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Introduction
For the first time in 2019, pneumonia of unknown origin 
broke out in Wuhan, China. This disease, which was later 
known as COVID-19 , spread rapidly and caused the 
death of many people in different countries of the world. 
Therefore, in March 2020, the World Health Organization 
declared this disease as a pandemic. Examination of 
respiratory samples led to the identification of a new type 
of virus from the SARS-COV family. For this reason, this 
virus was named SARS-CoV-2, severe acute respiratory 
syndrome 2.1 SARS-CoV-2, like other pathogenic viruses, 
undergoes a defined life cycle while interacting with its 
host. Its life cycle involves various stages such as receptor 
attachment, fusion with the membrane, and intranuclear 
penetration for replication. Interestingly, out of the seven 
known pathogenic coronaviruses, three of them, namely 
NL63-CoV, SARS-CoV-1, and SARS-CoV-2, share the 
same angiotensin-converting enzyme 2 (ACE2) receptor 
on the human cell surface for attachment and entry.2

The S protein, which is a spike glycoprotein found on 

the surface of all coronaviruses, plays a pivotal part in 
both membrane fusion and receptor recognition. Once a 
viral infection takes place, the S protein is broken down 
into two subunits, namely S1 and S2. While the S1 subunit 
includes the receptor-binding domain (RBD), which 
directly interacts with the ACE2 molecule's peptidase 
domain, the S2 subunit takes responsibility for the fusion 
of the membrane. Whenever the S1 subunit binds to the 
host receptor ACE2, it discloses an additional cleavage 
area on the S2 subunit. The host proteases, particularly 
TMPRSS2 and Cathepsin L, subsequently cleave S2 at this 
location. This cleavage process is crucial for the virus to 
invade the target cells.3,4

Two crucial genetic characteristics in SARS-CoV-2 
may be responsible for its heightened virulence in 
humans. The first one is the RBD specially optimized to 
bind with the human ACE2 receptor, and the other one 
is the existence of a polybasic furin cleavage site in its 
spike protein.5 Once the genetic material of SARS-CoV-2 
penetrates a host cell, it takes over certain enzymes called 
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Abstract
COVID-19 is an RNA virus belonging to 
the SARS family of viruses and includes 
a wide range  of symptoms along with 
effects on other body organs in addition 
to the respiratory system. The  high speed 
of transmission, severe complications, and 
high death rate caused scientists to focus 
 on this disease. Today, many different 
investigation types are performed on 
COVID-19  from  various points of view in 
the literature. This review summarizes most of them to provide a useful  guideline for researchers 
in this field. After a general introduction, this review is divided into  three parts. In the first one, 
various transmission ways COVID-19  are classified and explained  in detail. The second part 
reviews the used biological samples for the detection of virus and the  final section describes the 
various methods reported for the diagnosis of COVID-19 in various  biological matrices.  
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transmitting ways of this disease from one person to 
another along with treatment methods. Knowing the 
transmission ways of this virus is needed to break the 
transmission chain and prevent more people from being 
infected.15 

Transmission ways of COVID-19 
Various transmission ways reported for COVID-19  are 
classified in the following sections (Fig. 1) and explained 
in detail. 

Respiratory drops or bioaerosol
There are various ways in which respiratory tract infections 
may be transmitted from an infected individual to another 
person, including sneezing, coughing, talking, and 
breathing. Since respiratory droplets are expelled from the 
airways at high pressure and speed, the infected person 
can contaminate a large area of the surrounding air. An 
infected person can also enter the virus-carrying aerosols 
through their normal breathing, and these aerosols 
persist in the atmosphere for an extended duration.16 The 
aerodynamic diameter of aerosols which varies from 0.3 to 
100 μm can affect the distance they travel and the length of 
time they stay in the air. Aerosols with a diameter of >4.7 
μm travel a limited distance, but droplets with a diameter 
of <4.7 μm travel a longer distance and stay in the air 
longer. Aerosols with a diameter of <10 μm are more 
infectious than other aerosols with larger sizes because 
they travel long distances, stay in the air longer, and 
easily enter the respiratory system through respiration.17 
However SARS-CoV-2 is mostly carried by aerosols with 
a diameter of smaller than 5 μm. The number of exhaled 

kinases. Through a process known as phosphorylation, 
these kinases act as switches to regulate the activation 
and deactivation of proteins. Consequently, the host 
cell's machinery is directed towards the creation of new 
viral particles. When SARS-CoV-2 infects cells, the p38/
MAPK pathway, an extensively researched kinase network 
that initiates the production of inflammation-triggering 
cytokines, becomes considerably activated. Furthermore, 
SARS-CoV-2 triggers the activation of CK2, a kinase that 
promotes the formation of filopodia - tiny protrusions like 
tentacles on the cell surface that act as a transport system 
for infection.6 

