Inc., Canada. For cell culturing, reagents 
including phosphate-buffered saline (PBS), fetal bovine 

In recent years, research on exosomes derived from 
mesenchymal stem cells (MSCs) has been an interesting 
way of examining paracrine factors and cell-to-cell 
communication,7,8 since exosomes are essential bioactive 
mediators that are primarily responsible for the effects 
of MSCs on their surrounding microenvironment.9,10 
Umbilical cord (UC) is an endless and easily accessible 
MSC source.11 Isolation of these cells does not require an 
invasive procedure; they multiply rapidly in the culture 
and are also said to be immune privileged.12,13 Although 
several studies have reported the good impact of UC-
MSCs in promoting bone repair,14-16 few studies have 
focused on the effect of exosomes extracted from UC-
MSCs in bone defect repair.

Thus, we used UC-MSCs to isolate exosomes. Since 
exosomes leave bone defect sites, it is important to use 
a suitable microenvironment for exosome entrapment.11 
Many efforts have been made to design 3D porous 
scaffolds to carry and release exosomes in a bone defect 
site.17,18 Biocompatibility, good mechanical properties, 
and osteoconductive properties are the main features for 
scaffolds to ensure exosome function in the regeneration 
of bone defects.19,20 

Recently, hydrogels have attracted much attention 
for therapeutic applications. Because of their high 
water content, chemical and physical properties, 
carbon-based network architecture, and presence of 
proper functional groups,21 hydrogels have potential 
applications in tissue engineering,22 and drug delivery.23 
So far, the hydrogel-based scaffolds that have been able 
to enhance osteointegration and differentiation in bone 
defects include engineered gels fabricated from natural 
compounds24 as well as self-healing gels based on 
noncovalent cross-links.25 Despite many advances in this 
field, there are some limitations with these hydrogel-based 
scaffolds, such as releasing toxic byproducts that are often 
accompanied by the formation of hydrogels, or complex 
and multi-step manufacturing process.2

Poly(acrylic acid) (PAA) is a synthetic polymer 
made from acrylic acid through controlled radical 
polymerization.26 Because of their carboxylic groups, PAA-
based polymers present a swelling tendency depending on 
environmental pH.21 PAA-based polymers have almost all 
properties of a good pharmaceutical polymer, including 
biodegradable nature, nontoxicity, biocompatibility,27 as 
well as great specific surface area, which would improve 
the interactions with physiological compartments.28 They 
have applications as a scaffold for tissue engineering29,30 
and controlled protein or drug releasing in target 
tissues.21,31-35 Zhao et al2 engineered a hydrogel including 
nano-hydroxyapatite, sodium carbonate, and PAA. In that 
study, it was emphasized that the chelation between Ca2+ 
and carboxylic groups of PAA was one of the reasons for 
the good scaffold stability.

Through mimicking the hybrid (inorganic-organic) 
structure of the bone matrix, we here chose tricalcium 
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serum (FBS), penicillin/streptomycin were purchased 
from Gibco, Invitrogen Corporation, USA. Trypsin/
EDTA were purchased from Cegrogen Biotech GmbH, 
Germany. DMEM/F-12 (Dulbecco's Modified Eagle 
Medium/Nutrient Mixture F-12F) was purchased from 
Bioidea, Iran. Sterile deionized water was also used for all 
solutions.

Cell isolation and identification of UC-MSCs
Human UC samples were obtained after deliveries from 
the hospital with coordination and permission from the 
infants’ parents, following the rules of medical ethics 
approved by the Faculty of Medical Sciences of Tarbiat 
Modares University. Near the placenta, the UC was cut 
into 1-1.5 cm pieces and washed several times with PBS 
and 2% penicillin/streptomycin. Thereafter, the fragments 
were exposed to 1 mL of collagenase enzyme (type II 
with a concentration of 0.014 g/mL) and were incubated 
at 37°C for 1 hour and vortexed every 10 minutes for 30 
seconds. Then, FBS was added to neutralize collagenase, 
followed by centrifugation for 5 minutes at 400 g. The 
supernatant was removed and the cells were transferred to 
a 75 cm2 flask (SPL Life Sciences) with DMEM/F12, 10% 
FBS, and 1% penicillin/streptomycin. After 72 hours, the 
medium was changed to remove debris and antibiotics. 
After observing the cell colonies, the cells were separated 
by 0.25% Trypsin-EDTA and transferred to 3 new 75 
cm2 flasks. To identify UC-MSCs, after removing the 
supernatant and washing with PBS, adherent cells in 
passage 3 were trypsinized to obtain 1×106 cells/mL, 
which were resuspended with PBS and centrifuged at 
3000 rpm. After fixation with 4% paraformaldehyde and 
washing with PBS, the cells were exposed to antibodies 
(R&D Systems) CD73, CD90, CD105, CD34, CD45 
and analyzed by FACSCalibur system (BD Biosciences, 
San Jose, CA, USA). For osteogenic induction, the cells 
were seeded. After reaching 70% confluence, the cells 
were treated with osteogenic differentiation medium 
(OM) containing DMEM/F12 + 10%FBS and bone 
differentiation factors: 50 mg/mL L-ascorbic acid-2-
phosphate, 10 mM β-glycerophosphate and 0.1 nM of 
dexamethasone for 21 days. For adipogenic induction, the 
cells were cultured with DMEM/F12 + 10% FBS, 10 ng/
mL insulin, and 10 nM dexamethasone for 21 days. The 
medium was changed twice per week for both adipogenic 
and osteogenic induction. The osteogenic and adipogenic 
differentiation was assessed using alizarin red and oil red 
O staining, respectively. Only UC-MSCs in passages 2 or 3 
were used for all experiments.

