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Abstract
Introduction: Colorectal cancer (CRC) is 
among the lethal cancers, indicating the need 
for the identification of novel biomarkers for 
the detection of patients in earlier stages. RNA 
and microRNA sequencing were analyzed 
using bioinformatics and machine learning 
algorithms to identify differentially expressed 
genes (DEGs), followed by validation in CRC 
patients.
Methods: The genome-wide RNA sequencing 
of 631 samples, comprising 398 patients and 
233 normal cases was extracted from the 
Cancer Genome Atlas (TCGA). The DEGs were 
identified using DESeq package in R. Survival analysis was evaluated using Kaplan–Meier analysis to 
identify prognostic biomarkers. Predictive biomarkers were determined by machine learning algorithms 
such as Deep learning, Decision Tree, and Support Vector Machine. The biological pathways, protein-
protein interaction (PPI), the co-expression of DEGs, and the correlation between DEGs and clinical 
data were evaluated. Additionally, the diagnostic markers were assessed with a combioROC package. 
Finally, the candidate tope score gene was validated by Real-time PCR in CRC patients. 
Results: The survival analysis revealed five novel prognostic genes, including KCNK13, C1orf174, 
CLEC18A, SRRM5, and GPR89A. Thirty-nine upregulated, 40 downregulated genes, and 20 miRNAs 
were detected by SVM with high accuracy and AUC. The upregulation of KRT20 and FAM118A genes 
and the downregulation of LRAT and PROZ genes had the highest coefficient in the advanced stage. 
Furthermore, our findings showed that three miRNAs (mir-19b-1, mir-326, and mir-330) upregulated 
in the advanced stage. C1orf174, as a novel gene, was validated using RT-PCR in CRC patients. The 
combineROC curve analysis indicated that the combination of C1orf174-AKAP4-DIRC1-SKIL-
Scan29A4 can be considered as diagnostic markers with sensitivity, specificity, and AUC values of 0.90, 
0.94, and 0.92, respectively. 
Conclusion: Machine learning algorithms can be used to Identify key dysregulated genes/miRNAs 
involved in the pathogenesis of diseases, leading to the detection of patients in earlier stages. Our data 
also demonstrated the prognostic value of C1orf174 in colorectal cancer.
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Introduction
Colorectal cancer (CRC) is the third most commonly 
diagnosed cancer, representing 10% of worldwide cancer 
incidence and 9.4% of cancer-related deaths.1 Early 
detection is crucial for improving patients' survival.2 
RNA sequencing (RNA-seq) and microRNA profiling 
represent a new era of identifying biomarkers and there is 
growing attention on employing relevant bioinformatics 
technologies to study the potential role of RNAs and 
miRNAs in screening, determining progression-
free survival, prognosis, and recurrence of colon 
adenocarcinoma.3-6 

The exponential increase in biological data, driven 
by high-throughput sequencing and other advanced 
technologies, presents a significant challenge due to its 
complexity and the time required for analysis.7 Previous 
research has largely depended on bioinformatics alone for 
biomarker discovery, a process that, while useful, often 
requires manual data interpretation, making it time-
consuming and less effective for handling large datasets. 
In contrast, integrates bioinformatics with machine 
learning techniques to improve biomarker discovery. The 
incorporation of machine learning algorithms facilitates 
more efficient analysis of complex datasets, uncovers 
patterns that traditional methods may miss, and enhances 
the accuracy and reliability of the findings.8

Machine learning,9 a new branch of artificial intelligence, 
is widely utilized to establish a signature for early cancer 
detection with high accuracy of prognosis prediction.10-12 
Previous studies indicated the roles of differentially 
expressed RNAs and miRNAs as determinants of 
diagnosis and prognosis in various stages of CRC. Liu 
et al. have reported a 9-gene signature (NTRK2, DTNA, 
BTG2, COL11A1, Smad2, Smad4, PIK3R1, BCL2, and 
AXIN2) to have diagnostic significance in the early stages 
of CRC in a patient cohort.13 In Ghatak et al’s study, 
four upregulated (BDNF, PTGS2, GSK3B, and CTNNB1) 
and one downregulated gene (HPGD) were identified as 
diagnostic and prognostic biomarkers in 1850 primary 
CRC tissues.14 Furthermore, higher expression of let-
7g, miR-21, miR140, miR143, miR-181, miR-192, and 
miR-215, in 200 CRC patients have been reported to be 
significantly associated with patients’ overall survival 
in stages III and IV of CRC. In addition, Jacob et al. 
identified a 16-miRNA panel (miR-143-5p, miR-27a-
3p, miR-31-5p, miR-181a-5p, miR-30b-5p, miR-30d-5p, 
miR-146a-5p, miR-23a-3p, miR-150-5p, miR-210-3p, 
miR-25-3p, miR-196a-5p, miR-148a-3p, miR-222-3p, 
miR-30c-5p and miR-223-3p) as markers of poor survival 
in stage II and III colon cancer in a cohort of 111 CRC 
cases.5 Despite extensive efforts in preclinical and clinical 
phases to identify patients in earlier stages, the survival 
rate of patients in advanced stages remains poor. Several 
ML approaches, Deep Learning (DL), Decision Tree, 
and Support Vector Machine (SVM) are being used. In 