The non-structural protein nsp13 found in SARS-CoV 
interacts with DNA polymerase δ, which can result in 
DNA replication fork stress, DNA damage, histone H2AX 
phosphorylation, and cell cycle arrest in the S phase. These 
events prompt a high uptake of metabolites necessary 
for viral replication.7-9 It is noteworthy that the mere 
expression of nsp13 is adequate to cause fork stress and 
DNA damage, even without any other viral constituents 
or viral replication.7 Coronaviruses elicit cell cycle 
arrest in the S-phase by inducing DNA replication fork 
stress, thereby increasing the uptake of vital metabolites 
necessary for viral replication.7 The non-structural 
protein nsp13 from SARS-CoV facilitates interaction with 
DNA polymerase δ, the primary polymerase involved in 
lagging strand synthesis during replicative DNA synthesis 
and an enzyme involved in DNA repair mechanisms.10 
This interaction leads to DNA damage, H2AX histone 
phosphorylation, and cell cycle arrest, and can potentially 
encourage genome instability in the presence of other 
environmental factors.7,11,12 Notably, the mere expression 
of nsp13 is sufficient to stimulate fork stress and DNA 
damage, even without the presence of other viral 
components or viral replication.7

A recent study demonstrated that the infection of 
SARS-CoV-2 caused an upregulation of ATR and CHK1 
in Vero E6 cells, which are the viral hosts. This occurred 
due to elevated phosphorylation levels of ATR, CHK1, 
and H2AX.13 Furthermore, it has been reported that 
SARS-CoV-2 infection caused telomere shortening at the 
genomic level, which is a well-known indicator of cellular 
aging.13

COVID-19  includes a wide range of symptoms along 
with effects on most body organs in addition to the 
respiratory system. These symptoms vary depending on 
age and physical condition in different people. The severity 
of symptoms is high in the elderly and young children who 
have a weaker immune system, and the death rate is high 
in these people. Its symptoms often begin with a runny 
nose and congestion. As the virus spreads in the lower 
respiratory tract, other symptoms such as dry cough, 
shortness of breath, fever, and generalized weakness are 
added to the previous symptoms.14

The high speed of transmission, severe complications, 
and high death rate caused scientists to look for 

Fig. 1. Various ways for transmission of COVID-19. A: Personal 
necessity’s function, B: Potential of fecal-oral and fecal-aerosol routes in 
transmitting SARS-CoV-2, C: Multiuse eyedrop bottles, D: Exposure of 
ophthalmologists to patients’ exhaled droplets, E: Aerosol contamination in 
dental procedures, F: Respiratory droplets, or bioaerosols.
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aerosols with a diameter of <5 μm varies depending on 
the pattern of breathing and coughing, but the maximum 
number of aerosols with this diameter is reported to be 
8 per exhalation.18 Another factor that contributes to the 
infectivity of the virus is the viral load of the aerosols. 
Aerosols have a lower viral load than oral and pharyngeal 
secretions. SARS-CoV-2 is present in the upper, central, 
and lower airways but has the most destructive effect on 
the bronchioles and alveoli.19 The production origin of 
particles (aerosols) during coughing and normal breathing 
is different. When coughing, due to shear stress and high 
expiratory flow rate, particles are produced in the upper 
airways; but during normal breathing, due to the airway 
opening maneuver, the source of the droplets produced 
by the airways will be small.20 Viral infection can cause 
small airways to close by altering the mucosa viscosity of 
the respiratory tract, thus altering the origin of aerosols. 
The viral load in asymptomatic people is lower than in 
symptomatic people. But these people can also infect other 
people. Although samples taken from the nasopharyngeal 
mucosa of asymptomatic individuals are positive for up to 
9 days, these individuals are able to transmit the disease 
to others for 6-7 days. Asymptomatic people often do 
not detect the virus until a family member shows signs 
of illness. Asymptomatic individuals account for 41-4% of 
all cases. Most asymptomatic adults (72%) are in the age 
group of 18-50 years. This is very worrying because people 
at this age are often employed and they are more likely 
to spread the virus. A person can breathe approximately 
0.5 cubic meters of air per hour at rest situation and this 
amount reaches a few cubic meters during exercise. If an 
asymptomatic person with a load of virus above the typical 
emitter breathes regularly in a small room, the virus will 
have a concentration of about 20 copies per cubic meter. 
So, if other people in the room keep their distance from 
the asymptomatic person, only a small number of the 
virus would enter their body during inhalation. But the 
amount of virus that enters the body will be up to 2 times 
in the overloaded, coughing, talking loudly, and singing 
situation.21 To reduce the risk of transmitting the virus, it 
is better for everyone, even asymptomatic individuals, to 
wear a well-fitting medical face mask and also to improve 
the ventilation system (although ventilation in a small 
room like an office is not enough).

In a study designed to study the size distribution of 
aerosols containing SARS-CoV-2,22 three cynomolgus 
monkeys were selected; then each of them was inoculated 
with SARS -COV 2 virus by one of the intranasal/
endotracheal/ocular methods. Then each monkey was 
placed in an isolated cage. The results showed that each 
of the infected monkeys emitted large amounts of aerosol 
particles (often smaller than 4.7). But this amount was 
much lower than aerosol particles containing SARS-
CoV-2 emitted from the body of humans with COVID-
19  (millions per hour). This may be due to the biological 
difference between the human and monkey bodies 

because the respiration rate in monkeys is 2.4 L/min but in 
humans, it is 12 L/min. This difference may also be due to 
the sampling method. Animals were anesthetized during 
sampling, and the anesthesia itself slowed breathing, 
resulting in emitting fewer viral particles than in the 
conscious state. On the 6th day after infection, although 
there was a large number of aerosol particles containing 
the virus in the air of each cage, there were no viruses in 
the monkeys' breath, which indicates that viral aerosol 
particles in the air of the monkey cage have been exhaled 
by the monkeys long before sampling. The results of this 
study showed that most SARS-CoV-2 aerosols exhaled 
by monkeys are small in size, so it is suggested that in 
addition to aerosolized fomites, which transmit disease 
between humans, aerosols also have the ability to transmit 
SARS-CoV-2.22