Preparation and characterization of scaffold
Initially, at room temperature (RT) the mixed solutions of 
distilled AA (2.5 mL, 1.5 M) and MBAA (0.006 mol%) with 
NaOH (0.12 mol%) were made in 1 ml deionized water 
and placed on a magnetic stirrer (300 rpm, 30 minutes). In 
a separate container, 75 mg triCaPNPs was mixed with 5 

mL deionized water and placed on a magnetic stirrer (250 
rpm, 15 minutes). To enhance the solubility of NPs, 1.5 mL 
nitric acid 65% was added. Next, the main container was 
exposed to nitrogen gas to accelerate the polymerization 
process through removing oxygen. Under the nitrogen 
atmosphere, nanoparticle solution was added into the 
composite sample. Then, APS (0.012 mol%) was added 
as a radical initiator for the synthetic system of PAA and 
sodium bicarbonate (SBC, 0.02 mol%) as porogen in the 
PAA preparation, respectively.42 The mixture of reactants 
was heated at 75°C to harden. Of note, all of these steps, 
except the addition of NPs, were performed to construct 
the bare scaffold as a control. The prepared samples were 
plunged in deionized water to remove any remained APS 
for 48 hours through refreshing deionized water at four-
hour intervals. Then, the prepared samples were freeze-
dried (Christ GAMMA 1-16 LSC Freeze Dryers, for 15 
hours, -50°C). 
Structure and morphology characterization by FTIR and 
SEM
Fourier transform infrared spectroscopy (FTIR) is a 
good analytical tool for identifying functional groups 
and characterizing covalent bonding information. FTIR 
spectra of the AA, PAA and PAA/triCaPNPs scaffolds 
were obtained using a FTIR spectrophotometer (FT-IR 
8400S, Shimadzu, Japan) in the range of 4000–400 cm-1. 
The surface morphologies of scaffolds were observed by 
scanning electron microscopy (SEM, HITACHI S-4160 
model) with an accelerating voltage of 30 KV and gold 
coating. The porosity percentage and surface pore size 
diameter of the scaffolds was recorded and then analyzed 
by ImageJ software (version 1.51j8). Four images from 
each scaffold were selected randomly and analyzed.46

Swelling behavior
The dried scaffolds were cut into 1 × 0.5 × 0.5 cm pieces. 
Dry weight was measured and recorded (Wd = dry state 
mass). These pieces were then immersed in PBS (pH = 
7.4). At specific times, the samples were removed from 
the buffer and their weight was recorded after blotting 
the excessive buffer (Ws = swollen state mass).47 Then the 
degree of swelling of the scaffolds was calculated using the 
following formula: 

Swelling degree =  𝑊𝑊𝑊𝑊−𝑊𝑊𝑊𝑊
𝑊𝑊𝑊𝑊  

 
Mechanical test
The mechanical (compressive) properties of the scaffolds 
were assessed using a universal mechanical analyzer 
(Zwick Roell). Cylindrical-shaped scaffolds with 
approximately 15 mm in diameter and 10 mm in height 
were compressed (constant speed of 0.5 mm/min). 
Water contact angle assay (WCA)
To know the hydrophilicity of the constructed scaffolds, 
the contact angle was measured at room temperature 
using a G10 Kruss contact angle goniometer. This test 
was performed by adding 10 μL deionized water droplet 
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on the freeze-dried scaffolds surface and then analyzed by 
ImageJ DropSnake plugin.

Investigation of cell attachment
DAPI staining was used to evaluate the attachment of 
MSCs onto the constructed scaffolds and to confirm 
the growth plus viability of the cells over time. For this 
purpose, first the scaffold pieces were sterilized with 70% 
ethanol and UV radiation and then the culture medium 
was poured onto the scaffolds in each well of the plate 
and incubated at 37°C with 5% CO2. After 24 hours and 
confirming that the scaffolds were not contaminated, 5 × 
105 cells/cm2 were seeded on the scaffolds. The cells were 
refreshed every 3 days with DMEM/F12 +10% FBS. On 
days 3 and 21 after cell seeding, the cells were washed once 
with PBS after which DAPI (dilution 1:1000) was exposed 
to the cells for 4-6 minutes. The results were observed by 
Olympus iX53 microscope (Olympus Corporation). For 
SEM, the cells were fixed with glutaraldehyde 4% and then 
dehydrated with alcohol serial 50%, 60%, 70%, 80%, 90%, 
and 100%, respectively, (10 minutes for each). 

