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Introduction
During the recent decades, microfluidic technology has 
become widely used in biology research. Microfluidics is 
an interdisciplinary science in which various disciplines 
such as biotechnology, engineering, and physics are 
involved. The microfluidic device is made of specific 
structures—including very small-scale channels—that 
enable the manipulation of small volume of fluids at 
microliter or picolitre levels 1 (Fig. 1). 

These attributes have several advantages: a remarkable 

decline in the use of resources (such as expensive/tracer 
reagents or samples), a more accelerated experimental 
process, extra precise control over the experiment. These 
features make this technology an ideal tool for using 
in biological researches. Another important feature of 
microfluidics is that laminar flow assists the simulation of 
interstitial flows within the body, the spatial orientation 
of cells, and the gradient of concentration of various 
chemical factors.2 Hence, microfluidic technology 
enables the culture and study cell behavior in a controlled 
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Abstract
Introduction: Due to the recent 
advances in biomedicine and the 
increasing understanding of the 
molecular mechanism of diseases, 
healthcare approaches have tended 
towards preventive and personalized 
medicine. Consequently, in 
recent decades, the utilization of 
interdisciplinary technologies such as 
microfluidic systems had a significant 
increase to provide more accurate high 
throughput diagnostic/therapeutic methods.
Methods: In this article, we will review a summary of innovations in microfluidic technologies 
toward improving personalized biomolecular diagnostics, drug screening, and therapeutic 
strategies.
Results: Microfluidic systems by providing a controllable space for fluid flow, three-dimensional 
growth of cells, and miniaturization of molecular experiments are useful tools in the field of 
personalization of health and treatment. These conditions have enabled the potential to carry out 
studies like; disease modeling, drug screening, and improving the accuracy of diagnostic methods.
Conclusion: Microfluidic devices have become promising point-of-care (POC) and personalized 
medicine instruments due to their ability to perform diagnostic tests with small sample volumes, 
cost reduction, high resolution, and automation. 
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condition.3 Surface modification and coating of the 
polydimethylsiloxane (PDMS) and glass, as a mostly 
applied materials for the fabrication of microfluidic 
devices,4 by extracellular matrix (ECM) components 
such as fibronectin, collagen, or matrigel improves cell 
attachment, and then cell proliferation.5,6 

Conventionally, research on human diseases and 
drug screening was performed on 2D cell culture using 
petri dishes that is oversimplified and not possible to 
mimic microenvironment complexity and physiological 
condition in living tissues. Therefore, results obtained 
from 2D models may not be completely reliable.7,8 On 
the other hand, even though physiologic environments 
can be found in animal-based systems, but the use of 
animal models is sometimes problematic, and the results 
in this system are not always generalizable to humans. 
These hitches eventually led to the development of 3D 
cell culture based approaches that provide both the 
physiologic microenvironment of the cells and the ability 
to more accurately control the cell conditions.9

Nowadays, microfluidic devices providing a 3D platform 
for cell culture enabled the reconstruction of tissues and 
organs. In this regard, numerous microfluidic devices with 
complex microstructures and substantial biochemical/
bioelectrical performance have been achieved. These 
microfluidics platforms have the potential to be extended 
for 3D biomimetic tissues and organotypic culture for 
a wide range of purposes.10-13 Therefore, in this article, 
first, explanations about personalized medicine and 
microfluidic systems were presented. Then we discussed 
the application of microfluidic systems that have been 
recently developed in various fields of biomedicine, 
including molecular diagnosis, oncology studies, drug 
screening, and organ-on-a-chip with a personalized 
medicine approach.

Personalized medicine and microfluidic technologies
Over the past decades, increasing knowledge on the 
molecular mechanism of gene expression and mutation 
has revealed the mechanism of many diseases, and 
researchers have used this information to bridge the 
gap between experimental researches and therapeutic 
approaches.14 In this regard, scientists are applying 
genetic-based diagnostic tests and molecular mechanisms 
to more accurately predict patients' response to targeted 
therapies. Therefore, nowadays most efforts have 
focused on developing new treatments and optimizing 
prescriptions by directing patients to the best drug, 
appropriate dose at the right time.15

Completion of the human genome project in 2003 
opened new horizons for medical science. The data from 
this project has helped a great deal in medical science, 
especially in the field of oncology.16,17 as it provided 
valuable information on gene sequences, polymorphisms 
and mutations. Presented genetic data have important 
applications such as prognostic value and significant 
therapeutic implications.18 The analysis of these data led 
us to realize that genetic differences in individuals will 
affect almost all aspects of the physiological function of 
individuals. In fact, the human genome project offered 
new perspectives to a better understanding of the genetic 
origins of individual differences and their application in 
the medical fields.18,19 This developing field that uses risk 
factors, molecular diagnostics, targeted therapies, and 
pharmacogenomics to improve the efficacy of treatment 
is called personalized medicine. Personalized medicine 
links one's molecular signature to its medical profile 
to help to make the right decisions about the patient's 
treatment.15,20

Studying the molecular markers (DNA, protein, or 
mRNA) has changed our view of diseases and also 
created molecular classification for diseases. Genetic 

Fig. 1. Schematic steps of fabricating a typical PDMS microfluidic device via soft lithography method.
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variations in individuals such as polymorphisms and even 
environmental effects can influence the uptake, excretion, 
distribution, and metabolism of drugs (for instance 
through changes in enzyme kinetics), thereby affecting 
the response to treatment.21 Therefore, approaches based 
on the origin of the disease will replace conventional 
therapies. In this regard, a pharmacogenomic test will 
be needed to evaluate the patient's therapeutic response 
to the drug based on the patient's genomic profile. It can 
be expected that; personalized medicine can make a big 
breakthrough in the pharmaceutical industry and medical 
practices in the not-too-distant future.22,23 Alterations in 
the medical system's pattern from reactive treatment 
to early detection or pro-active prevention, reduction 
of trial-and-error in the treatments and formation of 
an information-based treatment system for patient 
management are some of expected changes.24