 The viral load of aerosol particles is related to the 
place of their generation. Aerosol particles produced in 
virus-infected airways carry more viruses. There is a long 
debate on whether keeping a distance of 3-6 feet from the 
contamination source can prevent the transmission of 
the disease. It seems that the disease is more likely to be 
transmitted near the source of infection. So far, research on 
aerosol particles has been done more extensively in adults. 
Some adults are “super-emitters”. The compelling reason 
for this is that these people probably have high inhalation 
and exhalation rates, so they produce more respiratory 
droplets.23 The lungs of children and adults are different. 
After birth, the terminal regions of the bronchioles are 
not well developed and are still going through growth 
and development. More than 80% of alveoli and 25,000 
bronchioles are formed after birth and until the end of 
adolescence. Most of the respiratory droplets are formed in 
the alveolar ducts, since these ducts are not yet developed 
in children, they have reduced breathing volume and the 
surface to produce respiratory droplets.24,25

In the early stages of the disease of COVID-19 , the 
respiratory release of SARS-COV-2 is at its highest level, 
105 viruses per minute and at the time of the onset of 
symptoms, there is the highest amount of SARS-CoV-2 in 
the throat swab. But it is necessary to pay attention to the 
fact that the spread speed of this virus is not always the 
same but changes periodically.26

The negative result of SARS-CoV-2 air sample tests 
is due to one of the following reasons.27 i) The amount 
of virus released is small, ii) Viruses are inactivated by 
disinfectant, and iii) The sample air is diluted by fresh air 
flow. 

The probability of disease transmission through 
respiratory droplets is high in confined spaces like trains 
and varies across different parts based on airflow speed, 
with low velocity causing high concentrations of virus-
containing particles. Air ventilation in vehicles, including 
buses and trains, may vary due to various factors, making 
estimation difficult. These vehicles' unique shape causes 
the airflow to enter from outside in a specific pattern. 
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By using Reynolds Averaged Navier-Stokes (RANS) 
Computational Fluid Dynamics (CFD), a model can 
be built to further study the spread of disease-carrying 
particles in wagons. The possibility of transmission 
through a bus to the area in proximity to the infected 
person's location via the vent is assessed through CFD 
analysis of aerial transmission on a bus. The concentration 
of commercial aircraft is very effective in diluting the 
concentration of aerosol particles.28

Mazumdar and Chen29 designed a one-way diffusion 
technique to investigate the contaminants  spread in 
the airliner cabin and used a gas instead of respiratory 
particles infected with the virus for this modeling. In this 
test, the amount of CO2 generated by carriage and the 
concentration of aerosols produced by the nebulizer were 
measured. The objective behind conducting the particle 
dispersion test was to evaluate the dispersion pattern of 
aerosols on the adjacent seats under ventilated and non-
ventilated conditions. As the exhaled droplets ranging 
in size from 0.01 to 1000 μm, accounting for fractional 
dispersion of diverse aerosol sizes is crucial. The general 
flow pattern across the height and width of the wagon 
has been visualized by tracking the movement of the 
neutral buoyant Inactive Mist under aeration. Duration 
of each experiment can be seen from the increase of 
the CO2 concentration when the ventilator is turned 
off, followed by a sharp drop in concentration when a 
ventilator is turned on. Air circulation can cause particles 
containing the virus to spread throughout the room. 
Although the recirculated air passes through a filter in 
the HVAC unit (Heating, ventilation, and air conditioning 
involve the application of diverse techniques to manage 
the temperature, moisture level, and air quality within a 
confined area), these filters are unable to remove particles 
as small as viruses. Airplanes, unlike train wagons, have 
high-efficiency particulate air (HEPA) filters, which are 
not required in train wagons. CO2 levels, along with the 
efficiency of HVAC filters and occupancy, have a direct 
relation with the risk of airborne propagation.30

The degree of reduction in the probability of 
transmission by increasing the supply of fresh air in the 
room depends on the structure of the air flow in the room, 
and the percentage of additional fresh air that reaches the 
breathing zone is the decisive factor. The experimental 
results showed the airflow pattern, and thus the spread of 
particles in the train wagon. There was a large difference 
in CO2 concentration along the length of the salon. It is 
concluded that when the train is running at a constant 
speed or stationery, the air is not well mixed along the 
saloon’s length. The flow visualization reveals downward 
rays at the center of the salon that function as an aisle air 
curtain.31 The measured aerosol concentration was similar 
to that measured in the back row of sources. It shows that 
when there is no passenger in the cabin, the mixing of air 
in the back and front or left and right directions is done 
at the same rate. So that  in the case of busy carriages, it 

doesn't matter much to sit in the same row across the 
aisle, or in one row in front of or behind other passengers 
to get not affected. Ventilation appeared to be effective 
in eliminating the stratification of CO2 concentrations. 
Therefore, it can be concluded that the salon is evenly 
mixed throughout its vertical extent. Airflow visualization 
also emphasized that the importance of the convective 
plume produced by the passenger's body temperature 
should be considered and it also shows that the position 
of the extract vents significantly affects the sensitivity of 
the airflow. Based on the findings reported here, to reduce 
the possibility of transmission, it should be mandatory for 
travelers to wear masks and maintain physical distance 
during low occupancy periods.24 

