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Introduction
Globally, one in five men and one in six women will be 
diagnosed with cancer in their lifetime.1 Depending 
on the type and stage of cancer, treatments may target 
specific portions of the body, known as local therapy, or 
may affect the entire body, known as systemic therapy. 
Examples of local therapy include surgery and radiation 
therapy, while drug treatments such as chemotherapy and 
immunotherapy are examples of systemic treatments.2 
Of these, systemic immunotherapeutic interventions are 
most productively enhanced by ex vivo (i.e., outside the 
body) laboratory techniques that allow for the expansion 

of therapeutic or prognostic biological material. 
Adoptive cell therapy (ACT) is perhaps the most widely 

recognized type of immunotherapy relying on ex vivo 
cellular preparation. ACT requires ex vivo modification 
and expansion of autologous cells before these cells are 
infused back into the patient.3 The earliest forms of ACT 
used T cells to treat cancers. Today, there are multiple types 
of T cell therapy, including tumor infiltrating lymphocyte 
(TIL) therapy, chimeric antigen receptor (CAR) therapy, T 
cell receptor (TCR) modified T cell therapy, and therapies 
combining T cells with antibodies against specific tumor 
markers. Recent studies involving CAR-T cell therapy 
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Abstract
Introduction: Immunotherapy has 
revolutionized how cancer is treated. Many 
of these immunotherapies rely on ex vivo 
expansion of immune cells, classically T cells. 
Still, several immunological obstacles remain, 
including tumor impermeability by immune 
cells and the immunosuppressive nature 
of the tumor microenvironment (TME). 
Logistically, high costs of treatment and 
variable clinical responses have also plagued 
traditional T cell-based immunotherapies. 
Methods: To review the existing literature on cellular immunotherapy, the PubMed database 
was searched for publications using variations of the phrases “cancer immunotherapy”, “ex vivo 
expansion”, and “adoptive cell therapy”. The Clinicaltrials.gov database was searched for clinical 
trials related to ex vivo cellular therapies using the same phrases. The National Comprehensive 
Cancer Network guidelines for cancer treatment were also referenced. 
Results: To circumvent the challenges of traditional T cell-based immunotherapies, researchers 
have developed newer therapies including tumor infiltrating lymphocyte (TIL), chimeric antigen 
receptor (CAR), T cell receptor (TCR) modified T cell, and antibody-armed T cell therapies. 
Additionally, newer immunotherapeutic strategies have used other immune cells, including 
natural killer (NK) and dendritic cells (DC), to modulate the T cell immune response to cancers. 
From a prognostic perspective, circulating tumor cells (CTC) have been used to predict cancer 
morbidity and mortality. 
Conclusion: This review highlights the mechanism and clinical utility of various types of ex 
vivo cellular therapies in the treatment of cancer. Comparing these therapies or using them in 
combination may lead to more individualized and less toxic chemotherapeutics. 
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The technique of using ex vivo expanded T cells to 
treat cancer has been prevalent for several decades, yet 
it remains a promising area of cancer research. The 
expansion of other immune cells, such as dendritic and 
NK cells, to kill cancer has opened even more avenues of 
discovery (Fig. 1). While ex vivo cell therapy is effective in 
hematological malignancies, cancer researchers now turn 
their attention towards treating solid cancers with ex vivo 
cell therapy.20,21 Additionally, ex vivo expansion of CTCs 
provides an exciting new avenue of cancer prognostication 
based on samples of CTCs obtained from patients and 
personalized treatment through mouse models.

T cell therapy
T cell overview 
T cells originate from lymphoid stem cells and play an 
essential role in the adaptive immune response. Once 
antigens are displayed to T cells by antigen-presenting 
cells (APCs), T cells produce cytokines which recruit 
and activate appropriate cell types to defend against 
the protected antigen.22 ACT is a branch of cancer 
immunotherapy that manipulates this immune response 
to impact the sustainability and progression of a tumor. 
Strategies for ACT involve either (i) ex vivo expansion of 
naturally-occurring TILs from surgically resected tumor 
samples or (ii) ex vivo genetic modification of T cells 

have explored refocusing CAR-Ts towards cells expressing 
specific molecules, such as EGFR, which allows for more 
targeted cancer therapy.4,5 To increase specificity further, 
a combination of T cell and antibody therapies has been 
developed, known as bispecific antibody-armed T cells. 
Though still in the early stages of development, this 
therapy has been used to treat some B-cell leukemias.6 

In addition to T cell therapies, researchers are 
investigating other ex vivo anti-cancer therapeutics using 
immune cells that modulate T cell responses. Dendritic 
cells (DCs), which present antigens to T cells to trigger 
cytotoxic T lymphocyte (CTL) responses, can be loaded 
with tumor-specific antigens ex vivo and administered as 
cellular vaccinations.7,8 Similarly, natural killer (NK) cells 
create robust anti-tumor responses with a better safety 
profile than CAR-T cells and have been explored in a wide 
variety of cancers.9-15 

Ex vivo cellular expansion techniques also demonstrate 
diagnostic and prognostic utility. Circulating tumor cells 
(CTCs) can be expanded ex vivo to discover tumor-specific 
biomarkers, identify therapeutic drug sensitivities, and 
prognosticate survival outcomes in cancer patients.16-18 
Current research involving CTCs aims to find the most 
efficient ways of isolating CTCs from tumor samples as 
well as testing various culture conditions in which CTCs 
are expanded ex vivo.19

Fig. 1. Graphical overview of therapies. Schematic of immune cellular interactions. (A) Tumor cells undergo epithelial-mesenchymal-transition, causing 
cells to lose cell-cell adhesions and apical-basal polarity. Tumor cells are then able to migrate into circulation, becoming circulating tumor cells (CTCs). (B) 
Natural killer (NK) cells lyse tumor cells through the Fas-FasL death receptor pathway and antibody-dependent cellular cytotoxicity (ADCC) (IgG- CD16 / IgG 
receptor III). NK cells activate and attract DCs via IL-12, IL-15, and IL-18, among other cytokines. (C) Interactions between cytokine-induced killer (CIK) cells 
and tumor cells via natural killer group 2 member D (NKG2D) and ligand UL16 binding proteins (ULBPs) lead to perforin-mediated tumor cell lysis. (D) DCs 
proliferate and activate NK cells through the production of IFN-γ and TNF-α. DCs assist in the initiation and regulation of immunity through multiple interactions 
with T cells (CD28-CD80, CD40L-CD40, MHC2-TCR). (E) Bispecific antibodies activate T cells and promote tumor cell death by simultaneously binding to 
tumor antigens and T cells. (F) T cells are altered by adding the gene for the specific CAR. First generation CARs consisted of an extracellular domain, scfv 
(single-chain fragment variable), a transmembrane domain, and an intracellular signaling domain, such as CD3ζ. Later generations of CAR-T cells are more 
complex.
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isolated from peripheral blood23 to form CAR, tumor-
associated antigen, and bispecific antibody T cells (Fig. 
2). Recent advances in ACT show significant promise 
for the future clinical application of immunotherapy in 
hematologic and solid tumor malignancies.

