
Introduction
Traditionally, the drug design process has been an 
exceedingly costly and time-consuming task. However, the 
emergence of high-throughput technologies and machine 
learning techniques has significantly made effect on this 
field, enabling researchers to harness these tools in both 
drug discovery and drug repurposing (repositioning). 
The primary objective of drug repurposing is to identify 
new therapeutic applications for existing drugs, targeting 
diseases or proteins beyond their originally intended use. 
This not only extends the utility of known drugs but also 

deepens our understanding of their mechanisms within 
the human body. Computational methods are often 
employed as an initial step before conducting wet-lab 
experiments, substantially reducing the search space, 
and thereby minimizing the time and costs associated 
with drug development. Over the past decade, a wealth of 
research has focused on drug repurposing, with various 
computational approaches being explored. This section 
provides a concise review of these approaches.

Graph-based methods for drug repositioning typically 
model the relationships between entities such as drugs, 
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Abstract
Introduction: Design and development 
of new drugs needs a huge amount of 
investment of time and money. The advent 
of machine learning and computational 
biology has led to sophisticated techniques 
for drug repositioning, i.e., recommending 
available drugs for new diseases or, more 
specifically, protein targets. However, 
there remains a critical need for improved 
synergy between these techniques to 
enhance their predictive accuracy and practical application in clinical settings. 
Methods: This study presents a novel approach that integrates two methodologies: SLSDR, a 
sparse and low-redundant subspace learning-based dual-graph regularized robust feature selection 
technique, and the iDrug method for drug repurposing which integrates different domains. 
SLSDR is a subspace learning algorithm based on matrix factorization, and iDrug is a matrix 
factorization-based drug repositioning method that integrates data from two different domains 
(drug-disease and drug-target domains). By leveraging SLSDR's ability to extract essential features 
from drug-disease and drug-target spaces, we enhance the iDrug objective function. Our approach 
includes constructing a drug-drug similarity matrix using a feature space derived from SLSDR, and 
target-target and disease-disease similarity matrices. This ensures a comprehensive representation 
of drug-disease and drug-target associations. We introduce a novel objective function that captures 
the nuanced interactions between drugs and diseases, considering the complex interrelationships 
among features within all the datasets. 
Results: By integrating these components, our strategy offers a holistic solution for drug 
repositioning, optimizing the prediction process. In terms of prediction accuracy, AUC, AUPR and 
computing efficiency, the results indicate notable gains over the state of the art drug repurposing 
methods. Figure 1, represents the comparison of the performance of the proposed method with 
existing approaches across various metrics.
Conclusion: The proposed matrix factorization based method for drug repurposing, benefits from 
integrating knowledge from two domains, drug-disease and drug-target domains, and also is capable 
of preserve the geometry of the data in both feature space, and s ample space. Comparing to existing 
state of the art methods, this shows accuracy improvement in drug repurposing.

Article Type:
Original Article

Article History:
Received: 25 Apr. 2024
Revised: 6 May 2025
Accepted: 28 May 2025
ePublished: 15 Sep. 2025

Keywords:
Drug repurposing 
Subspace learning 
Matrix factorization 
Feature selection

Article Info

mailto:narimani@iasbs.ac.ir
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/
10.34172/bi.30443
https://bi.tbzmed.ac.ir/
https://orcid.org/0009-0004-7212-5483
https://orcid.org/0000-0003-2534-9201
https://crossmark.crossref.org/dialog/?doi=10.34172/bi.30443&domain=pdf


Zhalefar and Narimani

BioImpacts. 2025;15:304432

targets (proteins), side effects, and diseases in a graph 
structure. Techniques like random walks, and community 
detection, are then applied to analyze these graphs.1-3 
Another widely used approach is matrix factorization, 
which decomposes the sparse drug-target matrix to 
reconstruct missing elements, enabling the extraction 
of linear or non-linear latent features from the drug 
space and facilitating drug similarity predictions. For 
instance, Zhang et al., utilized matrix factorization to 
detect drug-disease similarities through learning a latent 
cluster space (over similar drugs and similar diseases) and 
multiple similarity measures, while Chen et al., refined 
this approach using different kernels and data sources.4,5 
Deep learning has also become increasingly popular 
for predicting drug-disease relationships. DeepDR, for 
example, employs a deep learning model to capture non-
linear drug features from a heterogeneous network, using 
a random walk method to represent the network.6 Chen et 
al introduced a matrix factorization-based method called 
iDrug, which simultaneously considers drug-disease and 
drug-target interactions in a unified model, forming the 
basis for our proposed approach.7 

Recent advancements in deep learning have significantly 
enhanced the field of drug repurposing. The Integrated 
Deep Drug-Disease Neural Network (IDDI-DNN), and 
DeepAVP, leverages diverse datasets to accurately predict 
new therapeutic applications for existing drugs.8, 9 Chen 
et al., introduced an innovative framework that evaluates 
the therapeutic potential for individual medicine by 
analyzing their feature space through a combination 
of Long Short-Term Memory (LSTM) networks and 
attention mechanisms.10 This approach effectively 
accounts for confounding factors and disease progression, 
demonstrating notable success in identifying drugs with 
promising therapeutic properties.