Fecal-aerosol and fecal-oral routes
viral particles have been demonstrated in fecal-related 
samples of patients with confirmed COVID-19 . Fecal 
samples show the virus long after the onset of symptoms 
and later than respiratory samples. On the other hand, 
fecal samples are positive for a longer period of time, so 
fecal-oral and fecal- aerosol transmission are considered 
important ways of virus transmission.32

Lavatory air, toilet bowl, floor drain and sewage 
transmission
When the toilets were sampled, no aerosol containing a 
detectable number of viruses was produced. In addition, 
4 out of 5 water samples from the drainage system were 
positive. This discovery aligns with the study's results, as 
SARS-CoV-2 was identified in toilet bowls and wastewater 
samples, indicating a significant concentration of the 
virus in the fecal samples of patients. When the toilet is 
flushed, many bioaerosols are produced in the drains and 
can be returned to the vertically placed toilets in the same 
building through the floor drains.33

Hospital transfer
It has been documented that over 3000 medical personnel 
contracted infections while working in Chinese hospitals. 
COVID-19  disease is more contagious in the early stages. 
The virus concentration is high in the respiratory mucus 
in the early stages, while it increases later in the fecal 
samples, putting health care workers at risk.34

Reusable eyedrop bottles
Ophthalmologist, nurse, and/or technician  commonly 
use the reusable eyedrop bottles for different purposes. 
Therefore, it is of utmost importance for suppliers to be 
aware that such bottles may be exposed to pathogens 
such as SARS-CoV-2. The results of Schlieren's imaging 
study35 showed that although the patients with COVID-
19  used face masks, the devices that were placed in the 
breathing air of the patients, such as, reusable eyedrop 
bottles were exposed to SARS-COV-2. Knowing that the 
SARS-COV 2 virus can survive on surfaces for up to 72 
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hours raises concerns about its transmission.36 Zhou et al37 
found that the ACE-2 receptor and TMPRSS2 protease, 
found in conjunctival and corneal cells, respectively, aid 
in the virus's entry into these cells. As a result, the human 
eye acts as an entry point for the virus. Considering that 
the virus may enter through the eye, it is recommended 
that eye care professionals use protective eyewear during 
the COVID-19  pandemic to perform their activities if 
possible. Other mechanisms can also help to transmit the 
disease through the eyes.38 For example, if the eye drops 
are contaminated, the drop from them, which is exposed 
to SARS-CoV-2, after entering the eye, falls into the nasal 
cavity - which is extremely vulnerable to being infected by 
SARS-CoV-2.

Therefore, during the administration of eye drops, it 
is recommended to take the following precautions to 
minimize the relief of the patient's breathing by the face 
mask. Healthcare providers may contemplate sealing the 
upper mask opening near the nasal bridge using tape, as an 
alternative to manually blocking the mask. This technique 
should offer the same theoretical benefits as manual upper 
gap closure.

Ophthalmologist's exposure to the patient's exhaled 
droplets
During the ophthalmic examination, ophthalmologists is 
close to the patient. The close distance between the patient 
and the doctor makes the relationship between them a 
suitable model for studying the risk of transmission of 
aerosol pathogens such as SARS-COV 2. The results of 
this work showed that during a direct eye examination, an 
ophthalmologist is exposed to the respiratory aerosols of 
the patient 95 times more than a person who is one meter 
away from the patient. If the patient coughs during the 
examination, this probability increases up to 6-7 times. 
Exposure to droplets adhering to the facility was high 
during the examination by slit- loop-mediated isothermal 
amplification (LAMP) microscopy. The exposure pattern 
is dependent on the initial size of the droplets. Small 
droplets move straight and cause more direct inhalation 
exposure, but large droplets, as expected, are more affected 
by the force of gravity and descend (facing downward) and 
have more deposits on the examination tool. The findings 
of this research study provided the first identification of 
the likelihood of exposure to SARS-CoV-2 in doctors 
and patients and identified which areas require extra 
protection during the ongoing pandemic.39

Contamination during dental treatment
Despite the high number of patients in need of routine 
dental treatments, during the COVID-19  epidemic, 
there are apprehensions regarding the spread of the 
virus through this means. Patients with COVID-19  who 
are asymptomatic increase this concern. An apparently 
healthy patient creates conditions for a sequence of serious 
infections.  Despite the advent of a novel vaccine for 

SARS-CoV2, the recommended dental protocol should be 
upheld for an extended period.40,41

Essential personal functions
The surfaces are contaminated by the deposition of droplets 
containing the virus or contact with the patient's hands 
can lead to transmission of SARS-CoV-2. The survival 
period of the virus varies from a few hours to a few days, 
and it can infect sensitive people in this way. Important 
factors affecting the exposure risk of sensitive individuals 
are i) survival of the virus, ii) effectiveness of transmission 
from hands and surfaces to respiratory mucosa, and iii) 
correlation between virus dosage and response rate upon 
its delivery to the mucosa. Transmission of the virus 
often occurs through the shared use of personal devices. 
Therefore, to reduce the transmission of the virus, it is 
better to use personal equipment properly so that it is not 
shared with others and disinfected frequently after use.42