Tumor infiltrating T cells
TILs are naturally occurring lymphocytes, most 
commonly T cells, that infiltrate tumor tissue. TILs 
capable of recognizing tumor-associated antigens can be 
isolated from surgically resected tumors and expanded 
ex vivo to create clinically appreciable numbers of TILs.24 
Tumor fragments are plated in media containing high 
doses of IL-2 for two to four weeks to allow for initial 
cell expansion. Cells demonstrating the strongest anti-
tumor effects undergo further expansion for another two 
weeks. These cells then undergo preconditioning with 

cyclophosphamide and fludarabine to induce a temporary 
lymphodepletion, a step which has been shown to increase 
the persistence of TILs following infusion.25 Finally, the 
cells are infused back into the patient’s blood stream 
where they travel to the tumor and stimulate an anti-
cancer immune response (Fig. 3). This method has been 
successful in treating refractory metastatic melanoma. 

One popular modification to this approach uses 
“minimally cultured” TILs. Minimally cultured TILs 
forego selection of cells demonstrating pronounced anti-
tumor effects and rapidly expand all harvested T cells, 
regardless of anti-tumor activity. This significantly reduces 
the cost and total culture time associated with traditional 
ex vivo expansion techniques.26 The “minimally cultured” 
approach also allows for a more generalized anti-tumor 
response. Because this approach targets a wide array of 
antigens, the TILs are more likely to remain effective even 
as the tumor inevitably mutates. 

In many cancers, the presence of TILs in tumors is 
associated with a more favorable prognosis compared to 
those without.27 Because TIL therapy relies on cells that 
are naturally occurring, they are generally well tolerated 
with few adverse effects. A recent phase II clinical trial of 
TIL therapy with post-infusion low-dose IL-2 infusions in 
metastatic melanoma was well-tolerated by participants 
with most of the noted adverse effects being related to the 
IL-2 infusions. The observed adverse effects presented as 
grade 1-3 events that were able to be managed in a non-
ICU setting.28

TILs have shown promise for prognostic and therapeutic 
effects in many cancers, including metastatic melanoma, 
ovarian, cervical, head and neck squamous cell cancers, 
and non-small cell lung cancer.27 One form of TIL-based 
ACT, Ln-145 was recently awarded breakthrough therapy 
designation for cervical cancer, something that no other 
cellular immunotherapy for solid tumors has done before. 
By achieving breakthrough therapy designation, this 
therapy will receive expedited development and review 
by the FDA. However, unlike other forms of ACT such 
as CAR-T cell therapy, there are no FDA-approved TIL-
based therapies for use in cancer presently. Despite these 
successes, research and clinical trial efforts have slowed 
due to difficulties overcoming mutating tumor antigens 
and the immunosuppressive tumor microenvironment 
(TME). Instead, research efforts have focused on other 
types of ACT such as TCR and CAR-T therapies. 

Chimeric antigen receptor and T cell receptor modified 
T cells
In the last decade, CAR and TCR modified T cell therapies 
have demonstrated increased therapeutic potential. 
This form of ACT involves the isolation of T cells from 
peripheral blood, followed by ex vivo genetic modification 
and expansion. Finally, these cells will be infused into the 
patient following preconditioning. By engineering ACTs 
specifically to the tumor of interest, this generally offers 

Fig. 2. Types of adoptive T cell therapy. There are multiple methods 
developed for ACT approaches. (A) The original therapy utilized was TIL 
therapy, which utilized unmodified T cells found within a surgically excised 
tumor that were expanded ex vivo prior to re-infusion. The unmodified TCR 
(blue) interacts directly with the MHC (purple) on the tumor cell to begin 
signaling the immune response. (B) TCR-modified T cells are T cells that 
were obtained from the patient via leukapheresis prior to ex vivo genetic 
modification. TCR-modification (red) attempts to improve the therapeutic 
strength of T cells through altering the expression and pairing of TCR α 
and β chains. (C) TAA-T cells are T cells exposed to multiple, selected 
tumor antigens via DCs. When the DCs present these selected antigens 
to the native T cell via MHC and co-stimulation of B7 protein to the T cell 
via TCR and CD28 binding, the T cell will mount an immune response to 
each of those antigens. While using multiple antigen targets will increase 
the effectiveness of the therapy, there is an increased risk of on-target 
off-tumor toxicity. (D) CAR-modified T cells are like TCR-modified T cells, 
except CARs (blue) are synthetic receptors that utilize antigen-binding 
portions of immunoglobulin that bind a unique antigen. CARs will bind 
directly to a specific TAA (green) on the tumor cell. (E) Bispecific antibody 
(BsAb) armed T cells are genetically engineered antibodies that utilize two 
arms. One arm will bind a T cell while the other arm binds a specific antigen 
that is being targeted. This technique does not involve genetic modification 
but will rather guide T cells towards the antigen that is being targeted by 
the engineered antibody.
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a more specific and potentially more potent therapeutic 
effect against the tumor. This strategy offers advantages in 
situations where TILs not utilizing genetic modification 
fail to provide adequate anti-tumor effects.29 

TCR-modified ACT enhances T cell specificity by 
altering the expression and pairing of the TCR alpha 
and beta chains, leading to a more potent tumor 
antigen-specific TCR.29 CAR-modified ACT generates 
CARs by combining the antigen-binding portions of an 
immunoglobulin with the signal-producing component 
of immunoreceptors and appropriate co-stimulatory 
molecules. CARs are designed to combine the high 
specificity of antibodies with the therapeutic potential 
of T cells. Both TCR and CAR-modified ACTs involve 
similar production methods.23 

Hematologic malignancies have successfully been 
treated by CAR-T cell therapy. In 2017, tisagenlecleucel, 
which targets CD19, was approved by the FDA for use 
in patients less than 25 years of age with relapsing or 
refractory B-cell precursor acute lymphoblastic leukemia 
(ALL).30 Since then, a total of six CAR-T cell therapies 
have been FDA approved for various hematological 
malignancies as outlined in Table 1. Several ongoing 
clinical trials for hematological malignancies utilizing 

various CD molecules that are well-summarized by 
Vandghanooni et al.31

While these techniques demonstrate success in the 
treatment of hematologic malignancies, solid tumors have 
been more difficult to target due primarily to a lack of 
unique tumor target antigens, limited trafficking ability 
of CAR-T cells to tumor sites, tumor heterogeneity, and 
antigen loss throughout disease progression.37 However, 
there have been recent clinical trials utilizing various 
specific tumor markers for solid tumors that have 
shown promising results. These trials, several of which 
are well-summarized in Table 1 from Bagley et al,29 
have studied CAR-T cells in gastrointestinal (colorectal, 
pancreatobiliary), genitourinary (renal cell carcinoma, 
prostate, ovarian), breast, and lung cancers.