Despite advances in the molecular genetics and 
medical fields, there are still some obstacles in providing 
appropriate genetic analysis methods or disease models. 
Hence, it is vital to produce models that are compatible 
with each patient's genetic system for clinical study. 
Personalized disease model organoids can be a powerful 
tool in the determination of treatment approaches. These 
organoids can be used as live models for investigating 
the effects of drugs, gene editing, surgery or even 
preventive studies.25,26 In this regard, various studies have 
demonstrated the potential of microfluidic technique to 
improve the similarity of 3D cell culture models to in-vivo 
physiological conditions and organoid construction.27,28 

Microfluidic can be a precise and quick tool for clinical 
diagnostics. The microfluidic device is capable of using 
whole blood and giving a genetic profile endpoint.29 
Microfluidic genetic analysis (MGA) systems can be 
applied for nanoliter flow control, electrophoresis, DNA 
purification and PCR amplification. Besides, these MGA 
systems have significant advantages such as reduced time 
and reagent consumption per trial, a reduced operator 
based variability or errors and providing better safety for 
the operator.30,31 Microfluidic systems can also be used 
to extract exosome from bodily fluids as a liquid biopsy 
for personalized medicine. Exosomes contain valuable 
information such as disease status, treatment response, 
exposure to environmental symptoms, and numerous 
other health factors that have diagnostic and therapeutic 
applications.32 Thus, eventually, we expect that 
microfluidic technology will create a leap in personalized 
medicine era.

Application of microfluidic in biomedicine
Microfluidic technology has become the ideal model 
for biomedical researches.33 In this article, practical 
examples of the microfluidic system in various aspects 
of biomedicine will be discussed as well as diagnosis, 
prognosis, and treatment with regards to the personalized 

medicine approach. 

Biomolecular diagnostics 
Over the past decades, biomolecule diagnostic methods 
have been widely used in medicine since can provide highly 
valuable information for detection, characterization, and 
prognosis of diseases. Foreign DNAs, modified gene 
expression levels, specific proteins, and genetic mutations 
are sometimes linked to pathologic conditions such as 
infectious diseases, various cancers and genetic disorders.34 
Early detection, especially in the cases of high mortality 
diseases, infectious diseases, and cancer, has received 
much attention today. Early diagnosis considerably 
reduces the mortality rate and cost of treatment.35 On the 
other hand, personalizing a molecular diagnosis based on 
each person's molecular pattern can provide more accurate 
and precise diagnosis, optimizes treatment, and helps to 
implement an effective medication (pharmacogenomics). 
Immunoassay based methods such as ELISA or blotting 
techniques are routinely used in biomolecular diagnosis 
but, these methods typically require several steps, long 
incubations, and more consumption of reagents and 
samples. PCR has improved these drawbacks but there 
is still a need for faster, more sensitive and affordable 
techniques.36 Thus, developing methods for measuring 
faster, more accurately, more sensitively and in small 
quantities of the biomolecules have become a challenge 
in this field and various techniques have been proposed 
accordingly.37 The microfluidic and lab on chip strategies 
have become a critical tool in biomolecule diagnosis by 
providing these features (Table 1).38

The miniaturization of molecular techniques such as 
PCR on microfluidic devices will considerably reduce the 
sample loss, cost and laboratory space required for the 
processes as the entire procedure will be performed on a 
single chip. Moreover, simultaneous analysis of multiple 
samples with precision at the single cell or single gene 
level is also possible.48,49 Extracellular vesicles (EVs) are 
also valuable biomarkers, containing nucleic acids and 
proteins. investigation of EVs provides valuable data about 
the patient's condition. Hence, their confinement from 
biological liquids could be a potential diagnostic strategy. 
In this respect, microfluidic frameworks are utilized as a 
reasonable instrument for isolating EVs (Fig. 2).50 

Several microfluidic platforms with the ability to 
nucleic acid extraction, purification, PCR amplification, 
electrophoresis, and DNA microarray have been 
developed lately.48,49 In this area, a nucleic acid purification 
chip device based on the use of silicon beads has been 
developed. In this device, the mixing of the beads with 
the sample is regulated through the buttons installed, by 
controlling the flow rate and the valves. A reciprocating 
flow is applied in this device in order to recover the sample 
in the system and increase the purification efficiency.51 
In another study, a button actuation chip consists of 
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two plasma separation and nucleic acid extraction/
purification parts was designed to detect the nucleic acid 
of pathogenic bacteria in blood samples. Silica-coated 
magnetic nano particles (MNPs) is used to separate 
bacteria from plasma, and the steps of lysis and washing 
are carried out by the buttons installed on the device that 
control the pumps and valves.52 Integrated platforms 
are also designed based on a variety of electrophoretic 
methods such as capillary electrophoresis (CE),53 capillary 
gel electrophoresis (CGE),54 isoelectric focusing (IEF) and 
SDS-PAGE.55-57 Immuno-affinity miniaturization devices 
are also developed as another on-chip biomolecular 
diagnostic tools that have some advantages over 
conventional methods such as enhanced performance, 
speed up and simplify the process as well as employing 
lower volumes.58 On-chip immune-affinity approaches 

are based on detecting key biomarkers associated with 
the various diseases such as EGFR (head and neck 
cancer) and C-reactive protein (CRP) as a biomarker of 
coronary heart diseases,59 detecting vascular-endothelial 
growth factor (VEGF), prostate-specific antigen (PSA), 
and PCa circulating tumor cells (CTC) in human serum. 
For fabrication of this device first, aptamer and antibody 
have been coated on gold nanorods (GNR) and a UV-Vis-
NIR spectrophotometer have been used as the detection 
system.60

Among the various instruments designed, Lee and 
colleagues developed a simple and rapid colorimetric 
system for the simultaneous detection of multiple 
microRNAs. MicroRNAs (miRNAs) are small (typically 
18 to 24 bases) non-coding RNAs, which regulate gene 
expression by binding to 3´UTR of target mRNAs and 

Table 1. Microfluidic-based studies for biomolecular detection

Target biomolecule Microfluidic platform Ref

Rapid capture and fluorescent detection of 
rolling circle amplification products (RCPs) 

Combination of silica-based microfluidic device with thin film photodiodes to capture and 
detect florescent labeled rolling circle amplification (RCA) product 

39

Isolation of circulating tumor cells (CTCs) 
from prostate cancer patients Functionalized microfluidic device with dual antibodies (anti-PCA and anti-EpCAM) 40

Tau Protein A fiber-optic sensor containing anti-tau antibodies and a SnO2−x thin film in which the 
binding of serum tau protein to anti-tau can be sensed via SnO2-mediated wavelength shifts.