Some people who have been exposed to SARS-CoV-2 
virus do not show symptoms of the disease, but they can 
transmit the SARS-CoV-2 virus to others through their 
respiratory droplets (aerosols). These people are known 
as carriers. The transmission of the virus from these 
people is done fast because these people do not do the 
required prevention. Prompt and precise identification 
of the pathogen is crucial for containing the disease's 
proliferation because it allows the identification of 
asymptomatic carriers and thereby eliminates the chain of 
disease transmission in the community.25

The used biological matrices for detection of COVID-
19 
The SARS-CoV-2 virus is found in different 
concentrations in various samples such as feces, urine, 
saliva, and respiratory tract mucus. The sample used is 
determined according to the diagnostic method used. 
The most common place to collect samples is the upper 
part of the respiratory tract (pharyngeal swab, nasal swab, 
and nasal secretions) and the lower part of the respiratory 
tract (sputum, airway secretions, and bronchoalveolar 
lavage fluid). The reason for the common use of samples 
prepared from the nasopharynx is the high viral load, ease 
of collection, and high stability during transportation or 
storage. Also, to collect a nasopharynx sample, one does 
not need to go to a health center or have an expert present. 
It is not common to use other samples to diagnose 
COVID-19  due to the low viral load. The used samples for 
tracing the virus and their collection techniques are given 
in the following sections.43 

Exhaled breath samples
Exhaled breath (EB) consists of gas and liquid phases. 
The vapor phase contains CO2, N2, and volatile organic 
compounds (VOCs) in picomolar concentrations. 
VOCs result from cellular metabolism and pathological 
processes. VOCs can also be exogenous and originate from 
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the diet, drugs, and the environment. Care must be taken 
not to be confused with extrinsically generated VOCs. The 
liquid phase consists of exhaled breath condensate (EBC) 
and exhaled breath aerosols (EBA) which contain non-
volatile molecules e.g., chemokines, cytokines, peptides, 
adenosine, ammonia, hydrogen peroxide, nitrogen oxides, 
leukotrienes, isoprostanes, RNA and DNA.44

SARS-CoV-2 binds to ACE2, provides a well-defined 
downstream signaling pathway within infected cells, then 
starts to generate virus-specific VOCs even in the primary 
stages of infection. Recently, human breath has been used 
as an attractive and non-invasive method to investigate 
metabolic changes during health and disease in humans. 
Now, low levels of analytes in breath can be easily and 
reproducibly measured by modern analytical tools (such 
as gas chromatography (GC)-mass spectroscopy (MS) 
and gas chromatography-ion mobility spectrometry (GC-
IMS). The challenges that exist in this way prevent the use 
of this method on large scales and in clinical uses. These 
challenges include analytical methods, data analysis, 
standardization of breath sampling, and the validation 
of potential indicators through an unbiased process in 
different and varied populations with suitable clinical 
controls. The response of the host body to viral infections 
increases many respiratory VOCs.45

To determine whether there is a relationship between 
the level of a biomarker and a specific disease or not, we 
must know the chemical and cellular origin of volatile 
substances. A technique has been established to diagnose 
SARS-CoV-2 in the air, in which the virus nucleic acid is 
detected after acquiring a sample from the EB of COVID-
19  patients.46 One of the most important advantages of 
this system is that no medical expert is needed during the 
sampling process. So, scientists/healthcare workers are 
not exposed to the virus. The swirling aerosol collection 
(SAC) device for detecting SARS-CoV-2 RNA from 
the air is dependent on the sampling time and virus 
concentration. Therefore, to control the situation, one of 
the factors is considered fixed at the time of sampling, and 
either a time-dependent test is conducted with a stable 
RNA concentration of 10,000 copies, or a concentration-
dependent test is conducted with a stable time of 30 
minutes.

By considering factors such as the atomizer's spraying 
speed, the sampler's pumping speed, and the distance-
dependent collection efficiency factors, a threshold 
value for the product of aerosol virus concentration and 
sampling time has been established at approximately 1.5 
s.copies/mL for indoor spaces with high air exchange rates. 
Therefore, a room with a ventilation rate of up to 20 times 
per hour will be risk-free. However, strict ventilation is not 
the best choice in terms of energy consumption and noise. 
According to the result of the test, the current SAC-based 
method  will probably optimize the rate of air exchange. 
One of the main sampling methods is “condensation” in 
which aerosols with high water content are condensed 

using a cooling device and produce EBC. In the filtering 
method, a high-efficiency particulate air (HEPA) filter 
or gelatin is used to spread particles. The SAC method 
is more common compared to the other two methods 
because it has more selectivity for particles. The SAC 
can be integrated with the microfluidic system followed 
by polymerase chain reaction (PCR) and allows the 
continuous automatic identification of the viral load, and 
this is possible because the dissolution and enrichment 
of the viral particles are performed simultaneously in the 
SAC. In addition, SAC is used to detect influenza viruses. 
Based on this evidence, we postulated that it could be 
feasible to identify SARS-CoV-2 present in a patient's 
exhalation using SAC.46