With the overall promise of these therapies, 
bioengineering is at the forefront of guiding the future 
of CAR-T cell therapy. Researchers are now studying the 
use of nanotechnology to develop antigen-recognizing 
CAR-T cells in vivo. These synthetic nanoparticles can be 
designed to express CAR genes which bind to molecules 
of interest, as well as proteins that selectively bind to T 
cells and help to insert the CAR genes into the cell’s 
DNA. Currently, this therapy is being explored in pre-

Fig. 3. T cell isolation and ex vivo expansion. For ACT therapy, T cells require ex vivo manipulation in the form of expansion and/or genetic modification. 
(A) TILs are isolated from a surgically excised tumor after which they undergo ex vivo expansion. (B) Genetically modified T cells, including TCR-modified 
(TCR*), CAR-T, and TAA-T start initially with native T cells isolated from the patient’s blood via leukapheresis. Following isolation, the T cells will undergo ex 
vivo genetic modification through various routes including mRNA transfection, viral vectors, transposons, or homologous recombination.23 Following genetic 
modification, the T cells will be expanded ex vivo. (C) Following expansion, the cells will then be packaged into an appropriate concentration and dosage for 
immunotherapy. The patient will undergo preconditioning with cyclophosphamide and fludarabine prior to re-infusion of T cells.25

Table 1. FDA-approved CAR-T cell immunotherapies

Approved CAR-T therapy Target antigen Disease Age indications

Tisagenlecleucel 30 (Kymriah) CD19
B-cell acute lymphocytic leukemia Up to 25 years

B-cell non-Hodgkin’s lymphoma 18 and older

Axicabtagene ciloleucel 32 (Yescarta) CD19
B-cell non-Hodgkin’s lymphoma

18 and older
Follicular lymphoma

Brexucabtagene autoleucel 33 (Tecartus) CD19
Mantle cell lymphoma

18 and older
B-cell acute lymphocytic leukemia

Lisocabtagene maraleucel 34 (Breyanzi) CD19 B-cell non-Hodgkin’s lymphoma 18 and older

Idecabtagene vicleucel 35 (Abecma) BCMA Multiple myeloma 18 and older

Citacabtagene autoleucel36 (Carvykti) BCMA Multiple myeloma 18 and older
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clinical animal models and researchers have successfully 
generated therapeutic levels of T cells by using this in situ 
delivery system.38 This type of system could potentially 
reduce costs and ease storage difficulties seen in ex vivo 
therapies but will require further laboratory research prior 
to use.

Tumor associated antigen T cells
Tumor-associated antigen cytotoxic T cells (TAA-Ts) are 
another alteration of the original CAR-T cell therapy. 
While CAR-T cell therapy selectively targets one antigen, 
TAA-T cell therapy aims to express multiple tumor 
antigens. This is done by exposing ex vivo white blood 
cells to DCs with selected TAAs. By introducing these 
TAAs via MHC to the native TCR, the T cells can mount 
an immune response against multiple TAAs. These cells 
are then expanded prior to infusion. In a recent phase I 
trial, TAA-Ts were evaluated for treatment of relapsed/
refractory solid tumors utilizing the following targets: 
Wilms tumor gene 1 (WT1), preferentially expressed 
antigen of melanoma (PRAME), and survivin (BIRC5).39 
WT1 has been shown to be overexpressed in Wilms 
tumor,40,41 sarcomas,42 ovarian,43 and prostate cancers.44 
PRAME, involved in cell proliferation and survival,45 is 
associated with advanced disease and poor prognosis.45-48 
BIRC5, a gene that is highly expressed during fetal 
development and is absent in most mature tissues,49 is 
overexpressed in many malignancies50-52 and associated 
with disease characteristics including chemotherapy 
resistance, disease recurrence, and decreased survival.39 
In this phase I trial, fifteen patients received infusions of 

the TAA-T cell therapy, of which 11/15 (73%) responded 
favorably. Overall, the treatment was tolerated well without 
dose-limiting toxicities or infusion-related adverse events.

While TAA-T cell therapy needs to be investigated 
further, the utilization of multi-antigen targeting may 
mitigate some of the previously discussed limitations of 
CAR-T cell therapy. By utilizing TAA-T cells that employ 
multiple unique targets rather than only one target as 
in CAR-T therapy, the probability that the therapy will 
be able to effectively recognize and target heterogenous 
tumor cells increases substantially. Another benefit is 
that this multi-target treatment has a greater chance of 
withstanding the rapid evolution of a tumor as individual 
targets mutate. Finally, by targeting multiple antigens at 
once, the treatment eliminates the logistical and financial 
complications associated with repeating T cell expansion 
several times.39

Despite the advantages of having multiple targets, the 
specific antigens for TAA-T cell therapy have to be carefully 
selected to lessen the on-target off-target toxicities. The 
lack of dose-limiting toxicities, infusion-related adverse 
events, and cytokine release syndrome (CRS) in the Hont 
et al phase I clinical trial shows promise that selecting 
appropriate targets and doses can mitigate adverse events 
while providing effective immunotherapy.39 While there 
are no FDA-approved TAA-T cell therapies, several 
clinical trials are ongoing, as summarized in Table 2.