In parallel, deep learning has been transformative in 
the discovery of novel antimicrobial agents. For instance, 
Halicin, identified via the ZINC database, emerged as a 
potent antibiotic capable of combating resistant bacterial 
strains.11 Furthermore, Timmons and Hewage developed 
ENNAVIA, an advanced deep learning model combined 
with chemoinformatics, designed to identify peptides with 
low toxicity and high biological activity. This innovative 
method holds significant potential in the development of 
antiviral drugs.12

In the current study, we aim to enhance the iDrug 
model by incorporating matrices derived from a 
subspace learning technique known as SLSDR into its 
objective function. The following sections provide an 
overview of the iDrug and SLSDR methods, followed 
by a detailed discussion of the objective function and 
optimization process. Our results demonstrate significant 
improvements over existing methods in drug repurposing 
tasks. The general idea of the proposed methods is 
introduced in the following. 

The iDrug model is a matrix-factorization based 
methods for predicting drug-target interactions and 
therapeutic repositioning. Drug-disease networks and 
drug-target networks are two interrelated domains that 
it makes use of. Effective knowledge transfer across 
domains is made possible by the iDrug model, which 
contains partially shared drug nodes and anchor linkages 
that connect these networks. This skill aids in more 
precise identification of the molecular targets of current 
medications and promotes the development of new 
therapeutic uses for them.

Integrating SLSDR technique into the iDrug and 
including both within-network and cross-network 
connections, the final model considers drug repositioning 
and target prediction as a cross-network embedding 
problem and also considers both data and feature 
manifolds preservation in the process of feature selection.13 

This paper's structure is set as follows:
We describe the iDrug technique, the objective function 

and thorough presentation of its iterative updating rules. 
In the next section the SLSDR approach is introduced, 
including its iterative updating rules. Finally, the 
combination of the SLSDR method with the iDrug method, 
leading to the development of our new methodology. 
The new objective function and update rules are derived. 
Finally, the last section displays the experimental results, 
displaying the efficacy and robustness of our suggested 
method through rigorous evaluations and comparison 
analysis.

iDrug
In this section we explain the cost iDrug cost function, 
which is proposed to find the best factorization leading to 
estimating new drug-target relationships. The proposed 
objective function by Chen et al. in iDrug consists of 
within network and cross-network based components. In 
the following these terms are explained.
Within-network factorization
Within-network factorization focuses on solving single-
domain challenges, such as drug-disease prediction, 
by leveraging graph-regularized non-negative matrix 
factorization.13-15 This technique decomposes the drug-
disease interaction matrix X(1) ϵ ℝ(n

1
 × m

1
) into two latent 

feature matrices: U(1) ϵ ℝ(n
1

 × r
1

), which encapsulates the 
feature space of drugs, and V(1) ∈ ℝ(m

1
 × r

1
), which represents 

the feature space of diseases. The term α1 Tr(U(1)T Lu
(1)

T U(1)), is used in order to guarantee that the similarity 
of the features in feature space is preserved in the new 
feature space. The decomposition process is governed by 
minimizing the following objective function:

( ) ( )

( ) ( ) ( )( ) ( ) ( )( )( )1 1

1 1 1 1 1(1) 2 (1)

0, 0
min || ||    

T T

F uTrα
≥ ≥

− + ⋅
U V

W X U V U L U   Eq. (1)

Cross-network consistency
The iDrug framework offers an advanced approach 
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to understanding cross-network relationships by 
hypothesizing that drugs appearing in multiple domains 
represent identical entities and must exhibit consistent 
properties. To implement this concept, a drug mapping 
matrix, denoted as S(1,2) ϵ ℝ (n

2
 × n

1
) , is introduced. This 

matrix encodes the anchor links bridging domains D1 
and D2 . Specifically, S(1,2)(i,j) = 1 if the i-th row of U(2) 
corresponds to the j-th row of U(1), signifying that they 
represent the same drug; otherwise, S(1,2)(i,j) = 0.

To maintain the integrity of these anchor links, a one-
to-one mapping constraint is enforced. This constraint 
ensures that each row of S(1,2) contains no more than one 
non-zero element, thus guaranteeing that a drug in one 
domain maps to at most one corresponding drug in the 
other domain. This formulation not only strengthens the 
theoretical underpinnings of the iDrug framework but 
also enhances its ability to accurately model and predict 
cross-domain drug relationships.

Leveraging S(1,2) in conjunction with U(1), the shared 
drug feature space from domain D1 is seamlessly projected 
onto domain D2. Moreover, the model ensures that if two 
drugs exhibit similarity (correlation) within domain D1, 
this similarity is retained upon projection to domain D2. 
To guarantee consistency across networks, the following 
discrepancy measure is minimized14:

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )1 2 1,2 1 1,2 1 2 (2) 2, || ||  
TT

FD = −U U S U S U U U   Eq. (2)

Cross-domain integration in iDrug
The iDrug framework unifies the objectives derived from 
domain-specific internal networks, including drug-target 
interactions and drug-disease associations represented 
in (Eq. 1), with the cross-network alignment strategy 
outlined in (Eq. 2). This synthesis results in a cohesive 
optimization function, encapsulating both aspects into a 
single formulation, as demonstrated below:
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1
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2
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1
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 
 
 
   Eq. (3)

The symbols used in the objective function (Eq. 
3) are defined in Table 1, which provides a detailed 
description of each matrix and parameter involved, such 

as the data matrices X(i), i ∈ {1,2}, the low-dimensional 
representations U(1), V(1), U(2), V(2), the mapping matrix 
S(1,2) and the, etc details.