Most of the viral load is contained in exhaled droplets 
that have a radius larger than 25 μm. Droplets with an 
initial radius of 2.5-25 μm have dynamics that are greatly 
influenced by Stoke's law, and their drag is intertwined 
with viscosity. However, for aerosols that are smaller than 
2.5 μm and are not likely to be obstructed by surgical 
masks, the influence of gravity is negligible, unless the 
environment has brackish water. Further efforts are 
required to limit the quantity of SARS-CoV-2 virus 
present in aerosol particles smaller than 2.5 μm.47

During the initial phase of the illness, millions of SARS-
CoV-2 particles enter the surrounding environment every 
hour through the exhaled air of patients with COVID-19 , 
in the later stages of the disease, the number of SARS-
CoV-2 output drops to less than 7000 copies per minute, 
considering that the average volume of exhalation is 7000 
mL/min, so, during the examination, there will be less 
than one copy per milliliter of the virus.48

The most common VOCs in the COVID-19  disease are 
isoprene, methanol, ethanol, acetone, and a few compounds 
such as alcohols, aldehydes, pentanes, and ketones whose 
concentrations are abnormal due to the disease. In many 
diseases, such as liver diseases, lung diseases, lung cancer, 
and schizophrenia, the concentration of these VOCs 
becomes abnormal, so they can be considered indicators 
for the diagnosis of the mentioned diseases.49 There are 
more viral RNA amounts in breath samples compared to 
saliva samples, instead, the content of cells destroyed by 
SARS-CoV-2 replication is high in saliva and has minor 
amounts in breath samples.50 These findings show that 
the viral signal in Bubbler is caused by the detection of 
viral particles. One of the main advantages of Bubbler 
over other technologies is that it can be used to sample 
viral particles, while other technologies cannot detect 
active infection. The Bubbler can detect active infections 
from other previously treated infections.51 Abnormal 
radiographs may be due to damage caused during a 
previous infection, and the standard precautions are used 
for all patient care Centers for Disease Control’s (CDC's) 
3-month quarantine guidelines reflect findings of long-
term viral signaling in previously infected patients. If a 
person has been infected with a viral infection in the past 
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3 months and then treated, the result will be false positive 
in this method and this person will not be distinguished 
from a person who has an active viral infection.52

Considering that sputum contains the highest load 
of SARS-CoV-2 virus, CDC recommends collecting 
sputum samples from the upper respiratory tract for early 
diagnosis of COVID-19 . However, collecting samples in 
this way is dangerous due to aerosolization and the high 
possibility of transmitting the disease to other people. 
In pneumonia patients who are suspected of COVID-19  
having, if the result of the sample derived from the upper 
respiratory tract is negative, it is recommended to collect 
the sample from the lower respiratory tract.53

Nasopharyngeal (NP) swab has been the most common 
method of sample collection from the upper respiratory 
tract. However, during sample collection through NP 
swabs, the patient feels uncomfortable, and this action 
causes them to sneeze and cough through the irritation 
of patient, thus bringing the risk of aerosolization. 
Alternative methods such as Bubbler have similar safety 
to collecting samples from the upper respiratory tract and 
are used for estimation in lower respiratory tract samples. 
In addition, an alternative method for NP swabs facilitates 
the swab and transportation supply chain, reduces the 
need for providing personal protective equipment during 
aerosolization, and also the patient feels more comfortable 
during it.54 Quantitative mapping of airflow in the room 
and sampling of SARS-CoV-2 in circulating air can be 
done using Bubbler. This technology is important as it 
can reduce restrictions on indoor gatherings and restore 
services to industries such as hotels, casinos, and cruise 
ships.55 There is also an epidemiological advantage to air 
testing in places with a high probability of transmission, 
such as hospital emergency departments, transportation 
hubs such as airplanes, bus and railway stations, and 
buildings that house vulnerable populations. Although 
the samples prepared from the mucous membrane of the 
mouth and pharynx or nasopharynx are an efficient tool in 
the diagnosis of COVID-19 , using this technique, making 
an accurate prediction of the number of virus copies 
actually released by infected patients is not possible.56 As a 
result, EB performs better in assessing the infectiousness 
of COVID-19  subjects. Using a filter to detect SARS-
CoV-2 viral load in EB is a promising method. EB virus 
shedding can last up to 12 days from the initial diagnosis 
throughout the disease. In addition to meeting biosecurity 
requirements, the sealed breath collection bag minimizes 
the risk of contamination for the analyst.57

EBC contains exhaled droplets, which include water, 
non-volatile, and semi-volatile compounds such 
as metabolites, proteins, cell fractions, small polar 
substances, cytokines, fatty acids, viruses, and bacteria. 
These aerosols can initiate from the lower airways as 
well as from the upper airways. The droplets that are 
discharged while exhaling, sneezing or coughing can 
be sampled and determined. EBC analysis is a new and 

non-invasive method that detects biomarkers originating 
from the lower respiratory tract.58 During breathing, EB 
is collected through cooling and condensation. In EBA 
sampling, airborne particles are trapped by a filter, or 
sampling is done with a face mask.59

Research that relies on EBA analysis of COVID-19  
patients has not begun yet, but there is evidence of this. 
A proof-of-concept study with a diagnostic success rate 
of 84% to 100% was able to detect a person with COVID-
19  using their sweat samples, and these results were 
promising. Besides VOCs, both EBC and EBA can have a 
significant impact on COVID-19  diagnosis. This method's 
added benefit is the availability of endless samples 
and employing disposable and easily cleanable inert 
materials.60 In order to prevent the transfer of infection 
from patients to the medical staff, the instruments used 
in sampling can be effectively disinfected with ethanol, 
lipid solvents containing ether, or disinfectants containing 
chlorine. Also, considering that heat and ultraviolet light 
can destroy the SARS-CoV-2 virus, an autoclave can be 
used to disinfect these devices. Most importantly, we must 
adhere to social distancing to prevent the transmission of 
this virus.