Bispecific antibody armed T cells
A more recent development in ex vivo T cell therapy is the 
development of bispecific antibodies (BsAbs), which utilize 

Table 2. Current TAA-T cell therapy clinical trials

NCT # Targeted condition or disease Antigen of interest Phase

NCT02475707 Acute lymphoblastic leukemia WT1, PRAME, Survivin Phase 1

NCT04679194 Acute myeloid leukemia, myelodysplastic syndrome WT1, PRAME, Survivin Phase 1

NCT02494167 Acute myeloid leukemia, myelodysplastic syndrome WT1, PRAME, NY-ESO-1, Survivin Phase 1

NCT03843294 Hodgkin’s lymphoma, diffuse large B cell lymphoma WT1, PRAME, Survivin Phase 1

NCT05134740
NCT01333046 Hodgkin’s lymphoma, non-Hodgkin’s lymphoma NY-ESO-1, MAGE A4, PRAME, Survivin, SSX Phase 1

NCT02291848 Multiple Myeloma, high risk MGUS/ Smoldering myeloma NY-ESO-1, MAGE A4, PRAME, Survivin, SSX Phase 1

NCT02203903 Relapsed/ refractory hematological malignancies, acute 
myeloid leukemia, myelodysplastic syndromes WT1, PRAME, Survivin Phase 1

NCT02789228
Solid tumors (Ewing sarcoma, neuroblastoma, 
rhabdomyosarcoma, soft tissue sarcomas, osteosarcoma, 
adenocarcinoma, esophageal carcinoma, renal cell carcinoma)

WT1, PRAME, Survivin Phase 1

NCT05238792 Solids tumors (Ewing Sarcoma, Wilms tumor, neuroblastoma, 
rhabdomyosarcoma, soft tissue sarcoma, osteosarcoma) WT1, PRAME, Survivin Phase 1

NCT03192462 Pancreatic cancer NY-ESO-1, MAGE A4, PRAME, Survivin, SSX2 Phase 1/2

NCT04511130 Acute myeloid leukemia WT1, PRAME, NY-ESO-1, Survivin Phase 2

NCT03093350 Breast cancer (metastatic or locally recurrent unresectable 
disease) NY-ESO-1, MAGE A4, PRAME, Survivin, SSX2 Phase 2

NCT03535246
Cancers positive for at least one of the following antigens: 
GD2, mesothelin, P16, MMP, Melan A, MAGE A1, MAGE A3, 
MAGE A4

GD2, mesothelin, P16, MMP, Melan P, MAGE A1/
A3/A4 Phase 2
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a single molecule that has combined the binding sites of 
two monoclonal antibodies. This BsAb is engineered to 
bind both an activated cytotoxic T cell as well as a unique 
TAA, effectively “arming” the cytotoxic T cell to a specific 
TAA. Thus, these BsAb treatments increase perforin and 
granzyme activity towards tumors expressing unique 
TAAs.53 The “arming” of T cells enhances their therapeutic 
effect while minimizing adverse effects of T cell therapy 
previously discussed. BsAb treatment strategies represent 
what is known as “off the shelf ” therapies, meaning that 
collecting patient cells is not required, unlike other forms 
of ACT. Rather, BsAb treatments serve as an immediately 
available therapeutic option, in stark contrast to CAR/
TCR-modified T cell therapy which often requires weeks 
to develop and may lose viability by the time of their use 
due to tumor heterogeneity.29 Compared to the living and 
self-expanding CAR-T cells, BsAbs persist for a shorter 
duration and rely more heavily on frequent application.54 
As of 2015, the first BsAb therapy, blinatumomab, was fully 
approved for use in acute B-cell lymphoblastic leukemia.6 
A list of FDA-approved bispecific antibody therapies is 
seen below in Table 3.

Due to the short longevity of BsAbs in the body, there 
has been a surge in the use of BsAbs that are “armed” 
to activated T cells, effectively combining the strengths 
of BsAb and CAR-T cell therapy. While still in early 
development, one group investigated the use of BsAb ex 
vivo armed T cells (EATs) in various cancer cell lines and 
patient-derived xenograft mouse models. The generated 
EATs used anti-CD3 single-chain variable fragment 
(scFv) attached to the light chain of a tumor-binding IgG 
(IgG-[L]-scFv). They found that compared to isolated 
BsAb injections, EATs infiltrated tumors more quickly 
and were associated with more prolonged survival. 
Additionally, compared to BsAb therapy alone, EATs 
released significantly fewer cytokines, particularly TNF-α, 
in vitro without affecting trafficking ability or tumoricidal 
activity of the EATs in vitro or in vivo.54 Therefore, these 
generated EATs show promise in promoting tumoricidal 
effects while preventing CRS, a well-known adverse effect 
of ex vivo T cell54 and BsAb therapy.6

Neurotoxicity is another obstacle for both CAR-T cell 
and BsAb therapy alike. The neurotoxic effects of EAT and 
CAR-T cells have not been compared directly. However, 
previous studies have shown that while GD2-CAR-T 
cells cause neurological damage in mouse models, GD2-
BsAbs and GD2-EATs did not.58 This suggests BsAb and 
EAT therapies may display reduced neurotoxic side effects 
compared to traditional CAR-T cell therapy. By combining 

the strengths of BsAbs and CAR-T cell therapy, EATs 
further increase the cancer therapeutic arsenal. While 
more research is required for full clinical application, early 
results suggest that EATs generate increased tumoricidal 
effects while minimizing common adverse effects such 
CRS and neurotoxicity. 

NK cell therapy
NK cell overview 
NK cells, which are lymphocytes derived from a common 
progenitor of T and B cells, have also shown promise as 
cancer therapeutics. These cells initiate and regulate both 
the innate and adaptive immune systems. As part of the 
innate immune system, NK cells are important for tumor 
surveillance because they have the unique ability to kill 
tumor cells without T and B cells.59,60 NK cells also play an 
important role in the adaptive immune system because of 
their ability to engage in reciprocal interactions with DCs, 
macrophages, and T cells. 

The immune surveillance that NK cells provide is 
invaluable, and NK cell deficiencies are associated with 
increased occurrence of malignancies.61 Since NK cell 
anti-tumor properties were first discovered in the 1970s,59 
the potential for NK cell-based immunotherapies against 
cancer continues to be actively investigated. 

NK cell therapies have several advantages over traditional 
T cell therapies, including fewer side effects, faster clinical 
response, and a greater ability to communicate with 
other immune cells.62 While NK cell immunotherapy has 
achieved success in treating hematological cancers,63 this 
branch of cellular immunotherapy must overcome many 
of the issues other cellular therapies face.64,65 NK cells 
struggle to penetrate solid tumors, which may be due to 
their inability to travel to the tumor site, as well as the 
immunosuppressive effect of the TME,66,67 as depicted in 
Fig. 4. Additionally, the use of NK cells has been limited by 
difficulty in obtaining sufficient cell numbers due to their 
rarity in the peripheral blood and poor ex vivo expansion 
methods. With the knowledge of how tumors evade 
immunosurveillance, researchers have turned toward 
developing therapies that restore the cytolytic abilities 
of NK cells. These therapies, which include cytokine-
induced memory-like natural killer cells (CIMLs), CAR 
modified NK cells, and cytokine-induced killer (CIK) 
cells were developed to improve NK cell tumor infiltration 
and activation.68,69

NK cell therapy 
NK cells may be harvested using donor cells, autologous 

Table 3. FDA-approved bispecific antibody immunotherapies

Bispecific antibody immunotherapy Targeted condition or disease Target antigens Age indications