The first summation term,

( ) ( ) ( )( )
2

( ) 2

1

|| ||
Ti i i i

F
i=

−∑ W X U V ,

represents the "domain-specific factorization" of the two 
data matrices X(i), i ∈ {1,2}, corresponds to drug-target 
and drug-disease domains, respectively. Here, U(i)and V(i) 
are the low-rank matrices that their product approximates 
the original data,X(i). For example for i = 1, X(i) represents 
the drug-disease interaction matrix, which the goal is 
to decompose it to U(1) and V(1). U(1) represents drugs in 
latent space and V(1) represent diseases in latent space (the 
dimension of this latent space is optimized). The operator 
∘ denotes the Hadamard (element-wise) product, and W(i) 
is a weight matrix to emphasize the significance of certain 
interactions in the data.

The second term,

( ) ( ) ( ) ( )( ) ( )1,2 1 1,2 1 2 (2) 2 ,|| ||
TT

Fβ+ −S U S U U U

is responsible for ensuring "cross-network consistency". 
The parameter β controls the trade-off between factorizing 
individual networks and ensuring consistency between 

Table 1. The symbols used in the objective function (Eq.3) and their 
descriptions

Symbol Definition and Description

X(1) ,W(1) Matrices representing the structural information and 
interaction weights within the drug-disease network.

X(2) ,W(2) Matrices capturing the structural information and 
interaction weights within the drug-target network.

U(1) ,V(1)
Low-dimensional representations of drugs and 
diseases derived from the drug-disease interaction 
network.

U(2) ,V(2) Low-dimensional representations of drugs and targets 
derived from the drug-target interaction network.

S(1,2)
Mapping matrix that establishes correspondences 
between the drug-disease and drug-target domains, 
indicating cross-domain alignments.

Au
(1) , Du

(1) Drug-drug similarity matrix and its corresponding 
degree matrix within the drug-disease network.

Au
(2) , Du

(2) Drug-drug similarity matrix and its corresponding 
degree matrix within the drug-target network.

Av
(1) , Dv

(1) Similarity matrix and degree matrix for diseases in the 
drug-disease network.

Av
(2) , Dv

(2) Similarity matrix and degree matrix for targets in the 
drug-target network.

n1 ,m1 
Total number of drugs and diseases analyzed within 
the drug-disease network.

N2 ,m2

Total number of drugs and targets analyzed within the 
drug-target network.

r1 ,r1

Ranks of the matrices {U(1) , V(1)} and {U(2) , V(2)}, 
representing the dimensions of their latent feature 
spaces.
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them. The idea is that similar (correlated) drugs in the 
disease space, should also be correlated in the target space. 
Therefore, UUT in the disease space, should be similar to 
the UUT in the target space. S(1,2) is a selector matrix that 
identifies the common drugs between disease and target 
space. As a conclusion, this term encourages the feature 
representations of drugs in the drug-target network to 
align with those in the drug-disease network, reinforcing 
consistency across domains.

The third term,

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
2

( ) ( )

1

( )
T Ti i i i i ii i

u u v v
i

Tr Trα
=

− + −∑ U D A U V D A V ,

promotes within network smoothness. Here, Au
(i) and Av

(i) 
are adjacency matrices for the drug and target (or disease) 
networks, while Du

(i) and Dv
(i) are their corresponding 

degree matrices. This term encourages similar nodes 
(e.g., drugs or targets) in the network to have similar 
feature representations, effectively smoothing the learned 
representations. The parameter α controls the strength of 
this smoothness constraint.

The final term,

( ) ( )
2

1 1
1

|| || || || ,i i

i

γ
=

 
 +
 
 

∑ U V

is a regularization term enforcing sparsity in the learned 
matrices U(i) and V(i). The L1-norm (‖⋅‖1) encourages many 
entries in these matrices to be zero, leading to simpler and 
more interpretable representations. The regularization 
parameter γ controls the sparsity level, preventing 
overfitting by ensuring that only the most significant 
features are captured in the model.

The regularization parameters α, β, and γ allow us to 
control the relative importance of smoothness, consistency, 
and sparsity in the model. These parameters can be tuned 
to achieve the optimal balance for the given data.

The objective function presented in (Eq. 3) is 
inherently non-convex when all variables are considered 
simultaneously. To address this challenge, the authors 
adopt a multiplicative update minimization strategy, as 
detailed in.16 This approach alternates the minimization 
process by optimizing one variable at a time while keeping 
the others fixed. The procedure is repeated iteratively 
until convergence is achieved, defined as ‖J(t + 1) - J(t)‖ ≤ δ, 
where δ represents a small predefined constant. Further 
details regarding the optimization process can be found 
in the original iDrug paper.7

The objective function described in equation (3) 
is fundamentally non-convex when all variables are 
considered simultaneously. To address this complexity, 
the authors utilize a specialized optimization framework 
grounded in the multiplicative update minimization 
technique, as elaborated.16 This method strategically 
alternates the minimization process by optimizing one 

variable at a time while holding the remaining variables 
constant. By leveraging specialized computational tools 
and techniques, this approach ensures both precision and 
computational efficiency in navigating the challenging 
optimization landscape.