 Breath sampling is optimized to minimize the risk of 
mutual contamination and infection. The breath sampling 
device is a directional valve connected to a mouthpiece 
with an integrated HEPA filter and a polypropylene stop 
valve with a 1/4-inch push-in fitting via 22F-10. Employing 
EBC is linked to detecting a significantly low level of 
virus in EB. Nevertheless, detecting the virus in the air 
samples at proximity to positive or acute patients is more 
challenging on account of the aerosol's viral load being 
considerably lower than that of nasopharyngeal swabs.61 
Using EBC poses a challenge to this task by concentrating 
the virus and its metabolic by-products prior to achieving 
detectable levels of the virus and its metabolic by-products 
in exhalation, as well as in large droplets or small aerosol 
particles from the epithelial lining fluid. To tackle this 
problem, EBC devices are adept at effectively collecting 
different particles by considering two parameters: (i) the 
number of particles that can be collected in comparison 
to the overall quantity of airborne particles or (ii) a 
virus fraction that can withstand the collection process. 
Except the R tube, which is utilized as a cooling tube, the 
challenge associated with this approach is the collection of 
the aerosol sample.

Due to the very low viral load, 10-1500 mL/breath,62 
sampling could be performed over a long period (30 
minutes) or instead of breathing, the patient should be 
requested to cough. VOC is used for immediate diagnosis 
of COVID-19  because these substances appear in EB 
during the initial phase of the illness. Important VOCs 
in COVID-19  include 2,4-octadiene-1-chloroheptane, 
methylpent-2-enal, and nonanal, which are found at 
typical concentrations of 10 to 250 part per billion 
(ppb). Methylpent-2-enal and nonanal are aldehydes 
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and 2,4-octadiens is alkadiene. Three compounds 
mentioned are produced as part of respiration, whereas 
1-chloroheptane is likely not naturally occurring within 
the body. Nonanal is a by-product of oxidative stress-
induced cell membrane destruction. Reactive oxygen 
species can be produced by different cells like immune, 
inflammatory and structural cells which are present in the 
respiratory tract.45

 In many pulmonary function laboratories, it is standard 
of care to use in-line filters to reduce the risk of viral and 
bacterial contamination. Analysis of respiratory lining 
fluid (RTLF) in EB has shown that particles in EB come 
from different compartments. They originate from the 
respiratory system. As a result of the rupture of the liquid 
bridge and the closing of the small airways, respiratory 
particles are created. Respiratory particles are also created 
following shear forces in the central airways.61

The mass of exhaled small particles can be different 
depending on different breathing maneuvers so that the 
minimum production occurs during tidal breathing. 
Exhalation does not increase the mass of exhaled particles. 
Patients with COVID-19  acute respiratory distress 
syndrome (ARDS) had notably elevated levels of VOCs 
during expiration compared to those with non-COVID-
19  ARDS, and these levels gradually decreased in the first 
10 days of hospitalization.63

In the studies conducted on non-infected and infected 
people with COVID-19 , the concentration of isoprene 
in the research of Schubert et al. and the concentration 
of octane, acetaldehyde, and 3-methyl heptane in the 
research of Bos et al. were different among these people.63 
Samplers based on the wearable breath are made of charged 
fibers or hydrogel collectors, and the advantages of the 
mask sampler include the capacity to gather substantial 
quantities of the virus during periods. The negative thing 
that should be noted about these mask samplers is that 
they are designed with rigid and consistent mask designs, 
which makes them less accepted by people, and also, they 
cannot be produced on a large scale. Our flexible devices, 
on the other hand, are compatible with commonly used 
masks and protective clothing can withstand constant 
mechanical deformation and are mass-manufacturable.

Wearable collectors can be made from biocompatible 
materials used in medical devices using mass production 
methods. Collectors can be used to a broad spectrum of 
face coverings and mask shields to potentially allow rapid 
transmission. The collector has the potential to be used 
for a full working day because it is resistant to mechanical 
deformation and remains connected for a long time.

Saliva samples
Saliva collection can be done through a cotton pad and 
with the "lollipop technique". The saliva sample can 
also be collected by the person (without the help of the 
person taking the test) by spitting into a sterile tube. 
Although saliva samples can serve as a viable substitute 

for molecular tests that involve swabs, their analysis still 
necessitates the use of specific testing equipment such as 
solvents and cups.64

Tear sample
Major proteins including lysozyme, secretory 
immunoglobulin A (sIgA), lactoferrin, lipophilin, 
lipocalin, serum albumin, proline-rich repeat proteins, etc. 
are present in tear fluid, so a change in pathophysiological 
conditions can easily lead to changes in its composition.65