Blinatumomab  (Blincyto)55 B-cell acute lymphoblastic leukemia CD3/CD19 All ages

Amivantamab (Rybrevant)56 Non-small cell lung cancer EGFR/MET 18 and older

Tebentafusp (Kimmtrak) 57 Metastatic uveal melanoma CD3/gp100 18 and older
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cells, umbilical cord blood70 or pluripotent stem cells.71 
Presently, most clinical trials utilize peripherally 
derived NK cells. NK cells are first separated from other 
peripheral cells using CD3- CD56+ markers to avoid life-
threatening illnesses following cell transplants, such as 
graft-versus-host-disease (GVHD) and post-transplant 
lymphoproliferative disorder.72 Cells are then plated in 
medium containing IL-2, a step which has bene shown 
to improve cytotoxicity and viability.72,73 NK cells can 
also be co-cultured with other immune cells, including 
monocytes, macrophages, and DCs, to produce an even 
more cytotoxic NK response.74 

Ultimately, the efficacy of NK cell immunotherapy 
on solid tumors depends on the infused cell’s ability to 
reach the tumor site and penetrate the hypovascular, 
dense network of extracellular matrix within the TME.75,76 
Chemokines such as CCR2, CCR5, and CXCR3 play 
an essential role in the migration of NK cells and the 
manipulation of the chemokine receptor profile on NK 
cells has been shown to improve NK cell infiltration 
into the TME.77 Genetically altering NK cell chemokine 
receptors has yielded promising results in pre-clinical 
models of several different cancers, including ovarian, 
renal cell, and lung cancer.78-81

  
Cytokine-induced memory-like NK cells
NK cells were initially thought to be short-lived and 

incapable of remembering previous exposures to antigens. 
However, Cooper et al observed that murine NK cells, 
after activation with IL-12, IL-15, and IL-18, exhibited 
memory-like properties by producing high levels of IFN-γ 
when stimulated weeks later. These cells became known as 
cytokine-induced memory-like (CIML) NK cells.82 CIML 
NK cells became an attractive option for adoptive cellular 
therapy because of their anti-tumor response and ability 
to persist in vivo in pre-clinical models of melanoma and 
hematological malignancies.83,84 

Based on these promising pre-clinical results, a 
phase 1 clinical trial of CIML NK cells in patients with 
relapsed/ refractory AML was completed. Patients were 
lymphodepleted using fludarabine and cyclophosphamide 
before receiving the CIML NK cells, which were generated 
using haploidentical donors. Results of this study 
demonstrated robust proliferation and expansion of the 
CIML NK cells without major toxicities such as CRS or 
GVHD.85 Currently, researchers are continuing to explore 
the safety and efficacy of CIML NK cell immunotherapy, 
and have begun to study their use in solid tumors. A list 
of ongoing clinical trials involving CIML NK cells can be 
found below in Table 4.

Chimeric antigen receptor NK cells in immunotherapy 
Similar to CAR-T cells, CAR-NK cells have been 
genetically engineered to express CARs uniquely selected 

Fig. 4. Tumor suppressing NK cell activity. Tumor cells utilize a variety of tools to suppress the apoptotic actions of NK cells, including destroying NKG2D-L, 
releasing TGF-β, and recruiting regulatory T cells to downregulate NKG2D receptors. (A) The natural killer group 2, member D ligand (NKG2D-L) expressed 
on the tumor cell surface binds to the natural killer group 2, member D receptor (NKG2D) and activates natural killer cells, which allows them to destroy 
cancerous cells. Tumor cells can release metalloproteinases that function to cleave the NKG2D-L from their surface, preventing NK cells cytotoxic activation. 
(B) The cytokine transforming growth factor-β (TGF-β) is released by tumor cells during periods of growth and progression to malignancy. TGF-β functions as 
an immunosuppressant and can interrupt the NKG2D/NKG2DL system on NK cells by downregulating NKG2D 148. The cytokine transforming growth factor-β 
(TGF-β) is released by tumor cells during periods of growth and progression to malignancy. TGF-β functions as an immunosuppressant and can interrupt the 
NKG2D/NKG2DL system on NK cells by downregulating NKG2D.148 (C) Regulatory T cells (Tregs) play a role in suppressing the cytotoxic function of NK cells. 
This mechanism also relies on the immunosuppressant cytokine TGF-β, which activates Tregs who in turn inactivate NK cells, thus decreasing their ability to 
destroy cancerous cells.
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to target specific antigens. CAR-NK cells are thought 
to have several advantages over CAR-T cells, including 
the ability to trigger tumor cell death independent of 
the tumor antigen via NK cell receptors stimulation.86 
CAR-NK cells have also demonstrated a decreased risk 
of GVHD compared to CAR-T cells because the NK 
cells are recognized as “self ” cells, protecting them from 
the alloreactive effects of T cells. This in turn improves 
their safety profile.87,88 Additionally, CAR-NK cells have 
been shown to destroy tumor cells using both CAR-
independent and CAR-dependent mechanisms.89 Thus, it 
may be less likely that tumor cells can evade CAR-NK cells 
when compared with CAR-T cells, despite the tumors’ 
ability to downregulate CAR target antigen. Further, NK 
cells lack the ability to produce autocrine growth factors, 
limiting their lifespan and thus decreasing the risk of 
negative off-target effects.90 

Many preclinical studies have examined the efficacy 
of CAR-NK cells in hematologic malignancies and 
demonstrated strong favorable results.91 To date, there 
has only been one clinical trial published examining the 
efficacy in CAR-NK cells used in relapsed or refractory 
CD-19 positive cancers.92 These cancers include chronic 
lymphocytic leukemia (CLL) and NHL. In this study 
(n=11), 8 patients (73%) treated with CAR-NK cells 
responded to the therapy, and of those, all but one 
had a complete remission. Importantly, none of the 
patients experienced any of the well-known side effects 
of CAR-T cell therapy, including GVHD, CRS, or 
neurotoxicity. These results are promising and should 
serve to highlight the excellent safety profile of CAR-
NK cell therapy. Interestingly, results of another small 
pilot study examining the use of CAR-NK cells in acute 
myeloid leukemia (AML) yielded different results. In this 

study (n=3), none of the three patients with relapsed or 
refractory AML had a clinical response to CAR-NK cell 
therapy targeting CD-33.93 However, small sample sizes 
in both pilot studies limit the power of these studies and 
further investigation is needed to fully understand the 
efficacy of CAR-NK therapy. 