SLSDR
The SLSDR method is a subspace learning-based graph 
regularized feature selection framework that is integrated 
in this research with iDrug model for drug discovery. 
This method enhances the iDrug model by considering 
both the feature and data manifolds, ensuring sparsity 
and low redundancy in feature selection, and maintaining 
robustness to outlier samples. As explained in the previous 
section, iDrug is a matrix factorization method designed 
to preserve cross-domain consistency between drug-
disease and drug-target domains. SLSDR, is a feature 
selection methods that reconstruct the original matrix by 
estimating it using only a subset of important features. In 
addition to preserving the structure of features (similar 
to iDrug), SLSDR, preserves the topological structure 
underlying data samples.

Subspace learning has emerged as a powerful technique 
for effectively reducing data dimensionality and deriving 
low-dimensional representations from high-dimensional 
spaces. Utilizing matrix decomposition methodologies, 
subspace learning broadens its applications from merely 
feature extraction to the realm of feature selection. In 
groundbreaking research, Wang et al., introduced an 
advanced method for unsupervised feature selection based 
on matrix factorization, known as Matrix Factorization 
for Feature Selection (MFFS).17,18 This approach reframes 
unsupervised feature selection as a problem of matrix 
decomposition. Subsequently, Wang et al. proposed 
the Maximum Projection and Minimum Redundancy 
(MPMR) framework, which quantifies the relevance of 
selected feature subsets by analyzing the entire feature 
set and incorporates a redundancy minimization term to 
ensure minimal overlap among selected features.17

Moreover, Shang et al., made significant advancements 
with their Subspace Learning-Based Graph Regularized 
Feature Selection (SGFS), which constructs a feature 
graph to preserve the intrinsic geometric structure 
of the feature manifold.19 Despite the effectiveness of 
these algorithms in feature selection, certain limitations 
remain. Specifically, MFFS and MPMR do not consider 
the local geometric characteristics of both data and feature 
manifolds. On the other hand, SGFS, while accounting for 
the geometric structure of the feature manifold, neglects 
the structural properties of the data manifold. To address 
these shortcomings, the proposed Subspace Learning 
for Simultaneous Dimensionality Reduction (SLSDR) 
framework integrates the local geometric information 
of both data and feature manifolds, thereby achieving 
superior performance in feature selection tasks.
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The SLSDR framework is composed of three principal 
components: sparse and low-redundancy subspacℝℝe 
learning, manifold structure preservation, and feature 
evaluation. Formally, let X = [x1,x2,…,xn] ϵ ℝ(m × n) denote 
the data matrix, where m represents the number of 
features per sample, and n is the total number of samples 
in the dataset. Each column xi = ℝ

m corresponds to the ith 
sample within X.

The similarity between features, in the feature manifold, 
and similarity between samples, in the sample manifold, 
is computed in SLSDR. The final objective function of 
SLSDR is provided in (Eq. 4)

( )( )T T 2 T
2 1,

min || ||    

. . 0, 0,

arg
T

Tr

s t S V S S I

α− +

≥ ≥ =

VX X SV VL V
S V

                Eq. (4)

in which, S represents the feature selection matrix, which 
assigns significance to individual features. The matrix V 
contains the reconstruction coefficients, while L denotes 
the graph Laplacian matrix corresponding to the feature 
manifold. Additionally, Ω(S) refers to the inner product 
regularization term, whose details are elaborated in 
the subsequent subsection discussing the update rules 
for SLSDR. It's shown in the SLSDR paper that this 
objective function is able to select a subset of features 
while preserving distances between instances of data in 
the sample manifold and distances between features in 
the feature manifold.20 The term α1 Tr(V LV VT), is used 
in order to guarantee that the similarity of the features in 
feature space is preserved in the new feature space. This 
term is used commonly in NMF techniques. Similarly, the 
term Tr(ST X LS XT S) is used for ensuring that the similarity 
between samples in sample manifold is preserved in the 
transformed data.

More details about the objective function and objective 
function in provided in Shang et al.20 
Update rules for SLSDR
This section provides a comprehensive overview of the 
Sparse Linear Square Dimension Reduction (SLSDR) 
algorithm; we have to mention that the original update 
rules are used in our research also. The SLSDR approach 
addresses non-convex optimization problems by utilizing 
an alternating iterative update method to optimize the 
objective function, which is particularly designed for 
feature selection and dimensionality reduction.

