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 Summary
Epidermal growth factor receptor (EGFR) is a cell surface protein that plays a vital role in regulating 
cell growth and division. However, certain tumors, such as colorectal cancer (CRC), can exhibit an 
overexpression of EGFR, resulting in uncontrolled cell growth and tumor progression. To address 
this issue, therapies targeting and inhibiting EGFR activity have been developed to suppress cancer 
growth. Nevertheless, resistance to these therapies poses a significant obstacle in cancer treatment. 
Recent research has focused on comprehending the underlying mechanisms contributing to 
anti-EGFR resistance and identifying new targets to overcome this striking challenge. Long non-
coding RNAs (lncRNAs) are a class of RNA molecules that do not encode proteins but play pivotal 
roles in gene regulation and cellular processes. Emerging evidence suggests that lncRNAs may 
participate in modulating resistance to anti-EGFR therapies in CRC. Consequently, combining 
lncRNA targeting with the existing treatment modalities could potentially yield improved clinical 
outcomes. Illuminating the involvement of lncRNAs in anti-EGFR resistance mechanisms of 
cancer cells can provide valuable insights into the development of novel anti-EGFR therapies in 
several solid tumors.
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Epidermal growth factor receptors (EGFRs) 
overexpressed by various solid tumors are involved 
in the initiation, progression, and metastasis of 

different malignancies such as breast cancer and colorectal 
cancer (CRC).1,2 EGFRs are considered clinically valid 

oncomarkers which can be targeted to inhibit/eradicate 
cancer cells using various advanced treatment modalities 
such as monoclonal antibodies (mAbs), Ab-armed 
nanomedicines, Ab-drug nanoconjugates, hybrid Ab 
scaffolds like bispecific constructs, aptamer-decorated 
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nanosystems, gene therapy, and so forth.1-7 Specific 
binding of epidermal growth factors (EGF) to EGFRs 
results in their dimerization and activation of downstream 
signaling mechanisms such as MAPK/ERK, PI3K/AKT/
mTOR pathways leading to the regulation of cancer 
cell proliferation, invasion, and angiogenesis.8,9 Anti-
EGFR mAbs such as cetuximab (CET) were shown to 
substantially improve the overall survival of metastatic 
CRC (mCRC) patients with wild-type KRAS genotypes.10 
However, in mCRC patients, the therapeutic response to 
anti-EGFR therapy can be limited due to the development 
of multiple resistance mechanisms.11 Numerous genetic 
factors contribute to the development of resistance 
mechanisms in cancer cells against anti-EGFR mAbs. 
These factors include:

• EGFR gene copy number: The number of copies of 
the EGFR gene can influence the response to anti-
EGFR mAbs.

• Protein expression of EGFR ligands: The levels of 
ligands that bind to EGFR, such as EGF and TGF-
alpha, can impact the efficacy of anti-EGFR mAbs.

• HER2 and MET gene amplification: Amplification 
of HER2 and MET genes, which are involved in 
signaling pathways related to EGFR, can contribute 
to resistance against anti-EGFR mAbs.

• Activation of EGFR downstream cascade signaling 
pathways: Mutations or alterations in downstream 
signaling pathways of EGFR, such as KRAS, NRAS, 
BRAF, and PIK3CA, can lead to resistance against 
anti-EGFR mAbs.

• Loss of PTEN and STAT3 phosphorylation: 
Inactivation of the tumor suppressor PTEN and 
abnormal phosphorylation of STAT3 might be 
associated with resistance to anti-EGFR mAbs.

• Epithelial-mesenchymal transition (EMT) 
occurrence: EMT, a process where epithelial cells 
acquire mesenchymal characteristics, seems to be 
linked to resistance against anti-EGFR mAbs in 
cancer cells.