41

Glucose A microfluidics containing microneedle patch for transdermal biofluid collection and an 
electrochemical biosensor for high sensitivity glucose detection

42

miR-21 Binding of miR-21 to the hairpin probe leads to the exposure of a single-strand fragment of 
the hairpin to the electrochemical probe and initiation of an electrochemical process 

43

Detection and quantification of IL-6 and 
PSA proteins 

An ECL based immuno-detection microfluidic device with IL-6 and PSA capture Ab coated 
channels. Secondary Abs are coated on a silica nanoparticle

44

Detection of disease by analyzing of 
physical features of blood 

A microfluidic device consisted of capillary scanning viscometer and pendant drop 
tensiometer combined with system architecture for disease topography 

45

miRNAs detection Power-free microfluidic chip for miRNAs detection using a sandwich hybridization system 46

The simultaneously detection of 
inflammatory biomarkers

Combination of localized surface plasmon resonance (LSRP) sensor with one layer-four 
channel microfluidic device which utilized by automated microfluidic control 

47

Fig. 2. A tunable microfluidic device for noninvasive size-based separation of EVs. Reprinted from Shin et al50 under a Creative Commons Attribution 4.0 
International.
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inducing their degradation.61,62 The recent discoveries 
have suggested miRNAs as promising biomarkers 
for various diseases,63 drug sensitivity/resistance, and 
associating with personalized medicine64 and so, several 
microfluidic-based methods for miRNAs detection have 
been invented.65 Lee and colleagues have been used 
polyethylene glycol hydrogel as a substrate to facilitate 
the hybridization of microarrays with designed probes. 
Also, detection is done by colorimetric examination of 
gold nanoparticles attached to the target using dark field 
imaging.66 A droplet microfluidic high throughput device 
300-500 cells/minute with analysis efficiency provided by 
Gou et al. This continuous-flow microfluidic platform 
utilizes two hairpin DNAs structures for capturing target 
miRNA from the lysed cell. Conformational changes 
in hairpin DNAs after binding lead to the separation of 
fluorophore and quencher pairs and eventually forming a 
signal senses by a UV detector.67 Additionally, microfluidic 
paper-based analytical devices (µPADs) are also designed 
as a biosensor for semi quantitative/quantitative detection 
goals. Sun, et al developed a paper-based electrochemical/
visual biosensor for miRNA detection. In this platform, 
a biocompatible porous cellulose fiber web (µPADs) is 
modified with Au-NRs which assists the hairpin DNA 
probes to be immobilized on the surface by Au-S bonds. 
When the target miRNA binds to the hairpin probe, a 
single-strand fragment of the hairpin will be exposed and 
binds to the electrochemical probe (CeO2-Au@GOx).68

Different types of microfluidics-based biosensors 
are proposed such as glucose biosensors, urea 
biosensors, cholesterol biosensors, toxin detection 
biosensors.69 Biosensors are one of the most widely 
used molecular diagnostic tools due to their speed and 
ease of performance and hence their combination with 
microfluidic technology will improve their usage in 
molecular diagnostics. For instance, optofluidic devices 
can be categorized based on optical detection methods 
such as plasmon resonance technique, fluorescence, 
and interferometry. The integration of microfluidics 
with optical detection systems will reduce hardware 
costs and improve their sensitivity.70,71 The optofluidic 
devices are usually consist of three layers: The topmost 
layer consists of the microfluidic controls such as valves 
and pumps, the middle layer with microfluidic channels, 
and the third layer that contains the optical structures, 
sensors, and waveguides.72 A metal film or fluids can be 
used for coupling optical functionalities on-chip.73 One 
of the promising platforms of the optofluidic biosensor 
is a chip designed based on a liquid crystal system. In 
this device, the sample containing protein biomarkers 
enters the channel and is exposed to laser light which is 
amplified by liquid crystal and a whispering-gallery-mode 
(WGM) laser emission spectrum is formed. The presence 
of protein causes a shift in the WGM spectrum, which is 
detected by a spectrometer.74

Exosome isolation and analysis
Exosomes are 30-150 nm sized extracellular vesicles 
secreted by cells into bodily fluids. These intercellular 
communication tools contain a variety of proteins, 
RNAs, DNA and lipids from the original cell. Therefore, 
exosomes can be considered as enriched information 
packages, the study of which provides valuable clinical 
information, assisting personalized diagnosis and therapy. 
The performance of conventional separation techniques 
is not adequate in separating exosomes from other 
vesicles and cells in the bodily fluids. Hence, microfluidic 
separation systems with higher resolution than other 
separation techniques are proposed. So far, various types 
of microfluidic systems have been developed for exosome 
isolation as reviewed in Table S1 in supplementary data.75 
Isolation methods based on physical properties can also 
well be used to separate exosomes. For example, acoustic-
based microfluidic systems can isolate exosomes in a 
blood sample based on size and shape. Porous membrane 
based microfluidic platforms also can simply separate 
microvesicles from biofluids. The diameter of these pores 
is optimized to only micro vesicles are allowed to pass, 
and the cells are trapped behind the filter. Performing 
an on-chip electrophoresis in the next step helps to 
better discretion of the microvesicles from the plasma 
proteins.75-77 Isolation methods based on immuno-
affinity capture are one of the most routine separation 
methods. In these methods, a ligand is coated into the 
system's micro-channels to trap exosomes with a certain 
extracellular marker. This method is also used in cancer 
diagnosis due to this fact that exosomes carry significant 
amounts of cancer biomarkers. Research has shown 
that in addition to apoptotic cells, malignant cells and 
cancer derived microvesicles also contain large amounts 
of externalized phosphatidylserine (PS). Kang, et al. 
designed an ExoChip to isolate these exosomes containing 
externalized PS. This device has a large number of circular 
chambers containing coated annexin V protein which has 
a Ca2 + dependent affinity for PS. The large number of these 
trapping chambers implanted on this device increases its 
separation efficiency.78 