Objective function and update rules
The objective function of SLSDR is defined as:

( )
( ) ( )( )

( )
( ) ( )

2,1                                               

2 2
1 2 2

, || ||

 

|| || ||  || || ||
2

                       ,

T T

T T S T

T T
l

T T

Tr Tr

Tr Tr

α

λβ

ψ φ

= −

+ +

+ − + −

+ +


V

S V X X SV

VL V S XL X S

SS S S S I

S V      Eq. (5)

where S and V are the matrices to be optimized, and α, β, 
and λ are balancing parameters.
Updating S
Given fixed U and V, the update rule for S can be derived 
by setting the gradient of  with respect to S to zero, 
which results in:

( )( )  T T T
m ij

ter α β λ = + + + 
S

Am XUX V XW X I S   Eq. (6)

( )1T T T T
m m ij

α β λ×
 = + + + 

S
Bterm XUX SVV XD X SS S  Eq. (7)

. ij
A

B

termS
term                                                                             Eq. (8)

Updating V
With S and U held fixed, the update rule for V is obtained 
in a similar fashion:

.
T T

ij
ij ij T T

ij

α

α

 + 
←

 + 

V

V

S XUX VW
V V

S XUX SV VD                                 Eq. (9)

SLSDR Algorithm Workflow
The detailed workflow of the SLSDR algorithm is outlined 
below:
1.	 Develop the k-nearest neighbor graphs, denoted as G0 

and G1, to effectively capture the intrinsic structures 
of the feature space and the data space, respectively.

2.	 Calculate the similarity matrices Wv and WS for 
representing pairwise relationships and derive their 
corresponding graph Laplacian matrices, LV and LS, 
to encode the geometric and topological properties 
of the data.

3.	 Initialize the matrices U, S, and V as initial estimations 
to facilitate the iterative optimization process.

4.	 Iteratively update the matrices U, S, and V by 
applying the designated optimization rules until 
either convergence criteria are satisfied or the 
maximum number of iterations is reached.

5.	 Quantify the significance of each feature by analyzing 
their respective contributions, rank them accordingly, 
and select the top l features to construct the refined 
data representation, Xnew.

Materials and Methods
As discussed, iDrug unifies drug-target and drug-disease 
domains by introducing a matrix factorizing technique 
for drug-target and drug-disease prediction. A feature 
selection method called SLSD preserves the geometric 
structure of the feature manifolds as well as the data. Here 
we offer a subspace learning method based on SLSDR, 
meaning that it retains the feature and data manifolds, and 
also uses the domain integration technique introduced in 
iDrug; i.e., the loss function of SLSDR is applied to the 
two drug-target and drug-disease domains.

Our objective is to enhance and refine the iDrug 
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objective function that is expressed in Equation (Eq. 3), 
by transitioning from the conventional drug and target 
feature spaces to the broader feature space derived from 
the SLSDR objective function. In order to define our 
loss function, first we consider a part of loss function 
inspired from the SLSDR loss function; we name this 
Termslsdr (Eq. 10).

In order to integrate the iDrug domain integration, 
we need to adopt the objective function in iDrug to be 
considered along with Termslsdr with Termslsdr as as the 
final objective function. In order to do this adaptation, 
instead of using the traditional decomposition of X(i) 
into U(i) and V(i) matrices (i.e., X(i) ≈U(i)V(i)T), we adopt 
the SLSDR approach and decompose X(i) into X(i) S(i) 
V(i) , where S(i) is a sparse subspace learning matrix that 
captures low-redundant information from the data. This 
method leverages both sparse representation and graph-
based regularization to enhance feature selection and 
cross-domain consistency. With this approach instead 
of "extracting latent feature space" on drug in disease 
and target domains, the algorithm will "select a subset 
of features" in disease and target space, which can be 
representative of drugs such that the geometry of data 
manifold and feature manifold is preserved (in both 
domains).

For SLSDR integration, the term TermSLSDR is: 

( ) ( )

( ) ( )

( ) ( ) ( )( )
( ) ( )

( )
( )

( ) ( ) 2
2

( )

,
2,1

( ) 2
2

|| ||

 
arg min

                     || ||

      || ||
2

 

T T

T

h h

T

h

h h

h h

h h

h
l

Trα

β
λ

 −
 
 +
 =  + 
 

+ − 
 

h

h h

h V

slsdr
S V

h

X X S V

V L V
Term

S

S S I  Eq. (10)

in which h is an index which refers to domains; h = 1 
represent drug-target domain and h = 2represent drug 
disease domain (it has similar purpose to using i in iDrug 
objective function in equation 3). Finally, within-network 
smoothness is incorporated through term1 - Eq. 11 (this 
is achieved by replacing Uh in iDrug with X(h)T S(h) in the 
within-network smoothness term in Eq. 3):

( )( ) ( )( )( ) ( )
1 2Tr

T TTh hh h =  
 

X S X Sterm term            Eq. (11)

term1 ensures that the similarity between samples is 
preserved in the new feature space. term2 is the Laplacian 
matrix for (X(h)T S(h)). As explained before, this term is 
common in NMF techniques.