particular, DL is considered a core domain of ML and 
artificial intelligence (AI), which has a good learning 
capability from historical data by using multiple layers, 
DL can be employed for building intelligent systems and 
automation.15 Due to many parameters, training a model 
with DL is time-consuming. However, running during 
testing requires a short amount of time compared to other 
ML techniques.16 A decision tree is another algorithm of 
ML that provides a tool for building prediction models 
by classification and regression. It works efficiently 
toward extensive data with a tree-like structure in nodes, 
branches, and leaves representing tests, test outcomes, 
and class distributors, respectively.17 The trees vary based 
on the types of values (classes). A regression tree would 
suit a discrete set of values, a classification tree, and 
continuous values. The top-most node in a tree is the root 
node, and the path would be traced from the root to each 
leaf node holding a specific class distributor.18 A SVM 
is a wildly used algorithm supervised by ML, providing 
a classification tool. Numerous studies showed that ML 
methods have great potential in discovering biomarkers 
for various diseases, including cancer.19-21 Resmini et 
al proposed an ensemble method combining genetic 
algorithm and SVM for breast cancer diagnosis using 
thermographic data.22 Gupta et al showed how various ML 
algorithms could predict colon cancer stages by utilizing 
information from histopathology reports, intra-operative 
findings, history taking, and chart records. They used RF, 
AdaBoost, SVM, MLP, and kNN classifiers on the original 
dataset without augmentation during training. The results 
demonstrated that the SVM classifier outperformed the 
other algorithms in accurately predicting colon cancer 
stages. The study highlights the importance of integrating 
multiple sources of data for improved predictive accuracy 
in medical decision-making.23 In both the training and 
validation cohorts, a study demonstrated that the optimal 
SVM classification model accurately distinguished 
between colon and rectal cancer based on an accuracy 
of 82.1% and 82.2%, respectively, and an AUC of 0.87 
and 0.91, respectively.24 A study utilized various ML 
methods on RNASeq data to discover new biomarkers in 
colorectal cancer, offering potential for early diagnosis, 
treatment, and prognosis improvements.25 Asadnia et 
al employed decision tree and deep learning techniques 
in an integrated bioinformatics approach on genomics 
and transcriptomics data. Their results revealed two 
novel biomarkers in colorectal cancer. These biomarkers 
were found to have a significant association with disease 
progression and patient prognosis, highlighting their 
potential as promising targets for future research and 
clinical applications in the field of colorectal cancer.26

The novelty of our work lies in conducting genome-
wide RNA and microRNA profiling in CRC patients 
using advanced bioinformatics and machine learning 
techniques, including Deep Learning, Decision Trees, and 
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Support Vector Machines. This analysis was subsequently 
validated in an independent cohort of CRC patients to 
discover prognostic biomarkers for CRC (Fig. 1A). By 
addressing these aspects, our work not only advances 
the methodological framework for biomarker discovery 
in CRC but also provides valuable prognostic tools that 
can enhance patient care. We believe that our approach 
represents a significant step forward in the field, offering 
both technical innovations and practical applications in 
oncology.

Materials and Methods 
Data source and raw data
The gdac database (https://gdac.broadinstitute.org/) 
extracted Colorectal adenocarcinoma data from 631 
samples, comprising 398 patients and 233 normal cases. 
17509 RNA gene expression, 508 microRNA, and clinical 
data were downloaded. RNA-Seq data were collected 
from the TCGA database(https://portal.gdc.cancer.gov/). 
Voom and TMM normalization methods normalized 
The raw counts of RNA-Seq and miR-Seq data reads. 
All the analyses were conducted in R software. The 
DESeq2 package in R software was utilized to indicate 
the differentially expressed, and the concluded data were 
filtered based on the |LogFC| > 1, P-value < 0.05 were 
considered as significant thresholds. 