Magnetic based microfluidic systems are also highly 
efficient for on-chip exosome isolation and analysis. 
In this approach, a specific ligand is attached to the 
magnetic beads and beads are mixed with the serum 
sample. The serum sample containing the beads enters 
the microchannels of the microfluidic device and by 
applying magnetic force and several washing steps, only 
the exosomes with the target biomarker remain. On-chip 
exosome analysis is performed by steps of fluorescence 
detection and TEM imaging.79,80 

Drug screening 
A recent discovery toward the human genome has 
discoveries toward the human genome has revolutionized 
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diagnostic and therapeutic methods. The introduction 
of individual medicine has led to an attempt to carefully 
optimize therapies tailored to everyone’s genetic 
mechanism. This has also affected the pharmaceutical 
industry. Genetic diversity amongst individuals causes 
variant response to medications. Thus, drug screening is 
crucial especially for life threatening diseases like cancer.20,81 
High-throughput, automation, inexpensiveness, and 
efficiency with low-sample volumes are important in 
drug screening. Drug screening microfluidic platforms, 
in addition to addressing these issues, allow for three-
dimensional cell culture and drug screening in in-vivo-
like conditions (Table 2).82,83 

This is important in two ways; First, the results of 
drug screening in laboratory animals cannot always be 
generalized to humans92 and second, 3D microenvironment 
simulation is effective in drug screening, especially in 
cancer. In the tumor microenvironment, various factors 
can impress the potency of the chemotherapy agents and 
for this reason microfluidic systems are advantageous 
options for drug screening.93-95 Determining the effective 
dose of the drug is vital for positive therapeutic response 
and a prescription inappropriate dose of the drug both 
increases the probability of side effects of the drug and 
may lead to drug resistance. Microfluidic devices can be 
used to apply drug concentration gradients to determine 
the effective dose, cell viability, and the period of drug 
influx. Different doses of the chemotherapy drugs with 
the cell culture medium enter the central inlets of the 
microfluidic system and the result of their efficacy is 
inspected.84,90 (Fig. 3). 

These multi-drug screening platforms make it possible 

to investigate the synergistic effect of several antibiotics 
and achieve an effective inhibitory dose.96 To prevent 
drug resistance, three-dimensional culture of biopsied 
samples on microfluidics and afterward drug screening 
have been performed.97 Eduati et al developed a braille 
valve chip capable of single/combinatorial drug screening 
on very small volumes of biopsy samples, in a period of 48 
hours. Performing plug technology separation of samples 
using different chemical phases provided different test 
conditions on one chip at the same time. Moreover, 
several computer-controlled, movable pins contrived to 
precisely control drug circulation inside microchannel 
networks.87 

 Several microfluidic platforms (bleeding chips) have been 
designed to simulate in-vivo thrombosis condition98-101 
for screening antithrombotic agents and determining 
the appropriate dose, even with a personalized treatment 
approach. Thrombosis is a pathophysiologic condition 
associated with a high rate of mortality worldwide 
correlated with many clinical complications including 
immune-mediated disease, cardiovascular disease, stroke, 
atherosclerosis, and malignancies.102 However, the urgent 
need for anticoagulant screening became even greater 
when the link between thrombosis and mortality from 
the global COVID-19 issue was identified.103 As the world 
sought to reduce the mortality rate of this pandemic, high 
throughput systems for drug screening came to the fore.88 
The polydimethylsiloxane-based bleed chip designed by 
Lakshmanan, et al. is an example of these studies that 
two orthogonal channels embedded on this device. The 
main channel as the blood vessel and side-channel called 
the bleeding channel and three circular pillars located at 

Table 2. Microfluidic-based studies for drug screening 

Drug Microfluidic platform References

Doxorubicin and Cisplatin A device providing the possibility of studying different doses of the doxorubicin and cisplatin on tumor 
cell lines. Different drug-medium concentrations enter each chamber.

84

carboplatin, gemcitabine, 
capecitabine, topotecan, 
and navelbine

A tow-part chip containing a CTC isolation and culture chamber, and six separate drug screen cavities. 
Due to the structure of the separation chamber, CTCs are separated from other blood cells based on 
their size and are trapped and expanded under non-adherent culture conditions. Then, by applying fluid 
flow, CTCs enter the drug screening chambers, and their viability is measured by luminescence analysis.

85

Doxorubicin

A droplet system to create homotypic and heterotypic spheroids and investigate the effect of 
chemotherapeutic agents on these spheroids. The purpose of creating spheroids is to mimic the 
microenvironment of a tumor and to investigate the effects of cell interactions with each other and with 
the surrounding environment in response to treatment.

86

Gemcitabine
Oxaliplatin 
TNFα 

A braille valve chip capable of a single/combinatorial drug screening on very small cancer biopsy 
samples, in 48 hours. Two chemotherapy drugs for pancreatic cancer (Gemcitabine and Oxaliplatin), 
specific kinase inhibitor drugs, and one cytokine (TNFα) that activates apoptosis have been tested alone 
and in combinatorial in this device.

87

Anticoagulant drugs A bleeding chip with two orthogonal channels, one acts as a blood vessel, and the second is the bleeding 
channel. The hemostatic plug will form at the site of pillars.

88

100 compounds and 
amphotericin B mixtures 

A chip with 20 units which each unit has micro-channels with a diameter of 3 to 6 microns, so Candida 
albicans are trapped individually in these channels. Fluorescent microscopy was used to determine live 
and dead cells.

89

Doxorubicin 
and Tirapazamine

A chip providing an oxygen tension gradient environment for cancer study. The MDA-MB-231cells are 
seeded in a fibrin gel (3D microenvironment) and gas channels apply the oxygen tension. The response of 
cancer cells to anti-cancer drugs in the hypoxic tumor microenvironment can be examined (Fig. 3).