UC-MSCs viability on scaffold
Cell survival and proliferation were determined using 
MTT. MSCs were seeded on bare and composite scaffolds 
(3D) in a 96-well plate with 2 × 104 cells/well. UC-MSCs 
cultured on plate (2D) and scaffolds without any cells were 
used as controls. At time points, MTT solution was added 
to each well and incubated at 37°C for 4 hours. Thereafter, 
DMSO was added to each well to dissolve the formed 
formazan crystals. Due to the hydrophilic properties of 
the scaffolds, the penetration of cells into the scaffold was 
predicted. Thus, in the group of scaffold+cells, in order 
to completely empty the cells from the scaffold, after the 
mentioned steps, the scaffolds were into smaller pieces 
and all contents of the wells were transferred into a clean 
microtube with a glass bead. Then, the microtube was 
vortexed for 3 to 5 minutes. The glass bead hit the scaffolds 
to release the cells from the scaffolds. Absorbance readings 
were performed at 570 nm.

Cell differentiation assays
To show the impact of scaffolds on osteogenic 
differentiation, UC-MSCs were seeded on PAA and PAA/
triCaPNPs scaffolds (3D). Once grown to 70% confluence, 
the cells were treated and refreshed every 3 days with OM.

UC-MSCs mineralization on the scaffolds
To indicate the mineralization after 21 days of bone 
induction of UC-MSCs seeded on PAA and PAA/
triCaPNPs scaffolds, the cells were fixed and dried, after 
which their surface and cross-section were observed by 
SEM.
Alizarin red staining (ARS) analysis
After 14 and 21 days of osteoinduction culture, the samples 
were fixed (10% formalin, 15-20 minutes), and then 
washed with PBS. The fix cells were covered in ARS (2% 
w.t/v, pH=4.2, 10 min). Once washed, the samples were 
observed under Olympus iX53 microscope. To quantify 
the coloration of ARS, the samples were incubated for 
18 h with an added 10% acetic acid, and transferred to 
microtubes for centrifugation (20000 g, 15 minutes). 
Then, 10% ammonium hydroxide for neutralization was 
added to the supernatant. Finally, 100 μL of each sample 
was added to 96-well plates and absorbance readings were 
performed at 405 nm.48

Alkaline phosphatase (ALP) activity assay
The ALP activity was measured using ALP Assay kit 
(Man Company, Tehran, Iran) after 7 and 14 days of 
osteoinduction based on the manufacturers’ protocols. 
Total protein extraction was performed using RIPA lysis 
solution. Then, the activity of ALP in the cell lysates was 
calculated at 405 nm and the data were normalized against 
total proteins.
Quantitative real-time PCR (RT-qPCR) analysis
Total RNAs were isolated using TRIzol reagent (Geneall, 
Korea) based on the manufacturer's instructions on days 
14 and 21 after osteoinduction with cDNA synthesized 
using cDNA synthesis kit (BioFACT Co., Korea). RT-
qPCR was performed using SYBR Green Master Mix 
(Applied Biosystems, USA) and StepOne Real-Time PCR 
System (Applied Biosystems, USA). The sequence gene 
primers46 are reported in Table 1. Results were normalized 
with GAPDH.17

Extraction and Identification of Exosomes
Initially, we needed exosome-free FBS (depleted of 
exosomes which was obtained by FBS ultracentrifugation 
at 100 000 g for double 2 hours) to separate the exosomes. 
UC-MSCs were seeded in 175 cm2 flasks and after 
reaching a density of more than 80%, their supernatant 
was replaced with 10% exosome-free FBS and DMEM. 
Every 48 hours, the cell surface medium was collected 

Table 1. Sequences of the primers

Gene 5'-3'(Forward) 5'-3'(Reverse)

Collagen Type I (COLIα1) TTGTGGATGGGGACTTGTGA AGAGGCAGGTGGAGAGAGG

Alkaline phosphatase (ALP) CAACAGGGTAGATTTCTCTTGG GGTCAGATCCAGAATGTTCC

RUNX2 TCTTAGAACAAATTCTGCCCTTT TGCTTTGGTCTTGAAATCACA

Osteocalcin (OSC) CCAAGGAGGGAGGTGTGTGAG AAGGGGAAGAGGAAAGAAGGGTG

GAPDH GCAGGGATGATGTTCTGG CTTTGGTATCGTGGAAGGAC

http://namayeshtoloo.1st.ir/
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and centrifuged (300 g, 10 minutes; 2000 g, 10 minutes; 
and 10 000 g, 30 minutes) to remove cells and cell debris. 
Then, the supernatant was filtered (a 0.22 μm sterile filter) 
and then ultracentrifuged (100 000 g, 70 minutes). Next, 
the supernatant was removed and after washing the pellet 
with PBS, it was again ultracentrifuged to get exosomes.49 
Exosome protein concentrations were evaluated with the 
Pierce BCA Protein Assay Kit (Bio Basic Inc., Canada) 
according to the manufacturer's protocol. Transmission 
electron microscopy (TEM, Leo 906, Germany) was used 
to observe the morphology of the exosomes. The size 
distribution of the exosomes was captured via dynamic 
light scattering (DLS) by a Nanotrac Wave II (Microtrac, 
Inc.) Analysis of exosomal surface markers such as CD9 
and CD81 (Abcam, USA) was also performed through 
Western blotting. UC-MSCs were used as control.