( ) ( )( ) ( ) ( )( )( )( ) ( )
2

T Th h h hh h= −Degree X S Adj X Sterm
 Eq. (12)

We unify the domain-specific objective function across 
drug-target and drug-disease networks by incorporating 

the SLSDR components into the iDrug framework. The 
unified objective can be expressed as:

( )

( )
( )( )

( )
( )( ) ( )( ) ( )( )

( ) ( )( )

2
2

1

domain factorization 

1,2 1,2ˆ ˆ
1 1 2 2(1) (1) (2) (2) 2

cross-network consistency 
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1

 min                                 || ||
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T T T T
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h
F

h

T
T
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h hh
v v

h

Tr
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=

=

=

 
+ − 

 

+ + −

∑

∑

W term

S X S S X S X S X S

V D A V

 slsdr

( )( )( )

( )( ) ( )( )

( ) ( )

within-network smoothness 

2
( )

1 1
1

regularization 

                       || || || ||

 s.t. 0, 0, for 1, 2                              

T

h

h hh

h

h h h

γ
=

+ +

≥ ≥ =

∑ X S V

S V       Eq. (13)

Update rules for the proposed method
To enhance iDrug's performance by incorporating SLSDR 
features into the objective function, we must adapt the 
parameter updates accordingly. This entails aligning the 
modifications with the intended alterations brought about 
by SLSDR for both h = 1 and h = 2. By carefully tweaking 
the update mechanism, we ensure compatibility with the 
newly introduced features, thereby boosting the system's 
overall effectiveness.
Update rules for Sij

(h) 
A Degree (diagonal) matrix Q(h) ∈ ℝ(n(h) × n(h) ) is first 
introduced, and its ith element is defined as follows:

( )
( )

2

1
|| ||

h
ii h

i

=Q
e                                                                      Eq. (14)

Where E(h) = X(h)T - X(h)T S(h) V(h) , and ei
(h) is the i th row 

of the matrix E(h). To avoid overflow, a small constant ε is 
introduced into (Eq. 14), and the obtained formula is as 
follows:

( )
( )( )2

1
max || || ,

h
ii h

i ε
=Q

e                                                    Eq. (15)
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term X Q X V

X W X

I S

( ) ( ) ( ) ( )
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 ( 1
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               Eq. (16)

( ) ( )
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Update rules for Vij
(h) 

( ) ( ) ( ) ( ) ( ) ( ) ( )hh T h h h T h h
5  

ij
α = + 

VS X Q X V Wterm
 Eq. (18)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

6  ]h T h h h T h hterm V Dα= +
hh h V

ijS X Q X S V
 Eq. (19)

( ) ( ) 5

6
ij ij=h h termV V

term                                                           Eq. (20)

The workflow of the proposed method is summarized 
in Table 2, and also with more detail (pseudocode) in 
Supplementary Data. α, β, and λ.

Results 
Dataset
This study presents an in-depth assessment of a range of 
computational methodologies applied to a meticulously 
curated dataset originally compiled by Gottlieb et al. 
This dataset, extensively referenced in prior research, 
comprises 1,933 confirmed drug-disease associations, 
encompassing 593 drugs and 313 diseases.2,21,22

To enhance the utility of this dataset, Chen et al. 
expanded it by incorporating 1,011 known molecular 
targets associated with the 593 drugs, sourced from the 
DrugBank database, resulting in 3,427 documented 
drug-target interactions, and the final dataset is used 
for evaluation.7 The performance of various predictive 
models was systematically evaluated for both drug-disease 
and drug-target interaction prediction tasks under a "pair 
prediction" paradigm.

Comparison and Parameter tuning
A range of state-of-the-art computational approaches 
were employed to predict drug-target and drug-disease 
interactions, leveraging techniques such as kernel-
based classifiers, matrix factorization, and random-walk 
algorithms. These methods are already also used by 
iDrug paper for comparison purposes and the parameter 
selection is similar to what reported in iDrug comparisons 
for preserving consistency. The source code and data 
is available at: https://github.com/amirmahdizhalefar/
matrix-factorization-for-drug-repurposing.
•	 RLS-Kron: This approach combines chemical and 

genomic similarity matrices to improve predictions 
of drug-target interactions. In our implementation, 
the regularization parameter was set to σ = 1, while 
the kernel bandwidth was fixed at γ = 1.23

•	 TL_HGBI: The methodology employs a refined 
random-walk algorithm specifically adapted to 
operate on a tri-layer network encompassing drugs, 
their molecular targets, and associated diseases.24 
This algorithm is structured to identify novel, 
previously uncharacterized interactions within the 
drug-disease and drug-target interaction spaces. All 
threshold parameters were meticulously fine-tuned 
to their most effective values, as thoroughly detailed 
in the original foundational research.

•	 MBiRW: This bi-random walk algorithm works 
on bipartite networks and integrates clustering 
information for drug-disease associations. Parameter 
initialization was conducted based on the guidelines 
provided in the original publication.2

•	 GRMF (Graph Regularized Matrix Factorization): 
This method incorporates graph regularization to 
derive low-rank representations of drugs and targets. 
Regularization parameters were fine-tuned using 
grid search, resulting in λ1 = 0.5 and λd = λt = 10-3.22 

•	 iDrug: our proposed method was configured with 
rank parameters r1 = 90 and r2 = 70, a weight factor 
w = 0.3, and regularization parameters α = β = λ = 0.01. 
A sensitivity analysis was conducted to evaluate 
the effects of these regularization parameters on 
performance.7 

Cross-validation scenarios
In addition to two main test scenarios for drug-disease 
and drug-target interaction prediction, we also considered 
two cross-validation scenarios as following: 

CVd (Cross-validation on drug profiles): This 
evaluation scenario omits entire drug interaction profiles 
throughout the training phase, reserving them exclusively 
for testing. It tests the model's potential to predict 
interactions for wholly new medications absent in the 
training data. Performance under CVd is tested using 
metrics such as AUC and AUPR, reflecting the model's 
efficacy in generalizing to unknown medicines.