90

Cisplatin A multi-channel device for selective trapping cuboidal-shaped micro dissected tissues and exposure to 
different drug doses

91
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the junction of two channels. The influx of whole blood 
into the channels of the bleeding chip with a determined 
flow rate led to the aggregation of platelet at the site of 
the pillars that led to the formation of the hemostatic plug 
caused blockage of the bleeding channel.88

Cancer study
Cancer is a heterogeneous disease described by 
uncontrolled cell proliferation and invasion104 that is 
the main health problem and a leading cause of death 
(millions of deaths each year) worldwide.105 However, 
the cancer mortality rate has decreased since the mid-
1970s,105 but its prevalence is increasing due to changes 
in lifestyle such as smoking, lack of physical activity, and 
improper diets.106 Since early diagnosis of cancer is very 
important, different methods have been developed for 
detection and characterization of this disease. Nowadays, 
strategies for tumor diagnosis and treatment are critically 
influenced by the viewpoint of personalized medicine. 
A set of alterations at transcriptome, proteome, and 
metabolome levels are involved in cancer incidence, 
therefore, a molecular panel as a recognition pattern is 
necessary for prediction, diagnosis, and treatment of 
cancer. Predictive, preventive, and personalized medicine 
(PPPM) is an approach based on discovering key tumor 
molecule-panel for individuals and providing a treatment 
based on each person's own panel.107 In this regard, several 
microfluidic platforms have been developed for studying 
cancer biology, capturing cancer cells and subsequently 
enabling on-chip post-processing after capture , detecting 
cancer biomarkers, and testing drug sensitivity108-111 
(Table 3; Fig. 4).

Although biopsy of tumor tissue is a common way 
of cancer diagnosis, due to its invasive nature, it is 
an inconvenient method for patients and can cause 
problems such as tissue damage. Studies have shown that 
individuals' body fluids contain biomarkers (DNA, RNA, 

protein and circulating tumor cells (that can be used in 
cancer detection and treatment follow up (based on each 
person's specific biomarkers).119 Microfluidic is a non-
invasive, quick and suitable method for in vitro studying 
of individual’s body fluids.120 Paper-based systems can 
be mentioned among the tools provided. Paper-based 
microfluidics is one of the diagnostic tools that have 
found wide application in the field of biosensors due to 
their cheapness and ease of use. Wang et al developed a 
four-layer paper microfluidic system for the simultaneous 
detection of carcinoembryonic antigen (CEA) and 
neuron-specific enolase (NSE) cancer biomarkers. The 
diagnostic electrochemical system of this instrument has 
three electrodes and two Au-NP-based nanocomposites 
applied to immobilize the aptamers and intensify the 
electron transfer. The advantages of this system include 
sensitivity, selective power, and high detection speed.121

At a tumor site, some of the tumor cells (circulating 
tumor cells; CTCs) shed into the bloodstream and are 
responsible for the spreading of cancer to distant sites 
that provide personalized information about the stage of 
the disease and the efficacy of treatment.122,123 Thus, CTCs 
isolation from patient blood offers a valuable biomarker 
for diagnosis, characterization, and monitoring. Because 
of the low circulating levels and short lifespan, CTC 
separation requires a rapid and sensitive method. In this 
regard, immune-affinity based techniques have been 
investigated for CTCs isolation but these methods with 
multiple steps are time-consuming and have a high risk 
of loss of target cells in the separation stages. Microfluidic 
technology is a promising approach for high throughput, 
and sensitive separation of CTCs comparing to other 
methods.124 One example of a microfluidic system for CTC 

 

 

 

Fig. 3. Schematic of an oxygen tension gradient providing device for 
studying the reaction of cancer cells to doxorubicin and tirapazamine 
in the hypoxic tumor microenvironment. Reprinted with permission from 
Nam et al.90

A

B

Fig. 4. Schematics of microfluidic systems replicating cancers: (A) 
Ovarian adenocarcinoma,110 (B) Kidney to liver metastasis (Reprinted 
from Wang et al111 under the terms of the Creative Commons Attribution 
License; https://creativecommons.org/licenses/by/4.0/).
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separation is the three-part system designed by Wu, et al. 
In this chip, the sample first enters the detection section, 
and by applying a continuous flow (Deterministic lateral 
displacement structure), CTCs are separated from the rest 
of the peripheral blood cells and enter the second section 
for pure isolation by encounter with specific antibody.125

It is worth mentioning that one of the most important 
microfluidic applications in the field of oncology is 
providing a proper 3D microenvironment for the study 
of cancer biology, metastasis, and drug resistance. 
The interaction between malignant cells and tumor 
associated cells at the site of the tumor forms the tumor 
microenvironment (TME) which plays a crucial role 
in metastasis, angiogenesis, and chemo resistance. 
Microfluidic platforms offer highly controllable conditions 
through controlling the shear stress, microperfusion 
and cell-cell or cell-matrix communication for better 
mimicking the TME. Thus microfluidic propose suitable 
models for studying the physiological processes of cancer 
as well as a high throughput system for drug screening.126,127 
Moreover, microfluidic technology is a valuable tool for the 
analysis of cancer cell invasion and metastasis. Recently, 
several microfluidic devices have been offered for studies 
of cancer cells migration128 such as: the Kühlbach et al 

chip for study of the trans-migration and invasion of 
tumor cells from blood vessels129; growth factor gradient 
based systems130; chemotaxis-based prompted migration 
system131; perfusable vascular structures as a tumor 
angiogenesis and drug delivery model132; and mechanical 
confinement systems for studying spontaneous migration 
of cancer cells.133

Organ on chip 
In recent years, studies have shown that cell niches have 
a tremendous effect on cellular demeanor, consequently 
the behavior of cells in two-dimensional cultures is far 
different from three-dimensional conditions. On the 
other hand, in-vivo animal studies also have not been able 
to overcome the challenge of in-vivo modeling of diseases 
and therapeutic responses due to species differences. 
Therefore, in recent years, many researchers have 
focused on in-vitro regeneration of human body organs 
(Fig. 5).134,135

Organ-on-a-chip (OOC) is an approach in which cells 
in a microfluidic cultivation environment are cultured 
with controlled in-vivo like conditions. As a result, tissue 
or organ formed on these microfluidic devices are true 
simulations of human tissues/organs. OOC can be used 

Table 3. Cancer on a chip studies

Type of cancer Microfluidic platform Ref

ovarian 
adenocarcinoma

A middle micro channel surrounded by two lateral channel which is separated by array of PDMS column to loading of 
hydrogel for culturing of tumor spheroids and macrophage in separated channel. To create of tumor-microenvironment 
model, the tumor spheroid placed in collagen gel and macrophage were embedded in adjacent channel (Fig. 4A).