Effects of exosomes on UC-MSCs proliferation
In this step, we evaluated the effects of UCMSCs-derived 
exosomes on proliferation of their parent cells. The cells 
were treated with two concentrations of exosomes (25 
and 50 μg/mL). MTT and DAPI staining were performed. 
Based on a study conducted by Yang et al,11 we selected the 
minimum concentration of exosomes. So only 25 μg/mL 
exosome was used to evaluate bone differentiation.

Release and internalization of exosomes 
The release of exosomes from the bare and composite 
scaffolds was calculated according to Yang et al. 11 Briefly, 
the exosomes seeded drop by drop onto the surface of 
scaffolds at a density of 6×1010 particles/mL and placed in 
a humid incubator for 24 hours for the exosomes to be 
totally absorbed. Then, the combinations of exosome/bare 
scaffold and exosome/composite scaffold were placed in 
PBS (pH= 7.4) at 37°C. The supernatants were collected 
for 2 weeks to compute the amount of exosome/release 
by BCA protein assay Kit. Also, we used DiI-labeled 
exosomes to show penetration of exosomes into UC-
MSCs. DiI dye was used according to the manufacturer’s 
protocol. Labeled exosomes, seeded onto the surface of 
scaffolds. Then the exosome-enriched scaffolds were 
exposed to UC-MSCs with about 70% confluence in 
6-well plate. After culturing for 18 hours, the exosome/
scaffold combinations were removed. Next, the cells were 
washed with PBS and fixed with paraformaldehyde and 
stained with DAPI solution.18 The results were observed 
using Olympus iX53 microscope. 

Effects of exosomes on UC-MSCs commitment
To evaluate the performance of exosomes released from 
scaffold and their impact on osteogenic commitment of 
UC-MSCs in vitro, the combinations of exosome/scaffold 
were prepared as described above and placed in a well 
culture plate. Next, UC-MSCs were seeded inside the 
same well plate and treated with OM until the cells come 
together compactly (nearly 70 hours).18 After culturing, 

the scaffolds or exosome/scaffold combinations were 
removed. Then, total RNAs of UC-MSCs were isolated 
and the gene expression of some biochemical markers 
for osteogenesis (collagen type I, ALP, RUNX2 and 
osteocalcin) was evaluated by RT-qPCR. Relative levels of 
gene expression were normalized by GAPDH.

Data analysis 
Either one or two-way ANOVA analysis or t-test was 
used to determine the difference between results. All 
data presented in this study have been represented as 
mean ± standard deviation of at least three replicates of 
each sample. GraphPad Prism was used for data analysis. 
P<0.05 was considered statistically significant. 

Results
Identification and characterization of UC-MSCs
MSCs isolated from the UC were spindle-shaped. Flow 
cytometry results revealed that the cells expressed 
mesenchymal CD markers (CD73 and CD90, CD105) 
while they did not express CD45 and CD34. In addition, 
as displayed in Fig. 1, these cells could differentiate into 
osteoblasts and adipocytes.

Physicochemical features of 3D scaffolds
FTIR: PAA/ triCaPNPs (composite) and PAA (bare: as 
control) scaffolds were prepared via cross-linking and 
freeze-drying process. To investigate the structure of 
the fabricated scaffolds, FTIR was used; as can be seen 
in the Fig. 2A, the PAA sample revealed a clear peak at 
3600 cm-1, which was not observed in its monomer. This 
emphasizes that the synthesis of PAA was performed 
successfully. On the other hand, in the area 2600 cm-1 
to 3000 cm-1 a wide peak with a center of 2970 cm-1 
was observed in both synthesized scaffold samples, 
suggesting the presence of CH2, CH, and CH3 groups in 
them. Compared with the FTIR spectrum of acrylic acid 
monomer, the displacement or disappearance of some 
peaks in the synthesized polymer samples confirms its 
successful synthesis. In the PAA spectrum, we observed 
the removal of the peak characteristic of the tensile 
vibration H in the group CH2=CH-COOR at 3060 cm-1 

(which is observed only in the monomer spectrum), 
which also confirmed its successful synthesis. Also, the 
peaks observed in the monomer, which were within the 
range of 1500-1900 cm-1, were merged after polymer 
synthesis, and only two characteristic peaks appeared at 
1570 cm-1 and 1730 cm-1, indicating the C=O vibration. 
This also reflected the synthesis of PAA and the efficiency 
of the synthesis method. Also, in the FTIR spectrum of 
the composite, the observation of the peak at 1540 cm-1 
wavelength confirmed the proper interaction of PAA and 
Ca2+ ions through electrostatic interactions.

SEM: In order to determine the scaffold morphology, 
PAA and PAA/triCaPNPs scaffolds cross-sectional 
thickness were prepared and observed by SEM and 
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analyzed using ImageJ software. According to the analysis, 
both scaffolds revealed an interconnecting 3D multiscale 
pore architecture. In addition, PAA scaffold had pores 
with 5-80 μm diameter and 55.2% porosity, while the pore 
diameter of PAA/triCaPNPs scaffold was 3-120 μm with 

68.3% porosity (Fig. 2B). 
Swelling degree: The swelling properties of scaffolds 

are shown in Fig. 2C. According to the results, the 
swelling ratios of the scaffolds grew over time. PAA and 
PAA/triCaPNPs reached the equilibrium swelling at 

Fig. 1. Identification of UC-MSCs. Flow cytometry analysis of UC-MSCs surface CD markers expression (A). UC-MSCs monolayer at approximately 70% 
confluence in Passage 3 (B). UC-MSCs stained by alizarin red after 21 days culturing in osteogenic medium (C). UC-MSCs stained by oil red O after 21 days 
culturing in adipogenic medium (D).