These factors appear to contribute collectively to the 
emergence of resistance mechanisms in cancer cells, 
reducing the effectiveness of anti-EGFR mAbs.12,13 
Besides, the role of non-genetic factors is a highly 
debated issue even though little is known about the exact 
resistance mechanism of such a phenomenon. All in all, 
it is necessary to explore new strategies for improving 
the cytotoxic impacts of anti-EGFR mAbs, enhancing 
apoptosis in CRC, and overcoming drug resistance 
mechanisms in mCRC patients.14

In recent studies, the crucial functions of small non-
coding RNAs (sncRNAs) and long non-coding RNAs 
(lncRNAs) have gained significant attention, particularly 
in relation to tumor progression and the development 
of resistance mechanisms against anti-EGFR mAbs 
in CRC.15 Of these, lncRNA biomacromolecules are 
considered complex ncRNAs structures, which have 

been indiscriminately described as RNA molecules 
longer than 200 nucleotides with no translation into 
proteins.16 These biomacromolecules appear to modulate 
CRC via altering the expression of genes, triggering 
chromosomal remodeling, orchestrating transcriptional/
post-transcriptional impacts, and self-translation of 
lncRNAs into polypeptides.17,18 Additionally, lncRNAs 
can prevent therapeutic-induced cell death, stimulate the 
EMT phenomenon, and promote non-cell-autonomous 
resistance mechanisms.19 Table 1 lists some of the 
aberrant expressions of specific lncRNAs together with 
their potential biological and clinical relevance during 
colorectal carcinogenesis.20,21

Remarkably, lncRNAs are believed to be potential 
modulators of genes related to the cancer cells resistance 
mechanisms, which might (i) influence intracellular 
drug concentrations, (ii) prompt alternative signaling 
pathways, and (iii) modify drug efficacy by hindering cell 
cycle regulation and DNA damage response. All in all, 
they are probably responsible for developing resistance 
to anticancer agents, especially anti-EGFR mAbs.31 
LncRNAs may induce CET-resistance in mCRC through 
different mechanisms, including (i) the EGFR mutations 
and disrupting the CET binding to EGFR (lncRNA 
POU5F1P4),37 (ii) the mutations of the EGFR downstream 
pathways (lncRNA CRART16),38 (iii) the activation of 
Wnt/β-catenin signaling (lncRNA MIR100HG),26 and 
(iv) the activation of the parallel pathway such as MET 
(lncRNA UCA1).39 Remarkably, lncRNA CRART16 was 
reported to elicit CET-resistance in CRC cells most likely 
by functioning as a miR-371a-5p sponge and thereby 
enhancing the expression of erythroblasts Leukemia viral 
oncogene Homolog 3 (ERBB3) through the miR-371a-
5p/ERBB3/MAPK pathway.38 The downregulation of 
lncRNAs LNC00973 seems to improve CET resistance in 
mCRC cells most likely by regulating the metabolism of 
glucose.29 Besides, lncRNA HCG18 appears to facilitate 
the progress of the CRC resulting in CET-resistance 
through upregulation of PD-L1 and also suppressed 
CD8+ T lymphocytes cells via sponging miR-20b-5p.28 
The upregulation of exosomal lncRNA UCA1,29 and 
downregulation of lncRNA POU5F1P4 were shown to 
be involved with the emergence of drug resistance in 
CET-sensitive CRC cells.37 Recent studies have supported 
lncRNAs' roles in anti-EGFR drug-resistance inducing 
based on lncRNAs-mRNAs, or lncRNAs-miRNAs-
mRNAs regulatory networks through the EGFR, RAS, 
and PI3K/AKT signaling pathways.40 Fig. 1 illustrates 
the possible involvement of lncRNAs on EGFR-related 
signaling pathways.

Collectively, the mechanisms underlying the CRC 
resistance to anti-EGFR therapy are the most complicated 
issue, and the lncRNAs spectrum associated with this 
resistance mechanism remained largely unknown due 
to the paucity of lncRNAs-specific microarray/RNA 
sequencing analysis. Upon some published data, lncRNAs 
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can affect the therapeutic efficacy of anti-EGFR mAbs 
mainly through intracellular signaling even though their 
specific mechanisms are yet to be fully addressed. Notably, 
the interaction between ncRNAs and their crosstalk 
with anti-EGFR resistance-related pathways needs to be 
fully understood. To specifically target and inhibit the 
overexpressed lncRNAs, various therapeutic approaches 
can be developed. First, antisense oligonucleotides 
(ASOs), antagomirs, small interfering RNAs (siRNAs), 
short hairpin RNAs (shRNAs), miRNA sponges, and 
CRISPR/Cas9-based genome editing technique, which 
can be used to directly interfere with the expression or 
function of the overexpressed lncRNAs, leading to their 
inhibition or degradation. Second, treatment strategies 
that involve the use of tumor suppressor lncRNAs. Some 
lncRNAs have the ability to suppress tumor growth and 
progression. By introducing or enhancing the expression 
of tumor suppressor lncRNAs, it may be possible to 
regulate the functional expression of oncomiRs and 
restore normal cellular functions. Third, small molecule 