Differential expression analysis
The raw counts of RNA-Seq and miR-Seq data reads. 
were screened by filtering, that the zero expression 
and duplicate genes were eliminated, then data were 
normalized with limma and DESEQ2 packages in R 4.0.3 
software. The adjusted P < 0.05 and |LogFC| > 1 were 
identified for upregulate and downregulate significant 
genes for subsequent analysis.

Identification of predictive biomarkers
Three machine learning techniques were used to identify 
essential genes and miRNAs, including deep learning, 
decision tree, and Support vector machine. The relief 
weight feature selection algorithm was implemented 
as a feature selection method in combination with 
three machine learning classifiers. The relief algorithm 
calculates a feature score for each feature, which is then 
used to rank and select the top-scoring features for 
inclusion in the classification model. Features with a 
score greater than 0.9 were selected for this purpose. 
In this approach, the method first evaluates the feature 
weights using ReliefF, sorts the features based on these 
weights, and then eliminates irrelevant genes according 
to a predefined threshold. Subsequently, three classifiers-
support vector machine (SVM), decision tree, and deep 
learning-are employed to classify and identify the sample 
data after dimensionality reduction. This multi-step 
process ensures that only the most relevant features are 
used for classification, thereby improving the model's 

performance and generalization capabilities. The model 
was performed with Rapidminer 9.10. Model architecture 
design to ensure that the most relevant features are 
considered during training and parameters were set on 
learning rate = 0.01, activation function = Rectifier, hidden 
layer = 50, and epochs = 20 for deep learning model. 
Maximal depth = 10 and linear Kernel were provided for 
decision tree and SVM. Overall, the standard workflow of 
utilizing models involves splitting the data into two sets, 
training and test, training the model on the training set, 
evaluating its performance on the test set, and iterating on 
the model and data pre-processing techniques to optimize 
the performance and generalization ability of the model. 
This study divided the dataset into 70% training and 
30% test sets. Further for considering generalizibility, 
external validation tests using various GEO datasets 
(Gene Expression Omnibus datasets) such as GSE4045, 
GSE4107, GSE5851, GSE44861, and GSE113513 were 
performed. R2

, auc_curve, accuracy, confusion matrix 
were considered for the performance of machine learning 
methods. The high-performance technique (with high R2 
and ROC (receiver operating characteristic)) was selected 
as the final classifier for necessary gene identifiers.

Correlation between case/control and clinicopathological 
factors
The binary correlation of variables such as age, sex, 
cancer stages, and case/control were examined using a 
correlation matrix. R4.1.0 was selected for analysis. 

Enrichment analysis
For in-silico functional enrichment analysis, Gene 
Ontology (GO) was used to annotate biological processes 
(BPs), molecular functions (MFs), and cellular components 
(CCs) of genes. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) annotated the gene pathways.

PPI network construction and functional enrichment 
analysis 
STRING v11.5 database (http://string-db.org/) was 
employed for Interaction network analysis, and GO and 
KEGG enrichment analysis was used to identify significant 
pathways. Results with enrichment score > 1, and adjust 
P < 0.05 were determined as statistically significant results. 

Identification of significant targets for miRNA and RNA-
miRNA integration 
The miRNA-targeted genes were predicted by datasets, 
including miRWalk, miRDB, and TargetScan, and then 
visualized by Cytoscape software. The Venn diagram 
demonstrates the relationships among miRNA-targeted 
and DEGs genes.

Identification prognostic biomarker
The Kaplan–Meier analysis was performed on DEGs to 
estimate overall survival (OS) between the two groups 

https://gdac.broadinstitute.org/
https://portal.gdc.cancer.gov/
http://string-db.org/
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Fig. 1. (A) The overall workflow, (B) heatmap of DEGs and (C) DEMs of COAD was drawn by R software, (D) comparison of five different machine learning 
algorithms, including Deep Learning, Decision Tree, Support Vector Machine (SVM), (E) correlation of upregulated and downregulated genes in CRC. A 
correlation of less than 0.3 is weak, between 0.3 and 0,6 was considered moderate, and more than 0.6 is strong.
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(upregulate and downregulate). Candidate genes were 
screened with log-rank P < 0.05 as prognostic-related 
genes. 