Human tears can be used to detect viral infections. Tear 
collection is usually done using techniques including 
eye washes, mini-sponges, Schirmer strips, fire-polished 
microcapillary tubes. Although the tear sample collection 
is non-invasive, due to the small volume of the eye sample 
(a few microliters), it is challenging to obtain unaltered 
and reproducible samples.66 In research conducted by Lie 
et al,67 the tears of people with COVID-19  who had no 
eye manifestations were identified by PCR method. This 
research showed that it is possible to transmit SARS-
CoV-2 through conjunctival contact. They showed that 
viral RNA was found in tear samples in 7% of patients 
even without ocular manifestations. In all patients with 
conjunctival infection, RT-PCR test results confirmed the 
virus's existence in the tear specimen. This observation is 
supported by the increasing number of ophthalmologists 
who are incidentally diagnosed with coronavirus 
pneumonia. The SARS-CoV-2 virus can attach to cells 
and infect them through ACE2 receptors. According to 
more recent studies, the viral invasion could be linked 
with the CD147 receptor. The virus may be transmitted 
from the upper respiratory system to the eyes through 
the nasopharyngeal canal system, and as a result, 
contamination with nasopharyngeal secretions can be the 
cause of virus detection in the tear sample.

Throat gargle
This route is one of the common and well-known methods 
for molecular diagnosis of respiratory infections.68 One of 
the advantages of collecting samples in this way is reducing 
the contact of patients with healthcare workers and also 
reducing the need for personal protective equipment 
during sample collection. 

Anal swab
The results show that the possibility of virus transmission 
through feces is high. A positive rectal swab indicates 
that the person has been infected with the disease for 
a long time, approximately 17 days on average. This 
discovery suggests that the virus can be present in the 
patient's body for an extended time. It's worth noting 
that these individuals had tested positive for the virus in 
their pharyngeal swabs along with rectal swabs and the 
environmental SARS-CoV-2 may has been originated 
from the respiratory system.69 According to the findings, 
frequent hand washing remains a significant measure for 
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preventing and managing disease outbreaks.

COVID-19  diagnosis methods 
The swift proliferation of COVID-19  across the globe has 
made rapid diagnostic methods to prevent the rapid spread 
of infection become especially important. The diagnostic 
approach consists of two main steps: first, collecting a 
clinical sample from the patient, and then performing 
tests on the sample. Diagnostic tests can identify infected 
people from healthy people based on nucleic acid or 
antibody.70 Nucleic acid-based tests are used for the initial 
diagnosis of the virus, and serological tests, are used to 
assess the progression of the disease as well as detect 
previous infection.71 Each of the diagnostic methods has 
advantages and shortcomings. Different conditions give 
priority to one over the other.70

There are several ways to diagnose COVID-19 . 
Diagnosis can be done by measuring IgM and IgG 
antibodies in plasma, serum, and saliva. In this method, 
10-14 days after exposing of person to the virus, the 
number of antibodies increases and reaches a measurable 
level, so it is not possible to diagnose the disease in a 
person who has recently become infected.72

Another method used to diagnose the disease is to track 
the antigen and genetic material of the virus in a mucosal 
sample taken from the patient's throat or nose. Each 
diagnostic method has its advantages and disadvantages.73 
Most of the methods used for the diagnosis of COVID-19  
are tabulated in Table S1 (See online Supplementary file 1) 
and the parameters used to compare different diagnostic 
methods include repeatability, sensitivity, instrument size, 
duration of the test, cost, and ease of the method are given. 

Concluding Remarks
In December 2019, an unknown disease with severe 
respiratory symptoms was first reported in Wuhan, 
China. This disease was quickly transmitted from one 
person to another, also statistics showed that the death 
toll of this disease is high. The studies conducted about 
this disease showed that the cause of this disease is a 
new coronavirus from the SARS family. This disease, 
which was later known as COVID-19 , in addition to high 
human casualties, caused other irreparable harms such 
as economic losses and increased isolation of people. In 
2020, the World Health Organization declared COVID-19  
an epidemic. Since there was no known specific treatment 
for COVID-19 , several nations have faced compulsion to 

What is the current knowledge?
√ Possible transmission ways, sampling matrices and 
diagnosis methods are classified and  explained.

What is new here?
√ A different side of COVID-19  disease is investigated 

Review Highlights observe social distancing and quarantine to prevent the 
further its spread. A lot of research has been done to know 
more about the COVID-19  and the results revealing many 
facts about it.

The virus can be transmitted in a variety of ways, 
including fomite, aerosol, large droplets, contact, and 
fecal-oral. The virus was found on different surfaces in 
isolation rooms and intensive care units, where infected 
patients have been present. However, it is difficult to 
detect the virus in the air. The likely explanation can 
be the amount of virus released from the patient's body 
during the test was low and room ventilation reduces the 
concentration of viruses spread through the patient's EB. 
Breathing tests can be challenging for several reasons such 
as a collection of the sample of breath for tests, choosing 
a sensible method and strategy, measurements of VOC, 
and selecting the material of the sampling container. The 
point is that the result of these experiments can be affected 
by each of the mentioned factors and measuring methods 
and devices must be very accurate because respiratory 
markers, can be measured at the ppb–part per trillion 
(ppt) level. In this study, we have discussed in detail the 
ways of transmission, diagnosis of COVID-19 , and the 
biological samples used for diagnosis, and we have also 
given the advantages and disadvantages of each of the 
diagnostic samples and methods in Table S1.7,34,49,70,74-151
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