inhibitors, which specifically target the functional 
domains or binding sites of overexpressed lncRNAs, can 
be developed. Fourth, screening natural compounds and 
extracts for their ability to inhibit overexpressed lncRNAs 
can be another approach. Finally, nanoscale formulations 
such as Ab-drug nanoconjugates can be employed. 
These involve coupling therapeutic agents, such as small 
molecule drugs or antibodies, to nanoparticles with 
potential to specifically target and suppress the cells or 
tissues expressing the lncRNAs. Altogether, therapeutic 
strategies for targeting overexpressed lncRNAs include 
the use of antisense oligonucleotides, RNA interference, 
genome editing, exploitation of tumor suppressor 
lncRNAs, and nanoscale treatment modalities like Ab-
drug nanoconjugates. These approaches hold promise 
in combating cancers associated with aberrant lncRNA 
expression. Despite the recent progress in ncRNA-based 
therapeutics, understanding the precise role of lncRNAs 
and related molecular mechanisms in anti-EGFR therapy 
and CET resistance in mCRC requires deep insights. 

Table 1.  Long non-coding RNAs and colorectal cancer

LncRNAs Expression level Potential function and mechanism References

MALAT1 Upregulated Promoted proliferation, invasion, and migration through activating PRKA kinase 
anchor protein 9 (AKAP-9)

22

H19 Upregulated Downregulation of its target tumor suppressor retinoblastoma (RB) and hence 
regulation of the CRC development

23

CCAT1 Upregulated Promoted CRC progression by regulating the miR-181a-5p expression 24

CCAT2 Upregulated
Enhance the proliferation and metastasis of CRC cells by engaging in direct 
interactions with TAF15, facilitating the transcriptional activation of RAB14, and 
triggering the AKT/GSK3β signaling pathway.

25

PANDAR Upregulated Enhanced CRC progression by EMT pathway 26

UCA1 Upregulated Promoted progression of CRC via the miR-143/MYO6 axis 27

MEG3 Downregulated SOCS3-mediated repression of the malignant proliferation of colonic stem cells by 
activation of miR-708 and hence inhibition of CRC progression

28

PCAT6 Upregulated Inhibited apoptosis of CRC cells through regulation of anti-apoptotic protein ARC 
expression via EZH2

29

BCAR4 Upregulated Enhanced CRC progression via activating Wnt/β-catenin signaling 30

TUSC7 Downregulated Promote cell migration and invasion in CRC via regulation of miR-23b/PDE7A Axis 31

MAPKAPK5-AS1 Upregulated Enhanced CRC progression by cis-regulating the nearby gene MK5 and acting as a let-
7f-1-3p sponge

29, 32

RP9P Upregulated Promote CRC progression by modulating miR-133a-3p/FOXQ1 axis 33

u50535 Upregulated Promoted CRC growth and metastasis by regulating CCL20 29

PVT1 Upregulated Promoting CRC tumorigenesis through miR-16-5p stabilization and interaction with 
the VEGFA/VEGFR1/AKT Axis

27

NEAT1 Upregulated Promoted progression of CRC via modulation of the KDM5A/Cul4A and Wnt signaling 
pathway

34

FTX Upregulated Enhanced migration and invasion of CRC cells by miRNA-590-5p/RBPJ axis 35

XIST Upregulated
Enhanced growth and metastatic potential of colorectal cancer cells by directly 
affecting miR-486-5p and facilitating the activation of neuropilin-2, a critical regulator 
of epithelial-mesenchymal transition (EMT)

36
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In this regard, mismatched base pairing to non-target 
mRNAs, unexpected effects on normal tissue, and 
especially off-target effects are still tremendous challenges 
that need to be addressed. Thus, further evaluations are 
required to improve therapeutics' specificity, delivery, and 
tolerability using lncRNAs. Moreover, lncRNAs can be 
applied in monitoring and forecasting treatment response 
and resistance to personalized treatments to improve 
clinical outcomes.
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