Identification diagnostic biomarker
CombioROC package in R was used in selecting the optimal 
combination(s) of diagnostic biomarkers through a simple 
analytical method biomarker detection. In this package, 
GLM model is used basically for determining the most 
important coefficient in biomarker combinations. Finally, 
the best combinations can be chosen in accordance with 
model criteria. Also, the best biomarkers are introduced 
by sensitivity, specificity, and AUC. Combined receiver 
operating characteristic (ROC) curve analysis was used to 
evaluate diagnostic performance. Sensitivity, specificity, 
cut-off value, positive predictive value, negative predictive 
value, and area under the ROC curve were evaluated to 
assess the discrimination of individual or combined 
biomarkers. All procedures were performed using the 
CombioROC R package.

Quantitative real-time PCR
Total RNA was extracted after paraffinization from 
thirty FFPE (Formalin-Fixed Paraffin-Embedded) tissue 
samples using a Parstous kit (Parstous, Tehran, Iran) 
according to the manufacturer's protocol. The local 
Hospital Ethics Committee of Mashhad University of 
Medical Sciences approved all procedures. The quality 
and quantity of extractions were evaluated by a Nanodrop 
2000 spectrophotometer (BioTek, USA EPOCH). The 
cDNA was synthesized by performing a cDNA synthesis 
kit (Parstous, Tehran, Iran). Quantitative real-time PCR 
was performed using specific primers for the C1orf174 
gene (Betagene, Mashhad, Iran) and the SYBR green 
master mix (Parstous Co. Tehran, Iran) by an ABI-PRISM 
StepOne instrument (Applied Biosystems, Foster City, 
CA). Gene expression data were normalized to GAPDH 
using a standard curve of cDNAs purchased from 
Quantitative PCR Human Reference RNA (Stratagene, La 
Jolla, CA).

Results
Data description, DEGs genes/miRNA profiling based on 
machine learning method
Considering that all analyses were performed separately 
by stages, the descriptive characteristics of the 
population in three stages are shown in Tables S1 and 
S2 (Supplementary file 1). The information showed that 
53.3% of patients were women aged 64 years, and 52% were 
in the primary stage. The critical features were extracted 
using the threshold for the correlation coefficient (set 
correlation > 0.8). Finally, 12084 DEGs of RNA and 137 
differentially expressed miRNAs (DEMs) were identified 
based on the specific criteria and then visualized by the 
heat map (Figs. 1B and C). 

Identifying the most effective method of machine 
learning algorithms 
The key genes were analysed by three different machine 
learning algorithms, including deep learning, decision 
tree, and SVM. They were examined with five metrics 
and illustrated in Fig. 1D by accuracy in all stages. Finally, 
we chose the SVM as the suitable algorithm with the best 
accuracy = 96.67, R2 = 95, and AUC = 1. The confusion 
matrix was presented in Table S3.

Correlation between case/control and clinicopathological 
factors
Our result showed no correlation between case/control 
and clinical data, while a significant negative correlation 
was observed between stage and age (Fig. 1E).

Gene ontology, functional annotation, and pathway 
enrichment 
Based on the R software, our findings showed that 
39 upregulated and 40 downregulated genes and 40 
upregulated miRNAs were detected in the advanced stage 
(stages 3 and 4). DEGs were enriched in upregulated 
genes detected by machine learning techniques; MFs of 
downregulated DEGs regarded amyloid-beta binding, 
acetylcholine receptor activity, neurotransmitter 
receptor activity, calcium channel activity, calcium 
ion transmembrane transporter activity, voltage-gated 
calcium channel activity, G protein-coupled amine 
receptor activity, peptide binding, divalent inorganic 
cation transmembrane transporter activity, serine-type 
endopeptidase activity, and cation channel activity. 
The upregulated DEGs regulated vinculin binding, 
monocarboxylic acid transmembrane transporter 
activity, and organic acid transmembrane transporter 
activity. GO analysis for downregulated genes in cellular 
components revealed that the differentially expressed 
genes predominantly contributed to synaptic vesicles, 
exocytic vesicles, synaptic membranes, transport 
vesicles, and voltage-gated calcium channel complexes. 
The outputs of KEGG pathway analysis indicated that 
downregulated genes participated in pathways involving 
calcium signalling pathways, metabolic pathways, 
neuroactive ligand-receptor interaction, cholinergic 
synapse, and pathways of neurodegeneration - multiple 
diseases, etc.; for upregulated genes, KEGG gene set 
metabolic pathways, MicroRNAs in cancer, PI3K-Akt 
signaling pathway was enriched (Fig. 2).