Fig. 2. Physicochemical properties of fabricated scaffolds. FTIR absorbance spectra of acrylic acid monomer (blue line), PAA (green line) and PAA/triCaPNPs 
(black line) scaffolds (A). SEM analysis of cross-section morphology of porous structure of scaffolds. The scale bars represent 300 μm. PAA and PAA/
triCaPNPs show 55.2% and 68.3% porosity, respectively (B). Swelling properties of scaffolds at different time points, (n = 3) (C). Representative compressive 
stress−strain curves of scaffolds, (n = 3) (D). Water contact angle measurements on the freeze-dried PAA (A-C) and PAA/triCaPNPs (D-F) scaffolds at 1, 15, 
and 30 seconds after starting the test (*P<0.05) (E).
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approximately 10 hours. The swelling ratio was observed 
higher in bare scaffold.

Compression test: The results of compression test of 
the constructed scaffolds in Fig. 2D indicated that the 
PAA/triCaPNPs and PAA scaffolds could withstand a 
maximum of 0.209 MPa and 0.065 MPa, respectively. 
Thus, it seems by adding triCaPNPs the stiffness of the 
scaffold increased.

Water contact angle (WCA): The hydrophilic properties 
of scaffolds were defined using WCA (Fig. 2E). As 
displayed in the first second after starting the test, the 
angle formed between PAA scaffold and water drop was 
58° and between PAA/triCaPNPs scaffold and water drop 
was found 59°, while at 30 seconds after initiating the test, 
the contact angles were 50° and 30°, respectively, which 
shows that the presence of NPs within the PAA matrix 
boosted the hydrophilicity of the prepared composite 
scaffold.

Survival rate of UC-MSCs and attachment 
characterization on scaffolds
To evaluate the attachment and growth of UC-MSC on the 
scaffolds, DAPI staining and SEM images were used on 
days 3 and 21 after cell seeding on both scaffolds. Fig. 3A 
clearly showed that the cells were attached to the surface 
of the scaffolds and grew as well as proliferated on them. 
MTT assay results confirmed that the cell viability rate 
was very good during the culture period and none of the 
scaffolds were toxic for UC-MSC (Fig. 3B).

Effect of scaffolds on osteogenic differentiation of UC-
MSCs
The matrix mineralization of UC-MSCs on the PAA and 
PAA/triCaPNPs scaffolds in osteogenic medium was 

evaluated using SEM on day 21. As can almost be deduced 
from the micrographs, mineral depositions produced 
by MSCs, filled the scaffolds pores in both groups, but 
it seems that the secretion of the bone matrix by UC-
MSCs attached on the composite scaffold was far higher 
(Fig. 4). ARS as histological staining identifies calcium 
mineralization by osteoblasts.2 As depicted in Fig. 5A-B, 
compared with UC-MSCs cultured on the bare sample 
and 2D culture as controls, more calcium deposition was 
detected when the cells were cultured on the composite 
scaffold. This result confirmed the promoting role of 
CaPNPs in bone mineralization (P<0.001). After 7 and 
14 days of osteogenic induction, evaluation of ALP 
enzyme activity showed that the activity of this enzyme 
increased on day 14 in Cell+PAA/triCaPNPs group 
compared with 2D culture and Cell+PAA groups (Fig. 
5C, P<0.01). Consistent with the results of ALP activity 
and ARS, real-time qPCR analysis also indicated that the 
mRNA expression of bone differentiation marker genes in 
Cell+PAA/triCaPNPs group was significantly higher than 
2D culture and Cell+PAA groups (Fig. 5D-F).

Characterization of exosomes extracted from UC-MSCs
After isolating the exosomes by an ultracentrifuge, 
their average size was captured using DLS and their 
morphology was analyzed by TEM. The size distribution 
of the exosomes was within 45-105 nm (Peak = 55 nm). 
Exosomes were observed in a round and membrane form 
in TEM images (Fig. 6A-B). BCA Protein Assay indicated 
that isolated exosome concentration was 100 μg/mL. 
Western blot analysis confirmed that exosomes derived 
from UC-MSCs were positive for the exosome specific 
markers CD9 and CD81 (Fig. 6C).

Fig. 3. Cell attachment analysis on PAA and PAA/triCaPNPs scaffolds through DAPI staining (A, C, E, G; scale bars: 200 μm) and SEM images (B, D, F, H; 
scale bars: 100 μm) on days 3 and 21 of the culture period in DMEM/F12 (a). Cell viability on scaffolds (3D culture) and plate (2D culture: cells) on days 1, 3, 
7, 14, and 21, (n = 4) (****P<0.0001) (b).
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Effects of exosomes on proliferation of UC-MSCs
In this step, we checked the effects of exosomes derived 
from UC-MSCs on proliferation of their parent cells. The 
cells were treated with two concentrations of exosomes 
(25 and 50 μg/mL). The results of the MTT assay revealed 
that higher concentration of exosomes led to greater 
proliferation of UC-MSCs. Meanwhile, the effects of 
exosome concentrations were not significant on the first 
day but significant on days 3 and 7. In addition, DAPI 
staining on day 7 confirmed MTT results (Fig. 6D-F). 
Based on a study conducted by Yang et al,11 we selected 
the minimum concentration of exosomes. So only 25 μg/
mL exosome was used to evaluate bone differentiation. 