While many studies of CAR-NK cells focus on their 
use in hematologic malignancies, this therapy shows 
encouraging, although statistically underpowered, results 
in solid tumors. In a small-scale pilot study (n=3), Xiao 
et al found CAR-NK cells to be effective in the treatment 
of metastatic colon cancer. This study featured CAR-NKs 
targeting NK group 2 member D ligand (NKG2DL), a 
molecule often expressed by tumor cells which activates 
NK cells. Two of these patients with malignant ascites were 
treated with allogeneic haploidentical NK cells via direct 
local injection into the peritoneal cavity. Both patients 
experienced significant reductions in the number of 
cancer cells in ascites fluid as well as reduction in volumes 
of ascites fluid. The third patient received ultrasound-
guided percutaneous allogeneic haploidentical CAR-NK 
cell injection. Following therapy, the size of the tumor 
decreased by 40% as measured by Doppler ultrasound.91 
While the small sample size of this trial limits the impact 
of the results, this evidence supports continued research 
and development of safe CAR-NK cell therapies. At the 
present time, this is the only study published using CAR-
NK cells in solid tumor disease, although there are multiple 
ongoing clinical trials focusing on solid malignancies as 
outlined in Table 5.

These and other clinical trials have demonstrated the 
exciting potential for NK cells to be used as cancer therapy 
(Fig. 4). Currently, most studies are testing these therapies 
using autologous NK cells, meaning cells from the patient’s 

Table 4. Ongoing CIML NK clinical trials

NCT# Targeted cancer or disease Phase

NCT04024761 Acute myeloid leukemia, myelodysplastic syndromes, juvenile myelomonocytic leukemia Phase 1
NCT04290546 Head and neck squamous cell carcinoma Phase 1

NCT05580601 Acute myeloid leukemia Phase 1/2

NCT04634435 Multiple myeloma Phase 1/2 
NCT04354025 Acute myeloid leukemia Phase 2

Table 5. Ongoing clinical trials studying CAR-NK therapy in solid tumors

NCT# Targeted cancer or disease Antigen of interest Phase

NCT05194709 Advanced solid tumors 5T4 Early Phase 1

NCT03692663 Prostate cancer PSMA Early Phase 1

NCT05213195
NCT05248048 Colorectal cancer NKG2D Phase 1

NCT05528341 Relapsed/ refractory solid tumors NGK2D Phase 1

NCT05507593 Small cell lung cancer DLL3 Phase 1

NCT05410717 Ovarian cancer, testicular cancer, endometrial cancer CLDN6 Phase 1/2 

NCT04847466 Gastroesophageal junction cancers, head and neck squamous cell carcinoma PD-L1 Phase 2
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body. In the future, researchers may use allogeneic NK 
cells, or cells from a matched donor, to produce NK cell 
therapeutics on a larger scale at a potentially lower cost. 
Ideally, a standardized method of cell harvesting and 
infusion will simplify the logistics of this process and 
reduce variability regarding clinical outcomes, allowing 
researchers to better compare therapies.87 

Cytokine-induced killer cells in immunotherapy
CIK cells are a heterogenous group of immune cells with 
both NK and T cell properties. CD3+ CD56+ CIK cells 
are able to kill both hematological and solid tumor cells 
in an MHC-unrestricted manner based on interactions 
between NKG2D molecules on CIK cells and UBLPs on 
tumor cells (Fig. 4). Using CIK cells to treat cancer is a 
relatively inexpensive method and does not rely on feeder 
or accessory cells, unlike NK cells. Another benefit is that 
the heterogeneity of the CIK cell population allows cells to 
attack a wide variety of tumor antigens.94

Many clinical trials have demonstrated that CIKs have 
anti-tumor effects in a variety of cancers. In a meta-
analysis of clinical trials assessing the efficacy of CIK 
therapy in patients with hepatocellular carcinoma, CIK 
therapy significantly prolonged progression-free survival 
and improved quality of life when used alongside the 
standard of care therapy.95 Other clinical trials have 
demonstrated that the use of CIK therapy prolongs 
median overall survival and has a favorable effect on 
progression-free survival in colon, lung, pancreatic, and 
ovarian cancers.96-99 

These trials demonstrate the utility of CIK cells as a 
form of immunotherapy while also raising questions 
regarding the optimal length of maintenance treatments 
and frequency of CIK infusions. Further studies will be 
needed to compare efficacy between autologous and 
allogeneic CIK cells. Currently, researchers are continuing 
to explore the utility of CIK therapy individually or in 
combination with DC therapies.100

Dendritic cells
Dendritic cells overview
Dendritic cells are another tool used to enhance the 
immune response to tumor cells. DCs are cells of the 
innate immune system, scanning peripheral blood and 
tissues for pathogens such as viruses. Once in contact with 
a presentable antigen, it is loaded onto an MHC Class I or 
II molecule, which is then recognized by a TCR to activate 
helper T cells and cytotoxic T cells.101 As the DC matures, 
several changes occur that allow the cell to induce a T cell 
response more effectively, including an increase in the 
expression of chemokine receptors and surface MHC I/
II molecules.101 Different subsets of DCs can be found in 
virtually any organ, including the lungs, stomach, and 
intestines. Clinical studies have focused on blood and 
skin derived DCs due to accessibility via peripheral blood 
samples or skin samples, such as from dermatome-cut 

skin preparation.102 

Dendritic cell immunotherapy
Most DC-based immunotherapies have been studied in 
the form of DC-based anti-tumor vaccines. These vaccines 
have been shown to be safe although their clinical efficacy 
has been inconsistent.103 To develop vaccines, DCs are 
extracted from a patient and matured ex vivo with a 
cocktail of toll-like-receptor ligands and prostaglandins. 
Then, the DCs are “loaded” with tumor-associated 
antigens. Some examples of tumor-associated antigens 
include synthetic long peptides and melanoma-associated 
antigens.104,105 Finally, the DC vaccine is administrated 
to the patient. From there, the DCs can travel to lymph 
nodes and stimulate an anti-tumor T cell response.106 

DC vaccines have been used in the treatment of 
cancer for decades, but they are especially efficacious in 
the treatment of melanoma. In one study, patients with 
stage III and IV melanoma were administered monocyte 
derived DCs loaded with keyhole limpet hemocyanin 
and mRNA encoding gp100 and tyrosinase tumor 
antigens. Patients received either intranodal or combined 
intradermal/intravenous injections. Using delayed-
type hypersensitivity (DTH) skin tests, tumor antigen-
specific responses were detected following either type of 
injection. Stronger immune responses as determined by 
the DTH tests were correlated with longer OS in patients 
with stage IV melanoma. Despite these promising results, 
side effects of the vaccinations included hepatotoxicity 
and pneumonitis, potentially due to the use of Bacillus 
Calmette-Guérin (BCG). A retrospective cohort of stage 
IV melanoma patients found that patients with TAA-
specific CD8 T cells within skin-infiltrating lymphocytes 
had significantly improved OS.107 

The concept of pre-conditioning the vaccination site 
with a potent recall antigen, such as tetanus/diphtheria 
(Td) toxoid, is also being explored to improve the clinical 
efficacy of DC vaccinations. One trial studied the efficacy 
of pre-conditioning the vaccination site with mature DCs 
versus Td toxoid. Following pre-conditioning, patients 
were administered DCs pulsed with pp65, an antigen 
expressed in over 90% of glioblastoma multiforme 
tumors. Patients receiving pre-conditioning with the 
toxoid demonstrated improved DC migration and OS.108 
Given the small sample size used in this study (n=12), 
this method of DC-based vaccination will need to be 
investigated in future trials. 