Table 2. Elaborated steps of the proposed methodology

Step Description

0

Input: Input matrices X(h) ∈ ℝ(m(h) × n(h)) for h = 1,2; 
neighborhood size parameters K(h) for h = 1,2; weighting 
factors α(h), β(h), and λ(h) for h = 1,2; maximum permissible 
iterations NIter; Gaussian scale parameters σ(h) for h = 1,2; and 
the desired number of features l(h) for h = 1,2.

Output: Selected feature indices Index for h = 1,2 along 
with processed data matrices optimized for iDrug model 
implemkentation.

1
Formulate K-nearest neighbor graphs G0

(h) = (V0
(h), E0

(h)) and 
G1

(h) = (V1
(h), E1

(h)) for h = 1,2, representing feature and data 
manifolds, respectively.

2 Derive similarity matrices Wv(h) and WS(h) along with graph 
Laplacian matrices LV(h) and LS(h) for h = 1,2.

3 Initialize matrices Q(h), S(h), and V(h) for h = 1,2.

4
Iteratively refine Q(h), S(h), and V(h) for h = 1,2, using the 
specified update rules until reaching the maximum iteration 
threshold NIter.

5

Evaluate the relevance of each feature i for h = 1,2 by 
computing ‖ Si

 (h) ‖2. Rank features in descending order of 
importance, select the top l(h) features, and identify their 
indices Index. Construct refined data matrices Xnew

(h) ∈ 
ℝ(l(h) × n(h)) for h = 1,2.

https://github.com/amirmahdizhalefar/matrix-factorization-for-drug-repurposing
https://github.com/amirmahdizhalefar/matrix-factorization-for-drug-repurposing
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CVt (Cross-validation on target profiles): In this 
situation, whole target interaction profiles are omitted 
from the training dataset and utilized simply for testing. 
This configuration examines the model's ability to foresee 
interactions with novel targets. Typically, models obtain 
superior performance under CVt since the sequence 
similarity of targets often provides more predictive power 
compared to the chemical similarity of medications.

The experimental outcomes, as summarized in Table 3, 
shows that the proposed strategy consistently outperforms 
all alternative methods across the all scenarios. In drug-
disease prediction, the proposed framework achieved an 
AUROC of 0.936 and an AUPR of 0.947 in drug-disease 
prediction tasks. In contrast, iDrug attained an AUROC of 
0.9213 and an AUPR of 0.938. Other methods TL_HGBI 
(AUROC: 0.886, AUPR: 0.881), MBiRW (AUROC: 0.879, 
AUPR: 0.876), GRMF (AUROC: 0.863, AUPR: 0.847), 
and RLS-Kron (AUROC: 0.844, AUPR: 0.813).

The proposed method regularly outperforms existing 

approaches in both CVd and CVt evaluations. It exhibits 
near-perfect performance across numerous parameters, 
including AUC, AUPR, and F1 scores. This highlights the 
durability and adaptability of the technique in successfully 
anticipating drug-target interactions, even when facing 
previously encountered medicines or targets.

Several key insights can be drawn from these results:
The proposed method, iDrug and TL_HGBI, which 

incorporate drug-target interactions, significantly 
outperform other models. This highlights the importance 
of leveraging target information for drug-disease 
prediction. Consistent with prior studies, removing drug-
target links from the network degrades performance.4,7

Unlike TL_HGBI, which suffers from data sparsity, our 
method addresses the cold-start issue by jointly learning 
from both drug-disease and drug-target networks. This 
allows our method to perform better, particularly in cases 
involving new drugs or diseases. Larger networks provide 
richer information, mitigating sparsity issues.

Table 3. Performance comparison of drug-target interaction prediction methods under different scenarios

Method ACC AUC (CVd) AUPR (CVd) AUC (CVt) AUPR (CVt)
AUC for 

drug Target 
prediction

AUPR for 
drug Target 
prediction

AUC for 
drug Disease 

prediction

AUPR for 
drug Disease 

prediction

RLS-Kron 0.796 - - - - 0.841 0.763 0.844 0.813

GRMF - 0.569 0.341 0.567 0.745 - - 0.863 0.847

WGRMF - 0.408 0.364 0.574 0.801 - - - -

WKNKN - 0.399 0.352 0.572 0.787 - - - -

WKNKN + GRMF - 0.615 0.815 0.615 0.807 - - - -

TL_HGBI - 0.761 0.720 0.753 0.732 0.757 0.726 0.886 0.881

MBiRW - - - - - - - 0.879 0.876

iDrug 0.921 0.851 0.793 0.826 0.841 0.897 0.897 0.9213 0.938

Proposed method 0.932 0.867 0.841 0.857 0.859 0.884 0.902 0.936 0.947

Fig. 1. Different evaluation criteria reported on CTD dataset, comparing our method (the proposed method), iDrug, MBiRW, TL_HGBI, WKNKN + GRMF, 
WKNKN, WGRMF, GRMF, RLS_Kron. 
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While each of three MBiRW, iDrug, and our method 
employ drug community/cluster concepts, our method 
and iDrug applies consistency constraints across domains, 
yielding more reliable drug communities. MBiRW’s 
reliance on known drug-disease associations may 
introduce bias, whereas our method and iDrug benefit 
from cross-domain knowledge transfer.