110

Leukemia-on-a-
chip

A device simulating leukemic bone-marrow niche and B-ALL. Three region including central venous sinus (central red 
part), a medullary cavity (green parts), and endosteal regions (external ring) are emulated in this device. These areas are 
divided by trapezoidal micro-columns containing cell-hydrogel mixture, balancing surface tension and capillary forces, to 
imitate the leukemic BM architecture .

112

Ovarian cancer on 
a chip

A two-layared device with a separating thin, porous membrane imitating the microarchitecture of the tumor-vascular 
connection. Three ECM, tumor (in outer layer) and vascular (bottom layer) microchannels are separated by hexagonal 
micropillars which facilitates cell invasion. This device enables the study of intravenous perfusion of platelets, their 
penetration through the endothelium and cancer cells invasion.

113

Lung cancer-on-
a-chip

This chip includes a central chamber where the Hepatic stellate cells (HSCs) and hepatocellular carcinoma
(HCC) cells enter this chamber together with matrigel. Endothelial cells are cultured in the two side chambers and they 
play the role of blood vessels. Cellular crosstalk, Activation of HSCs, endothelial invasion, drug resistance and inefficiency 
of natural killer (NK) cells is studied on this chip.

114

Pancreatic 
cancer-on-a-chip

A two-part microfluidic device was used to model the heterogeneous tumor microenvironment of pancreatic ductal 
adenocarcinoma. Patient-derived primary cancer cells (PCCs) along with stromal cells and macrophages were cultured 
in the upper chamber on the matrigel matrix. The lower chamber which is separated from the upper chamber by a 
permeable layer, provides the culture medium required for cell growth.

115

Kidney to liver 
metastasis-on-
a-chip

A poly (methyl methacrylate) (PMMA)/ PDMS fabricated device with 7 cell culture microwells containing different ratios 
of co-cultured immortalized hepatocytes HepLL and kidney cancer Caki-1 cells into an ECM of 2:3DLM/GelMA hydrogel 
to mimic the metastasis of kidney cancer to the liver (Fig. 4B).

111

breast-cancer-on-
chip

A tow-layered device which the upper layer contained three independent capillary vessel channels comprising an endothelial 
monolayer, connected ECM channel and a multicellular tumor spheroids (MCTS) culture channel with 11 U-shaped 
microchambers. Second layer was embedded under the U-shaped microchambers creating the perfusion flow along with 
preventing cells evasion. This system has been used for the assessment of drug delivery systems and toxicity studies.

116

Lung cancer on 
a chip

A glass-based microfluidic device to investigate drug toxicity. This system is designed to provide a sensor integrated 
organoid for lung cancer monitoring and evaluation of the toxicity of candidate drugs. For real time monitoring the 
survival of cultured cells on glass-based chip, a trans-epithelial electrical (TEER) impedance sensor is embedded in this 
device. An optical pH sensor also is installed to check the pH of the culture medium. Therefore, this system has the ability 
to investigate the cell toxicity and determine the appropriate therapeutic dose

117 

Tumor vessel-on-
a-chip

A MF device preparing the opportunity to imitate the formation of thrombi and hemorrhage in vascular tumors in vitro. 
Device is made of micro-sized hollow channels coated with fibronectin and endothelial cells. A microfluidic syringe pump 
has been installed to perfuse the blood at physiological flow rates and shear stress.

118
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for a variety medical purposes and personalization of 
treatment strategies where a specific therapy with more 
success probability and less side effects is required.136,137 So 
far, different types of human organs have been successfully 
remodeled on microfluidic platforms.135 For example, the 
lung on a chip is a reconstructed model of the lung that 
restores the function of this organ in an in-vitro condition. 
The physiology of this regenerated organ is similar to that 
of a normal organ, i.e. the epithelial and endothelial cells 
are arranged in a three-dimensional microenvironment 
similar to in-vivo conditions and perform the rhythmic 
function of respiration. These models can be used to study 
the pathological conditions of diseases, pharmacological 
and toxicology investigations with a personalized 
treatment perspective.138,139 Various platforms have been 
proposed to mimic lung function on the microfluidic 
system138,140,141 as shown in Table 4 and Fig. 6. 

In lung organoid-based toxicological studies, a new 
agent/drug is exposed to remodeled organoid and the 
effect on tissue function is investigated. Nanoparticles 
(NPs) have recently been used in various industrial 
and clinical fields, therefore, the study of their effects 
on various human organs is vital. The formation of 
reactive oxygen species and the subsequent inflammatory 
responses are among the side effects of NPs. Some NPs 
also can cross body barriers such as the alveolar-capillary 
barrier and penetrate different parts of the body. Zhang et 

al developed a microfluidic device simulating the alveolar-
capillary barrier function for assessment of NPs toxicity.40

Given the vital role of the liver in metabolism and 
detoxification, it is valuable to study of the physiology of 
liver disorders and discovery of effective drugs. In recent 
years, advances in liver organoids have greatly assisted to 
provide a more informative model to upgrade therapies 
toward more efficient, targeted, and personalized 
treatments.152 Liver disease accounts for 3.5% of global 
deaths and about 2 million deaths are recorded annually 
due to these diseases. Cirrhosis, hepatitis and hepatocellular 
carcinoma are among the most important liver diseases.153 
Up to now, various two-dimensional (2D) and three-
dimensional (3D) liver models have been reconstructed 
on the microfluidic system.154 An important challenge 
in liver regeneration is the reconstruction of the tubular 
structure and the provision of conditions for nutrient 
transfer between hepatocytes and vascular endothelial 
cells. To address this limitation, Meng et al fabricated a 
pluronic F127 (F127-DA) hydrogel microfluidic device, 
imitating the structural and functional properties of 
human liver. This F127-DA fabricated chip is able to 
afford high channel resolution along with tolerating the 
perfusion state. The hepatic spheroids are in the outer 
microchannel and the inner microchannel is covered with 
a single layer of endothelial cells. The culture medium 
at a flow rate similar to the physiological conditions is 

Fig. 5. Applications of organ on a chip in biomedicine.
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pumped amid these two channels. This in vitro 3D liver 
model expresses the potential for a range of applications 
including drug discovery and cellular toxicity analysis.143

In addition to studies on liver regeneration, studies 
have also examined the interaction of the liver with other 

organs. Remodeling of these interactions helps to study 
physiologic processes and related diseases. Reconstruction 
of the liver-gut model has a researching value to study 
metabolic routes and transmission of gut-absorbed lipids 
to the liver. This model can also be used to study the 

Table 4. Organ-on-a -chip studies

Type of OOC Cell source Microfluidic platform study

Alveolar-
capillary barrier-
on-a-chip

Alveolar epithelial cells ,and 
endothelial cells

This model consists of 3 parallel microchannels. The middle channel, which contains 
the matrigel imitating the extracellular matrix (ECM), separates the two side channels 
remodeling the alveolar and capillary structures. Alveolar epithelial cells are cultured 
on one side and endothelial cells on the other side. Nanoparticles exposed to epithelial 
cells and in the capillary side a fluidic flow similar to the human lung is applied.