PPI network construction and identification of targets 
for miRNA and RNA-miRNA integration 
The network of DEGs was analysed and depicted by 
Tidyverse and Igraph package of R software (Figs. 3A, B, 
and C). 

Moreover, 68 mRNA were detected as targets of 40 
DEGs in an advanced stage, of which three miRNAs (hsa-
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Fig. 2. GO functional annotation and KEGG functional pathways of enrichment terms in CRC. The P-value is less than 0.05 and is shown by the colour.
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mir-19b-1, hsa-mir-326, and hsa-mir-330) upregulated in 
both stages 3 and 4. These miRNAs targeted eight mRNA, 
including OLFML2A, RGS16, SUPT3H, NFIC, DDIT4, 
GPRC5B, IKZF2, and COL14A1. Furthermore, the survival 
analysis revealed that dysregulation of hsa-miR-28, which 
targeted CASS4, KCNIP2, and ATP8B1 decreased OS 
(Fig. 4). Also, the candidate miRNAs were validated using 
dbDMEC (https://www.biosino.org/dbDEMC/index) 
which contains the demiRs in human cancers based on 
public repositories like ArrayExpress, Gene Expression 
Omnibus (GEO), Sequence Read Archive (SRA), and The 
Cancer Genome Atlas (TCGA). As shown in Fig. 4, the 
interaction of DEGs of RNA and miRNA was analyzed 
and visualized by String; the interaction score was 0.4.

Identifying prognostic markers 
The survival analysis revealed five novel prognostic 
genes of CRC, including KCNK13, C1orf174, CLEC18A, 
SRRM5, and GPR89A (Fig. 5). Additionally, we identified 
seven prognostic biomarkers mentioned in previous 
studies, including CASS4, KCNIP2, CLDN9, ATP8B1, 
RPIA, HPRT1, and ZNF805 (Figs. 5, 6 and 7A).

ROC curve for identification of diagnostic markers
For stage I–II, combination of CATSPER1-GRIA4-
POPDC3-TLX2 had the highest rank (AUC of 0.91, 
95% CI with sensitivity of 0.84 and specificity of 0.91), 
for stage 3, FAM151A-LILRA4-LRAT-SH2D6 among 
other individual biomarkers had the top value (AUC of 
0.91,95%CI with sensitivity of 0.92 and specificity of 0.90). 
In stage 4, our finding showed that the AUC value for the 
AKAP4-C1orf174-DIRC1-SKIL-SLC29A4 combination 
was 0.95,95%CI with 0.90 sensitivity and 0.94 specificity. 
Among prognostic biomarkers, a combination of ATP8B1-
C1orf174-CASS4-KCNK13 biomarkers with (AUC = 0.95, 
CI = 95%, sensitivity = 0.94, and Specificity = 0.88) was 
identified as an important combination for diagnosis of 
adenocarcinoma colon. GLM model analysis for ATP8B1-
C1orf174-CASS4-RPIA combination in prognostic 
biomarkers resulted in superior diagnostic biomarkers 
with -3.0909, 1.0238, 0.2464, and 1.6263 coefficients 
and good AIC. These results suggest that C1orf174 has 
potential diagnostic value in combination with other 
genes such as AKAP4, DIRC1, and SLC29A4 to detect 
adenocarcinoma colon. Selected Diagnostic biomarkers, 
according to stages and prognostic biomarkers, are shown 
in Table S4. The results of GLM model are presented in 
Table S5 and Figs. 7B and 7C.

C1orf174 validation
Patient demographic and clinicopathological features 
are presented in the Table S6. The data showed that the 
mean expression of C1orf174 (Mean ± SD = 2.1 ± 2.02) was 
higher in tumor cells (P < 0.05). Furthermore, there was no 
correlation between dysregulation of the C1orf174 gene 

and demographic and clinicopathological characteristics 
(Fig. 7D).