The higher AUPR score of our method compared 
to GRMF is likely due to our method’s incorporation 
of multi-domain knowledge. GRMF, while effective 
for single-domain predictions, lacks the cross-domain 
learning capabilities of our method, resulting in lower 
prediction accuracy.

Kron, which relies on kernel-based methods, demonstrated 
the lowest performance. The selection of an appropriate 
kernel function is challenging and often requires domain-
specific expertise, limiting the model's flexibility.

In conclusion, the proposed method achieves significant 
improvements by aided matrix factorization for drug 
repurposing and integrating multi-domain knowledge, 
overcoming the challenges of data sparsity and cold-start 
problems, and providing a robust framework for drug-
disease prediction.

Discussion
Development of new drugs is a highly costly and time-
consuming process. One of strategies of drug development 
companies is to find possible protein targets for already 
developed drugs, and trying to control diseases other 
than known target diseases with an available drug. There 
are different computational approaches to address this 
problem, such as deep and non-deep machine learning 
methods. One of the approaches that is common for 
solving such problems, is matrix factorization. Matrix 
factorization methods decompose a matrix into factors, 
leading to discovery of latent features of the data matrix. 
These latent features are useful in order to identify a 
feature space in which similarity of drugs and targets 
is better understood, while in the primary feature 
space which is sparse it’s not possible. Different matrix 
factorization based methods have been suggested in 
existing literature. In this study, we proposed a sparse 
subspace learning, which is based on matrix factorization. 
As a result, drugs can be represented in target space. The 
base subspace learning method we use is SLSDR, a matrix 
factorization based subspace learning which preserves 
the data and feature manifold geometric properties. It 
means that drugs which are similar in the original space, 
will remain similar in the new feature space. We modified 
the objective function of SLSDR, so that it considers the 
subspace learning with respect to two different domains, 
the drug-disease and drug-target. As a result, subspace 
learning considers the drug space in both the disease 
and target spaces; the loss function is defined so that the 
correlation of disease with respect to diseases and also 

with respect to drugs is preserved in the new subspace. 
The results show that the proposed method superiors 
other state of the art matrix factorization based methods 
in drug repositioning problem. 

Conclusion
Prediction of interaction between existing drugs and 
potential new targets is a major area of research in drug 
development. Different machine learning methods are 
hired by researchers to address this problem. Matrix 
factorization is a mathematical framework which has 
been widely used for extracting hidden patterns from 
sparse datasets. While methods such as deep learning 
based ones, need very large datasets to extract patterns, 
matrix factorization based methods do not suffer from this 
limitation. Patterns inferred using matrix factorization 
methods are interpretable, and helps to understand the 
underlying mechanism of the observed pattern. One of 
the advantages of matrix factorization methods is that 
different domain knowledge can be integrated to their 
loss function. At the same time, a finely defined objective 
function can integrate other objectives such as what 
used in this paper, preserving the geometry of the data 
and features in the latent space. This research, confirms 
these statements, by defining an objective function for 
integrating different knowledge domains and also paying 
attention to preserving the data/feature geometry in the 
latent space. Our results, confirmed that the new objective 
function which benefits from these criteria, outperforms 
state of the art matrix factorization methods for drug 
repurposing. In addition, matrix factorization methods 
can be combined with other machine learning methods, 
such as deep learning, and therefore benefit from both 
computational power and interpretability, and this can be 
considered in future work. 
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What is the current knowledge?
•	 In computational drug repurposing, matrix factorization 

is an established technique for identifying latent drug-
target associations. However, existing methodologies 
often do not fully integrate diverse domain knowledge, 
such as drug-disease relationships, nor do they 
consistently preserve the inherent topological structures 
within drug and disease spaces. This can sometimes 
limit the biological interpretability and predictive power 
of their outputs, potentially affecting the discovery of 
meaningful drug repurposing candidates.

What is new here?
•	 We propose a framework that seeks to enhance matrix 

factorization for drug repurposing by addressing these 
considerations. Our framework aims to provide a 
more comprehensive view of drug action by jointly 
integrating drug-target and drug-disease relational 
spaces. The method incorporates a feature selection 
strategy designed to include domain-specific knowledge 
and maintain the topological structure of both feature 
and data spaces. This approach is intended to yield 
decompositions that are both robust and more 
interpretable. Experimental evaluations suggest that this 
approach shows improved performance compared to 
some existing matrix factorization models. Furthermore, 
its biological relevance is suggested through alignment 
with known biological pathways and examples of drug 
repositioning for conditions such as Alzheimer's and 
various cancers. We believe this framework offers a 
promising avenue to support drug discovery efforts.
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