Fig. 4. SEM photograph of UC-MSCs mineralization on the scaffolds in 
the osteogenic medium on day 21. The surface of scaffolds at 50 μm scale 
(A, C) and cross-section of scaffolds at 100 μm scale (B, D) were imaged. 
UC-MSCs filled the scaffold pores with mineral deposition, especially in 
Cell+PAA/triCaPNPs group.

Fig. 5. Effect of scaffolds on osteogenic differentiation of UC-MSCs. Alizarin Red S staining on 21 days after osteogenic induction in 2D and 3D cultures (A). 
The quantitative analysis of ARS on day 21, (n =3) (B). ALP activity of UC-MSCs attached on PAA and PAA/triCaPNPs 3D scaffolds and 2D culture on days 
7 and 14 (C). Expression of bone differentiation marker genes was measured by RT-qPCR on days 14 and 21: Alkaline Phosphatase (D) and RUNX2 (E) as 
early markers; Osteocalcin (F) as a late marker. Results were normalized by GAPDH (n =3) (P<0.05)

Assessment of exosome release and internalization by 
UC-MSCs
DiI-labeled exosomes were used to show exosome 
entrapment in both fabricated scaffolds. As displayed in 
Fig. 7, the red-labeled vesicles are present on the surfaces 
of both scaffolds showing the ability of the exosomes to 
be connected with the scaffolds surface. By using BCA 
protein assay kit, the release profiles of exosomes from 
both scaffolds was captured for 2 weeks and indicated 
as two curves (Fig. 8A). Specifically, 68.2% and 80.3% 
of the exosomes were released from the composite and 
bare scaffolds, respectively (P < 0.05). The penetration 
of exosomes released by the scaffolds into UC-MSCs 
was detected for 18 h after incubating the DiI-labeled 
exosomes/scaffolds combination with UC-MSCs. 
Afterwards, the cells were fixed and stained with DAPI. 
As depicted in Fig. 8B, exosome uptake was confirmed by 
UC-MSCs. 

Effects of exosomes on osteogenic commitment of UC-
MSCs
To evaluate the function of exosomes released from 
scaffolds and their impact on osteogenic commitment of 
UC-MSCs in vitro, the gene expression of some specific 
markers for osteogenesis was evaluated by RT-qPCR. 
The cells incubated in the presence of composite scaffold 
significantly enhanced the expression of collagen type 
I, ALP, RUNX2, and osteocalcin (P<0.05), though in 
the presence of exosomes-enriched composite scaffold, 
the expression was far higher (P<0.01). No statistical 
significance for Cell, Cell+Exo, and the bare scaffold was 
observed (Fig. 9).
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Discussion
This study aims to create a biocompatible substrate that is 
able to fill a bone defect site, consisting of osteoconductive 
material, and contributing to the gradual release of 
exosomes as a repair-guiding factor.50 In this study, as 
the first step, a scaffold was fabricated with a material 
mixture containing AA monomer, MBAA as crosslinker, 
and triCaPNPs powder (PAA/triCaPNPs: composite) via 

the freeze-drying method. The synthesis process was easy, 
straightforward, and without containing complex multi-
steps. We chose CaPNPs to improve the physicochemical 
properties of PAA to develop a new option for bone repair 
engineering. To investigate the effect of the presence of 
NPs in the scaffold, one sample without NPs (PAA: bare) 
was used in all experiments.

Since the PAA has a plenty of negative charge due to 

Fig. 6. Characterization of exosomes derived from human UC-MSCs. Representative results of DLS (A). TEM photograph of the exosomes (B). Analysis of 
western blotting of exosome specific markers (CD9 and CD81) (C). Effect of exosomes on the proliferation of UC-MSCs: MTT assay results (D). DAPI staining 
results after 7-day incubation of UC-MSCs with two concentrations of exosomes (E). Quantitative analysis of DAPI staining, (n =3) (*P < 0.05, **P < 0.01) (F).

Fig. 7. Red labeled-exosomes attached on PAA (left) and PAA/triCaPNPs (right) scaffold surfaces; scale bars: 200 μm.