142

Liver-on-a-chip

Hepatocellular carcinoma 
HepG2, human hepatic stellate 
cell LX-2 ,and human umbilical 
vein endothelial cells (HUVECs) 

A system consists of endothelial cells and the permeable hydrogel to mimic diffusion. 
The microfluidic chip is consisted of two adjacent but discrete channels: inner channel 
which represent the capillary vessels, its surface is covered with the HUVECs and 
exposed with medium to show the shear stress in the physiological condition), outer 
channel: the outer channel is filled with the hepatic spheroid shapes which is formed 
by the concaved micro wells. The nutrient from inner channel could uptake through 
the infusion by the hydrogel.

143

Liver-kidney-on-
a-chip HepG2 ,and Hek293 cells

A microfluidic device consists of two connected chambers simulating kidney and liver 
function. Using an optimal flow velocity, the conditions for evaluating the primary 
and secondary toxic effects of drug candidates on liver and kidney are provided, 
respectively.

144 

Kidney-liver -on-
a-chip (an acute 
renal injury 
model)

Kidney tubuloid and liver 
biopsies

The aim of this study was to investigate the therapeutic effect of Mesenchymal stromal 
cell (MSC)-derived small extracellular vesicles (sEVs) on the repair of kidney damage, 
therefore, the modeling of kidney and liver organoids (accumulation place of sEVs) 
was done on a microfluidic system with two interconnected chambers. To create a 
functional tubular epithelium detaching the blood and urine, kidney compartment was 
cultured on a semipermeable membrane and kidney injury was caused by hydrogen 
peroxide.

145

Stomach-on-a-
chip

Human-derived 
adenocarcinoma epithelial 
cell line MKN74, and human 
stomach normal fibroblast cell 
line NST-20

This chip is a nine-part structure mimicking three different layers of the gastric 
mucosa; the epithelial barrier, the basement membrane made of fibronectin thin 
gel, and the lamina propria layer comprising collagen type I gel and normal gastric 
fibroblasts. A peristalsis-like motion is also applied to the system to reconstruct the 
dynamic stomach microenvironment.

146

Lung-on-a-chip

Human alveolar epithelial cells 
(HPAEpiCs),
Human umbilical vein 
endothelial cells (HUVECs)

A breathing alveolar–capillary chip consisting of the alveolar epithelial cells cultured in 
the upper side and pulmonary microvascular endothelial cells in the bottom side of the 
elastic membrane. Applying an air flow induce epithelial cells differentiation (Fig. 6A).

140,147

Vessel-on-a-chip human umbilical vein 
endothelial cells (HUVECs)

A coaxial flow microfluidic device with a helical microfiber for fabricating different 
vessel structures such as multilayer, hollow. Coaxial flows are consisting of an inner 
alginate flow and outer CaCl2 flow (outer and inner flows are shifted in hollow 
microfibers). Two- and three-layer structures are also made by increasing the number 
of infusion micro-channels. HUVECs were seeded in the inner layer of the constructed 
membrane forming the endothelium layer as the lumen of blood vessels.

148

Heart-on-a-chip
Human induced pluripotent 
stem (hiPS) cells derived 
cardiac cells

Cardiac micro-tissues derived from human iPSCs cultured on a micro-electro-
mechanical microfluidic system, comprising of a microchannel, a push bar placed on 
the top, a chamber and diaphragm. The cardiac cells are cultured on the push bar 
within a fibronectin matrix. Inside the microchannel, a culture medium containing 
fluorescent particles flows. Instinctive pulse generated by cardiac micro tissue can be 
measured by fluorescent particle displacement (Fig. 6B).

141

Heart-on-a-chip

Ventricular cardio myocytes 
(CMs) were derived from the 
human embryonic stem cell 
(hESC) ,and the human induced 
pluripotent stem cell (hiPSC)

A rectangular micro-well interconnected by two parallel grooves containing Poly 
(octamethylene maleate (anhydride) citrate) (POMaC) polymer wires. POMaC wires 
have an inherent fluorescence leading to monitoring the passive and active tension of 
cardiac tissue.

149

Brain-on-a-chip Human induced pluripotent 
stem (hiPS) cells

A microfluidic system with two parallel chambers for cell culture and three separate 
channels. hiPS derived EBs mixed with matrigel are cultured in two parallel channels. 
The lateral channels contain the culture medium. The middle micropillar-shaped 
channel also contains the culture medium, causes fluid flow perfusion, and facilitates 
the exchange of oxygen and nutrients to cell-containing channels.

150

Kidney-on-a-
chip

Human induced pluripotent 
stem (hiPS) cells

A device consists of a stretchable PDMS elastomer that comprise two parallel channels 
with opposite directions and segregated by a porous flexible PDMS membrane that its 
coated by laminin 511. 
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hepatic steatosis and drug screening for this prevalent 
disorder. To remodel the gut-liver interaction on the 
chip, a microfluidic device with two anti-parallel micro 
channels with opposite inputs and outputs was designed. 
Gut cells were cultured in the upper microchannel and 
hepatocytes were cultured in the lower microchannel. 
These channels are connected in the center, in which a 
permeable membrane was placed to exchange lipids. 
Screening of anti-steatotic agents on this system showed 
that compounds which help strengthen the gut barrier 
function, have a desirable outcome in treating hepatic 
steatosis.43 