Future directions for DC therapy
Undoubtedly, DC vaccine immunotherapy represents an 
exciting avenue of personalized cancer therapy. Moving 
forward, researchers have a multitude of questions that 
need to be explored to ensure the efficacy and safety 
of this treatment. The maturation period and tumor-
antigen cocktail will need to be optimized, as well as 
the most ideal site of delivery of DC vaccines for each 
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malignancy. While intranodal injection may work for 
cancers such as melanoma, this approach may not be most 
advantageous for patients with glioblastoma. Combining 
DC therapy with other treatments, such as radiotherapy 
or chemotherapy, is a promising route that is currently 
being explored.

Interestingly, in addition to direct cytotoxicity, 
radiotherapy can have both immunosuppressive and 
immunostimulatory effects.109 As the tumor cells are 
irradiated and destroyed, they release a storm of tumor 
antigens that can be taken up by circulating DCs. These 
antigens can be used as a blueprint for a tumor-specific 
attack by endogenous immune cells.110 This suggests a 
potential synergistic effect between radiation therapy 
and DC-based immunotherapy. This concept has been 
previously studied in vivo111 and in clinical trials for 
patients with HER2/neu overexpressing ductal carcinoma 
in situ of the breast, which yielded hopeful results.112 In 
their study, Czerniecki et al used breast microcalcifications, 
as measured by MRI, to estimate the extent of disease. The 
majority (6/11) of patients who received DC vaccines 
prior to resection had tumors over 50% smaller than 
the area predicted by microcalcifications. This suggests 
DC vaccines may improve prognosis and lead to tumor 
regression in these patients. Currently this concept is 
being investigated with larger cohorts of patients and 
there are over 250 ongoing clinical trials featuring the use 
of anti-tumor DC-based vaccines, several of which are 
described in Table 6.

At present, DC-based monotherapy and combination 
therapies have demonstrated longitudinal anti-tumor 
responses.113,114 However, multiple challenges need to 
be addressed to improve outcomes in cancer. These 
challenges include proper selection of synergistic 
treatment modalities and effective inclusion of sensitizing 
agents within the vaccines. Additionally, optimal treatment 
lengths and delivery strategies for of these vaccines remain 
unresolved. Finally, clinical trials utilizing DCs have been 
inconsistent and costly.115 Learning how to best utilize 
DC-based vaccines represents an inspiring frontier in 
immunotherapy research.

Circulating tumor cells 
CTC overview
CTCs are cancer cells released from solid tumors into 
the bloodstream.116 First identified in 1869 by Thomas 
Ashworth, CTCs are thought to separate from tumors, 
either as single CTCs or in clusters, through a process 
known as epithelial-mesenchymal transition. From there, 
they travel to distant sites within the body where they 
become “seeds” for distant metastasis.117,118 Therefore, 
researchers believe that CTCs may play an invaluable 
role in cancer diagnosis and prognosis. However, several 
challenges have limited their utility. CTCs are sparse 
within the blood, making it difficult to collect enough 
cells in a blood sample. CTCs are also heterogenous in 

Table 6. Ongoing clinical trials studying dendritic cell therapy in solid tumors

NCT# Targeted cancer or disease Phase

NCT05504707 Breast cancer Phase 1

NCT04078269 Non-small cell lung cancer Phase 1

NCT02919644 Colorectal cancer Phase 2

NCT00458536 Renal cell carcinoma Phase 1

NCT01197625 Prostate cancer Phase 2

NCT00799110 Ovarian cancer Phase 2 

NCT02496273 Gastric cancer Phase 1

that they differ in which biomarkers are expressed on 
their surface. Thus, a variety of methods which exploit 
chemical and molecular properties of these cells must be 
used to harness their power. 

CTC isolation and enumeration 
CTCs must first be isolated and enumerated from a whole 
blood sample, using either label dependent (affinity-
based) or label-independent selection.119 The label-
dependent method relies on positive selection using cell 
surface markers targeted towards CTCs, such as epithelial 
cell adhesion molecule (EpCAM) or cytokeratin (CK) 
markers.120 The label-independent method relies on 
negative selection by size or other biophysical properties.119

Presently, one of the most powerful tools used for 
identification and enumeration of CTCs is the CellSearch 
CTC system, the only FDA-approved platform for CTC 
isolation. CellSearch isolates CTCs using a label-dependent 
process. Anti-EpCAM antibodies are used to positively 
select for CTCs before cells are stained for epithelial 
markers (CK8, CK18, CK19), a leukocyte marker (CD45), 
and a nuclear marker (6-diamidino-2-phenylindole or 
DAPI). Cells are considered CTCs if they are CK+, CD45-, 
and have a nucleus.121 While CellSearch has great potential 
for a variety of analyses, it is only officially approved by the 
FDA for in vitro diagnostic use and monitoring patients 
with breast, prostate, and colorectal cancers.122

Recently, several platforms have been used to 
successfully isolate CTC clusters, in addition to individual 
CTCs. One such platform consists of a 3D scaffold chip 
coated with thermosenstivie gelatin. This chip can capture 
individual CTCs and clusters and, when heated to 37 
˚C, the gelatin dissolves without destroying the integrity 
of the clusters and maintaining viability.123 In 2015, the 
Cluster Chip, a microfluidic platform capable of capturing 
clusters made of only two CTCs, was created.123 Several 
microfluidic methods have further improved our ability to 
capture and isolate CTC clusters. Even newer techniques 
are being developed to allow separation of single CTCs 
from CTC clusters, which may provide valuable insight 
into in vivo cancer development.124 Nonetheless, further 
pre-clinical and clinical studies are required to ascertain 
the utility of these platforms. 
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Preclinical applications of CTCs
CTCs have been used to model small cell lung cancer 
(SCLC) patients using circulating tumor cell-derived 
explants (CDXs). These CDXs are created by taking 
CTCs from patients with SCLC and injecting the cells 
into immunocompromised mouse models.116 When 
treated with etoposide and platinum therapies, the CDXs 
therapeutic response mirrored that of the patients from 
which the CTCs were taken (Fig. 5). This was found to 
be true for patients with chemosensitive SCLC as well 
as those with chemorefractory disease. This method is 
beneficial because it serves as a less invasive method of 
studying rapidly-progressive cancers such as SCLC.125 
Thus, CDXs may provide a platform to screen new 
treatments, identify predictive and pharmacodynamic 
biomarkers, and investigate mechanisms of resistance to 
better understand the progression of cancer.126