Fig. 8. Exosome release assessment. Release curve of exosomes from the bare and composite scaffolds, (n=3) (*P<0.05) (A). Ingestion of exosomes. The 
red DiI-labeled exosomes/scaffolds combination incubated with UC-MSCs for 18 h. Then, the nuclei of UC-MSCs were stained using DAPI (blue); scale bars: 
100 μm (B). 
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carboxylic groups51 and CaPNPs have a positive charge 
because of the presence of Ca2+ on their surface,52 PAA 
was predicted to cross-link together with CaPNPs via 
electrostatic bonding. The FTIR results also showed the 
same. Based on FTIR results, the peak of H vibration in the 
C=C-H group at 980 cm-1 of the monomer was weakened 
after the synthesis of the bare (or composite) scaffold.53,54 
The peak at 1172 cm-1, which is related to the C-C tensile 
vibration in the synthesized sample, also proved that 
the PAA polymerization reaction was successful. The 
observation of the peak at 1540 cm-1 wavelength in the 
FTIR spectrum of the composite scaffold confirmed 
the proper interaction of PAA and Ca2+ ions through 
electrostatic interactions. In addition, the absence of 
peak phosphate group (PO43-) characteristics in the FTIR 
composite spectrum (at 1020cm-1 and 1060 cm-1) was 
another reason for proper interaction between tricalcium 
phosphate particles and functional groups on the PAA 
surface.55

MBAA and SBC function cooperatively to induce 
the porosity.56 In our study, SEM analysis confirmed 
a 3D, multiscale porous, and interconnected porous 
morphology of the scaffolds. The porous structure of 
bare and composite scaffolds appeared with 55.2% and 
68.3% porosities, plus 5-80μm and 3-120μm pore sizes, 
respectively. It showed that the presence of NPs has a 
positive effect on creating more porosity and a larger 
range of pore size. The continuous channels on these 
scaffolds could mimic the nanoscale building design 
of native bone minerals which would ameliorate the 
osteoconductive capability, which is fundamental for 
promoting cell attachment, migration, proliferation, and 
differentiation.57 Further, micronutrients can be directed 
through interconnected porosity.41 Based on previous 
findings, scaffold pore size and porosity are related to the 
surface area available for cell adhesion plus cell growth,1 
which have also been shown to promote osteogenic 
differentiation58 and osteogenesis.59 In the literature, a 
range of pore sizes is considered as optimal sizes in a bone 
scaffold: for new functional microvascular networks it is 
5 μm, for osteoid ingrowth is 40-100 μm, and for bone 

regeneration 100-350 μm.1 Thus, the composite scaffold 
has all recommended pore sizes in comparison with the 
bare sample to osteogenic differentiation of UC-MSCs.

The Young’s modulus values of PAA and PAA/triCaPNPs 
scaffolds were obtained approximately 0.007 and 0.028 
MPa, respectively. So, according to the mechanical 
test results, higher stiffness was observed through 
incorporating the triCaPNPs. Moreover, we recorded the 
water contact angle of both scaffolds, as the wettability 
property of the scaffold plays a fundamental role in their 
interaction with different cells.60 According to the WCA 
measurement, the presence of NPs in the structure of the 
composite scaffold elevated its wetting rate. Thus, the 
nanocomposite scaffold would have a harder structure 
along with more hydrophilicity. The hydrophilic scaffolds 
are simply wetted in a culture medium and can cause 
better cell migration and adhesion.61

The swelling ratio of fabricated scaffolds was evaluated 
through checking their wet weight changes in PBS at 37°C 
(physiological condition). The results revealed that the 
presence of NPs in the structure of the composite scaffold 
caused a lower swelling rate than the bare sample. In this 
regard, Hosseini et al62 also found the same results. They 
prepared PAA/xanthan gum/graphene oxide and indicated 
that hydrogels with NPs have a lower swelling percentage. 
Since the swelling behavior depends on chemical and 
physical properties of fabricated scaffolds,63 according to 
previous findings,64 in the presence of Ca2+, the swelling 
quantity of PAA diminishes, because of strong hydrogen 
interactions of Ca2+ in NPs with free carboxylic groups in 
the scaffold.

After evaluating the physicochemical properties of the 
scaffolds, as the second step, to verify the biocompatibility 
of scaffolds, UC-MSCs were successfully isolated, 
characterized, and seeded on both samples. Consistently, 
all results related to the MTT assay, SEM analysis and, 
DAPI staining confirmed good biocompatibility of the 
scaffolds. 

Fabrication of a scaffold with suitable mechanical 
and osteogenic properties was one of the purposes of 
this study. Thus, we chose triCaP and to attain good 

Fig. 9. Effect of exosomes released from scaffolds on the expression of bone commitment marker genes of UC-MSCs seeded on monolayer in 2D culture. All 
groups were in OM, (n =3) (P<0.05). NOTE: Cell group: UC-MSCs without any exosome or scaffold; Cell+Exo group: 25 μg/mL exosome was added directly 
to UC-MSCs; Scaffold group: bare or composite scaffolds were placed in a well culture plate; Scaffold+Exo group: The combinations of exosome/scaffold 
were prepared and placed in a well culture plate. Then UC-MSCs seeded inside the same well plate until the cells come together compactly (nearly 70 hours).
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dispersion ability in the PAA matrix, we added the 
nanoparticle form of triCaP. Subsequently, the osteogenic 
properties of the scaffolds were investigated. Generally, 
in all tests related to evaluating the osteogenic properties 
of scaffolds, UC-MSCs cultured on both scaffolds (3D 
culture) showed more osteogenic properties compared 
with the cells cultured on the plate (2D culture). Even 
the 3D microenvironment provided by the bare scaffold 
could help in better cell differentiation compared with the 
2D culture. By comparing the two fabricated scaffolds, 
triCaPNPs can be considered responsible for the better 
performance of the composite scaffold in UC-MSCs 
osteogenic differentiation. Previous studies demonstrated 
that bone regeneration is facilitated by CaPs, through 
regulating the activation of osteoblasts-osteoclasts 
and promoting bone mineralization via secretion of 
calcium and phosphorus ions.65 Here, we have shown 
two important roles of triCaPNPs: 1) improving the 
physicochemical properties of PAA polymer such as 
mechanical stiffness, greater porosity with a larger pore 
size range, and better wetting properties, all of which can 
contribute to better cell penetration and differentiation; 2) 
enhancing the bone differentiation of UC-MSCs cultured 
on the composite scaffold.