In addition to liver disease, heart diseases also have 
a high prevalence and the lethality risk. Thus, the 
reconstruction of an in vitro functional model of heart 
has been considered in recent years. These models have 
applications in physiological, pathological and drug 
screening studies. Whereas, the physical characteristics 
of the culture microenvironment, such as geometry and 
stiffness determine the differentiation and functionality of 

cardiac cells, the embedding of these conditions on a chip 
positively affect the outcome of the remodeling process.155 
In addition to providing a suitable microenvironment 
for cell differentiation, the application of an adjusted 
electrical force is required, to induce cardiac cell 
contraction. Monitoring the active force and passive 
tension of cardiac cells also importantly authorizes 
personalized drug screening and toxicology studies.149,156 
Moreover, the evaluation of the action potential presents 
vital information on the pathophysiologic state of cardiac 
cells. Liu, et al. developed a bioelectronic chip to study 
cardiac function under the hypoxia condition. The design 
of this micro-fluidic device is such that the input oxygen 
content is controlled by micro-channels so that embedded 
electrodes and platinum nanoparticles provide real-time 
monitoring of electrophysiological response of cardiac 
cells.157 

The brain on a chip is perhaps one of the most important 
achievements of the microfluidic system. Although we 
have not been able to fully regenerate the brain due to the 
complex structure and technical limitations, successful 
regeneration of some parts and modeling of nervous 
system disorders has been promising for personalized 
treatment of neurological disorders. The human brain 
is a layer structure made up of different cells, including 
neurons, astrocytes, microglia, and oligodendrocytes. 
Neurons play a role in brain function through the 
establishment of synapses.158 Studies have shown that the 
neuron's microenvironment including adjacent cells and 
ECM affects its function. Neurons isolated from different 
parts of the brain demonstrate differences in metabolism, 
protein expression, and electrical activity. Therefore, an 
important challenge in in-vitro brain reconstruction is 
to provide this microenvironment to mimic the function 
of the target region in the brain.159 Interestingly, Park et 
al designed a microfluidic system for the simultaneous 
culture of neurons, astrocytes, and microglia cells and 
subsequently investigated the cellular interactions and 
mechanism of neuronal cell destruction during Alzheimer's 
disease. This 3D model is capable of recapitulating beta-
amyloid aggregation, phosphorylated tau accumulation, 
neuroinflammatory activity, recruitment of microglia and 
cellular damage mediated by microglia cells.160 The study 
of cell communication is also important in the incidence 
of secondary neuronal cell death. Released glutamate 
from damaged cells, as well as synaptic connections, are 
involved in the spread of neuronal damage at the stroke 
or injury region. Samson, et al designed a microfluidic 
device with five parallel interconnected culture chambers 
for investigation the expansion of neurotoxicity. These 
chambers are designed to study the spread of cytotoxicity 
to adjacent regions through synapses. Therefore, in 
this model, synaptic dependent hyperactivity, sudden 
ion influx into neurons causing depolarization and 
cytotoxicity due to glutamate accumulation can be 

A

Fig. 6. (A). The design of breathing alveolar–capillary chip, the alveolar 
epithelial cells are cultured in the upper side and pulmonary microvascular 
endothelial cells in the bottom side of the elastic membrane. Applying an 
air flow induce epithelial cells differentiation140 (B). Schematic of a cardiac 
micro-tissues derived from human iPSCs (Reprinted from Abulaiti et al141 

under a Creative Commons Attribution 4.0 International License).
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simulated. The results of this study revealed a protective 
mechanism to prevent the spread of cytotoxicity. In the 
era adjacent to the site of injury, signaling of the GluN2A 
receptor triggers the recruitment of GABA receptor, 
thereby hindering spreading cytotoxicity. These results 
could open new horizons for the treatment of progressive 
brain injuries.161 Blood-brain barrier (BBB) modeling is 
another important study in the area of the brain on a chip. 
BBB by controlling the entry of substances into nerve cells 
is a competent research option for the studies of diseases 
mechanism as well as drug delivery. Several CNS diseases 
and even neurological malignancies such as glioblastoma 
are associated with impaired BBB permeability. Due to the 
complexity of this system as well as species differences, 
3D modeling of BBB on a chip can be superior to animal 
studies and 2D culture systems.162,163 In a recent study, Yu, 
et al. designed a microfluidic platform mimicking the BBB 
structural complexity and function. This model imitator 
the interactions between endothelial cells (ECs), pericytes, 
and surrounding astrocytes in BBB organization and 
the fluid flow condition in the brain microvasculature. 
One inlet, one outlet and a microchannel are embedded 
in this microfluidic device, and the inlet and outlet 
heights are designed in such a way that the fluid moves 
towards the outlet by the siphoning effect and via gravity. 
To slow down the flow speed as blood flow in brain 
microvasculature, a paper cylinder flow resistor installed 
in the outlet reservoir. The microchannel is also made in 
the form of a hollow lumen of type Ⅰ collagen hydrogel as 
a matrix for 3D cell culture. Yu, et al. then used TNF‐α 
to induce the inflammatory condition modifying the BBB 
permeability, as is the case with many CNS diseases. This 
device can provide a suitable drug screening platform for 
the treatment of neurovascular disorders.164

Concluding remarks
Given the valuable advances in biomedical science in recent 
decades, as well as the increasing knowledge of disease 
mechanisms, it is expected that personalized medicine 
will replace traditional methods of treatment in the not-
too-distant future.20 This evolution certainly requires 
reformation in existing tools in the field of diagnosis, 
disease monitoring, and especially treatment providing 
the ability to tracking small amounts of biomolecules or 
mimicking the complex conditions within the patient 
body.165 Microfluidic devises, which attracted the attention 
of biomedical researchers due to their high accuracy and 
automation, were able to address many of the challenges in 
increasing the speed and accuracy of diagnostic methods 
as well as personalization of therapeutic approaches.166 A 
variety of microfluidic platforms are offered in biomedical 
applications and due to the advantages of these devices 
over traditional techniques, microfluidic technology is 
becoming a valuable portion in the field of personalized 
medicine.43 Point-of-care (POC) diagnostics,167 body 

on a chip, disease modeling, and rapid drug screening 
systems are all valuable microfluidic achievements in 
biomedicine.135 Increasing advances in the design and 
construction of microfluidic systems in these areas will be 
promising for further advances in the early diagnosis and 
the personalization of treatment methods. 
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