The use of CTCs in pre-clinical models also has 
potential to develop therapeutic targets in vivo. If CTCs are 
eliminated in vivo, the risk of metastasis may be reduced, 
and survival outcomes may improve. This was studied 
in animal models by injecting green fluorescent protein 
(GFP)-expressing CTCs into mice. Photodynamic therapy 
was used to clear these GFP-expressing CTCs, and then 
evaluated the therapeutic effect of CTC clearance (Fig. 5). 
In cultured cells, apoptotic agents such as tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL), have 
been used to target CTCs to reduce the probability of 
metastasis.127 These studies demonstrate the possible 
utility of CTC-targeting cancer therapies. 

CTCs and CDX give researchers insight into the severity 
of cancer as well as a window into how treatment will 
impact these diseased cells. However, the samples can 

only be used for limited amounts of time in an ex vivo 
setting, as the most resilient clones to survive in culture 
will begin to predominate which will reflect the patient’s 
true tumor biology less accurately. Studies done on SCLC 
derived CDX in culture for 4 weeks maintained their 
neuroendocrine phenotype and were reversible when 
reimplanted in vivo.126 In addition to a limited timeframe, 
researchers must also be conscious of CTC biopsy quality. 
A quality biopsy is necessary to create an assay that 
captures a representative tumor sample while maintaining 
tumor specificity.128

Clinical applications of CTCs
Clinical research analyzing the utility of CTCs can be 
categorized broadly as related to either CTC enumeration 
or molecular phenotype. For over a decade, it has been 
shown that CTC counts may be able to predict cancer 
diagnosis and prognosis. In patients without cancer 
screened for CTCs, the presence of CTCs has been 
associated with higher risk of malignancy. In patients 
with cancer, higher levels of CTCs and CTC clusters are 
associated with worse clinical outcomes. Conversely, stable 
or declining levels of CTCs are associated with improved 
clinical outcomes (Fig. 6).129,130 For patients previously 
treated for cancer, the detection of CTCs several years 
after diagnosis is associated with higher rates of relapse 
and an unfavorable prognosis.131,132 Interestingly, CTCs are 
even being used to stage breast cancer: the stage cM0(i+) 
refers to cases in which CTCs are detected but there is no 
clinical or radiological evidence of metastasis.133 

Researchers hope that studying the molecular 
phenotype of CTCs may serve as a less invasive method 
of assessing the tumor’s molecular characteristics, which 

Fig. 5. Mouse models and CTCs. Immunocompromised mouse models can be used to generate large numbers of CTC samples. Studying CTCs in 
mouse models can help to predict how patients with metastatic cancers will respond to certain treatments. (A) Patient-derived CTCs are injected into 
immunocompromised mice to form patient-derived xenografts (“xenopatients”). (B) Tumor cells are then cultured from the mice. Over time, the cultured cancer 
cells begin to select for more resistant strains. Cells are cultured for roughly four weeks to simulate a human patient’s internal environment (symbolized by 
dashed arrow) without drastic clonal changes, as have been seen in more long-term cultures. (C) Cultured tumor cells can then either be reintroduced into a 
new mouse model or can be re-cultured. (D) Chemotherapy can then be administered to these mouse models. Studies have shown that mice display a similar 
sensitivity to chemotherapy compared to their human counterparts (as shown by the dashed arrow). 



Einloth et al

BioImpacts. 2023;13(6):439-455450

may guide diagnosis and treatment. Unfortunately, 
studies related to CTCs at the molecular level are fewer 
and have yielded less consistent results. Fehm et al found 
a limited correlation between CTC HER2 status assessed 
by PCR and HER2 status of the tumor determined by 
histopathological methods.134 Pestrin et al attempted to 
treat HER2- breast cancer patients with HER2+ CTCs 
with the HER2 inhibitor, lapatinib. Only 7% of patients 
with detectable CTCs had HER2+ CTCs and, despite 
being treated with lapatinib, all but one of those patients 
experienced progressive disease.135 Despite these results, 
there are several ongoing clinical trials, including the 
DETECT trials, which are attempting to further study the 
clinical applications of CTCs based on their molecular 
phenotype.136

Conclusion
The success of T cell therapy in treating hematological 
malignancies has been well documented for several 
decades.137 Attempts at treating solid tumors have been 
less successful in part due to cancer’s immunosuppressive 
effects and antigen variability.138,139 To circumnavigate 
these difficulties, researchers continue to develop new 
methods to redirect and expand T cells. Several of these 
methods, including TILs, TCR-modified and CAR-T cells, 
tumor-associated antigen T cells (TAATs), and bispecific 
armed T cells, are created through ex vivo expansion, 
activation, and proliferation of T cells.39,140

Furthermore, harnessing the power of other immune 
cells, such as NK, cytokine-induced killer, and DCs, in the 
place of or in addition to T cell therapy may elicit robust, 
long-lasting tumor cell death.141 NK cells have proven 
to be a valuable therapeutic with limited toxicities, their 

ability to persist within the TME, and their efficacious use 
in various cancers including hematological malignancies 
and sarcomas.63 Variations of NK cell therapy, including 
CIML, CAR-NK, and CIK cells are also currently being 
studied in clinical trials to treat both hematological 
and solid malignancies.142-146 DC vaccines, which have 
demonstrated clinical safety, are currently being explored 
as adjunct chemotherapeutics. However, choosing 
DC type (autologous versus allogeneic), determining 
vaccination dose and route, and selecting the ideal 
antigen are all ongoing challenges of DC vaccination.147 
Finally, though CTCs are presently used for screening, 
diagnostic, and prognostic purposes, they have exciting 
potential therapeutic value.147 This value largely comes 
in the form of explanted CTCs into mouse models with 
the final goal of being able to treat CTCs, and thus 
metastatic cancer, with the most efficacy and least side 
effects.116, 126,127 By comparing and combining these ex vivo 
expanded therapeutics, researchers may be able to develop 
more personalized, less toxic chemotherapeutics for the 
treatment of solid and hematological malignancies.
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