As the next step in this study, after isolating the exosomes, 
to answer the question whether the scaffolds can trap and 
release exosomes for usage in bone repair applications, we 
first assessed the effects of two concentrations of exosomes 
on the proliferation of UC-MSCs. The results indicated 
that exosomes can significantly improve proliferation 
of cells in a dose-dependent manner which was similar 
to previous studies.11,17 To control the consumption of 
exosomes and based on Yang et al,11 we selected 25 μg/mL 
to evaluate bone differentiation. After that, we incubated 
DiI-labeled exosome/scaffolds combination with the cells 
for 18 hours to detect whether the exosomes can ingest 
by UC-MSCs.18 As Fig. 7 and Fig. 8 showed that the 
exosomes were successfully trapped in scaffold surfaces as 
well as exosomes released from the scaffolds and ingested 
by UC-MSCs. 

Since there is evidence demonstrating the beneficial 
effects of exosomes on bone repair,66,67 various studies have 
been performed to compound exosomes with materials to 
help prolong the presence of exosomes at the site of bone 
defects. Zhang et al17 combined exosomes (derived from 
human-induced pluripotent stem cells) with β-TCP to 
repair calvarial bone defect model, but exosomes were 
entirely released after 5 days in vitro. Li et al68 prepared 
PLGA/pDA scaffolds formed from PLGA scaffolds with 
polydopamine (pDA) to achieve slow release of the 
exosomes derived from human adipose-derived stem cells. 
Nearly, 70% of exosomes were released from the scaffold 
after 8 days in vitro. Yang et al11 prepared an injectable 
hydroxyapatite-embedded hyaluronic acid-alginate (HA-
ALG) hydrogel. They showed approximately 71.2% of the 
exosomes derived from UC-MSCs were released from 

What is the current knowledge?
√ PAA is an anionic synthetic polymer.
√ triCaPNPs have excellent biocompatibility and 
osteoconductive properties.

What is new here?
√ A novel 3D multiscale scaffold prepared from triCaPNPs in 
a substrate of PPA polymer. 
√ triCaPNPs improve the physicochemical properties of PAA 
polymer that are in favor of osteogenic differentiation.
√ PAA/triCaPNPs scaffold can carry and release exosomes in 
functional form into the medium. 

Research Highlights

the material after 2 weeks. In our current study, after 2 
weeks of continuous evaluation, the composite scaffold 
had a slower release effect (68.2%) on exosomes compared 
with the bare one (80.3%) (P < 0.05). It was previously 
demonstrated that the higher swelling ratio in bare 
scaffold was caused by the faster exosome releasing from 
it,11 as also confirmed by our results.

In addition, UC-MSCs cultured in the presence of 
composite scaffold revealed the highest expression 
of osteogenic markers, particularly in the presence of 
exosome-enriched composite scaffold, indicating that 
the bioactivity of scaffold components plays a stimulating 
role in gene expression. In this study, we observed that 
the expression of bone commitment markers including 
Collagen Type I, ALP, RUNX2, and osteocalcin in UC-
MSCs cultured in the presence of exosome-enrich 
composite scaffold was 4 to 6 times higher than that of 
these markers in cells cultured with exosomes alone (Fig. 
9). Indeed, the release of biologically active ions (calcium 
and phosphorus ions) from composite scaffold can affect 
the gene expression of UC-MSCs and activate their 
osteogenic commitment. This data is consistent with a 
study, where PLA-based scaffolds, in particular with the 
highest amount of mineral fillers (PLA-10CaSi-10DCPD), 
enriched with exosome enhanced the gene expression of 
human adipose tissue derived-MSCs.18 

The study reported that the PAA/triCaPNPs scaffold 
in addition to offering good physicochemical and 
osteogenic properties due to the presence of CaPNPs, 
can also carry and release exosomes in a functional form 
into the medium. Our future study will focus on in vivo 
experiments. The bone regeneration effect of the exosome/
composite scaffold will be assessed to achieve physical 
support of the defect and controlled exosome release in a 
bone defect animal model. 

Conclusion
The current research is the first study fabricating a 3D 
multiscale scaffold using triCaPNPs in the substrate of PPA 
polymer using a cross-linker and freeze-drying process. 
This study indicated that the presence of NPs in the PAA 
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substrate can improve the physicochemical properties of 
PAA polymer in favor of increasing bone differentiation. 
This scaffold could mimic the nanoscale structure and 
chemical combination of native bone minerals. So, our 
results suggest that the PAA/triCaPNPs scaffold could 
be beneficial to achieve controlled exosome release for 
exosome-based therapy in bone tissue engineering.
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