Discussion
Colorectal cancer is the third most common cause of 
cancer-related mortality. To date, millions of people have 
died as a result of the disease worldwide.27 Researchers have 
been inspired to create novel diagnostic and prognostic 
biomarkers as a result of the rise in colorectal cancer 
morbidity and mortality. Similar to this, physicians are 
experimenting with various treatment plans to enhance 
patients' prognoses and minimize their suffering from 
colorectal cancer. Lowering the mortality rate requires 
uncovering biomarkers linked to mortality and survival 
utilizing patient datasets that are currently accessible. 

Previous studies have primarily relied on bioinformatics 
analysis alone for biomarker discovery, which, although 
valuable, often involves manual data interpretation, 
making it time-consuming and less effective for large 
datasets. In contrast, our study combines bioinformatics 
and machine learning methods to enhance biomarker 
discovery. Integrating machine learning algorithms 
allows for more efficient analysis of complex datasets, 
identification of patterns not evident through traditional 
methods, and improved accuracy and reliability of 
findings.

Utilizing information from public databases, the 
quick development of bioinformatic techniques 
makes it possible to identify the characteristic genes of 
disorders.28-30 Machine learning9 methods have been used 
to analyse various kinds of biological datasets to predict 
the biomarkers for the categorization of samples and 
genes linked to a specific clinical condition.26,31-33 However, 
only a few researchers have simultaneously employed 
deep learning, SVM, and decision tree algorithms, three 
well-known machine learning methods, to uncover CRC 
biomarkers. DL may be used to create automated and 
intelligent systems.15 Training a model with DL requires a 
lot of time because of the numerous parameters. However, 
compared to other ML approaches, running while testing 
takes very little time.16 The decision tree is another ML 
approach that may be used to create classification and 
regression-based prediction models. It operates effectively 
on large amounts of data and has a tree-like structure with 
nodes, branches, and leaves that, respectively, represent 
tests, test results, and class distributors.17 A classification 
tree, a discrete collection of values, and continuous values 
would all work well with a regression tree. A tree's root 
node is the top node, and the route to each leaf node 
storing a particular class distributor would be traced from 
the root.18 SVMs are widely used algorithms supported 
by machine learning and offer a classification tool. It is 
frequently used to create a classification plane that divides 
samples into two categories. Additionally, it has distinct 
advantages, particularly when handling issues with high 

https://www.biosino.org/dbDEMC/index
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Fig. 3. The network of DEGs was analysed and depicted by Tidyverse and Igraph package of R software. (A) Upregulated genes, (B) downregulated genes, 
and (C) miRNA.
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Fig. 4. Identification of significant targets for miRNA and RNA-miRNA integration.
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Fig. 5. PPI network of novel prognostic genes from String, and Kaplan–Meier plot.
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Fig. 6. continued: PPI network of prognostic genes from String, and Kaplan–Meier plot.
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Fig. 7. (A) PPI network from String, and Kaplan–Meier plot of C1orf174 gene, (B-C) combineROC curve of C1orf174 gene (combination159: AKAP4-
C1orf174-DIRC1-PROZ-SKIL, combination160: AKAP4-C1orf174-DIRC1-PROZ-SLC29A4, combination 161: AKAP4-C1orf174-DIRC1-PROZ-SV2C, 
combination 162: AKAP4-C1orf174-DIRC1-SKIL-SLC29A4, and combination 163: AKAP4-C1orf174-DIRC1-SKIL-SV2C), (D) The expression level of 
C1orf174 in tumor tissue, as detected by RT-PCR.
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dimensions, a limited sample size, and nonlinearity.34

Due to the availability of public datasets, we employed 
a clinical dataset from TCGA to train ML algorithms in 
order to make use of the potential of the dataset for the 
diagnosis and prognosis of CRC patients. We created a 
pipeline to predict characteristics related to CRC patients' 
survival, such as genes and clinical factors.

We have identified five novel prognostic genes, 
including KCNK13, C1orf174, CLEC18A, SRRM5, and 
GPR89A, and seven prognostic biomarkers as described 
in previous studies, including CASS4, KCNIP2, CLDN9, 
ATP8B1, RPIA, HPRT1, and ZNF805. Our finding 
validated the prognostic value of C1orf174 in CRC. 
Machine learning was performed to identify the critical 
genes in the advanced stage of CRC. Our findings showed 
39 upregulated genes and 40 downregulated genes, of 
which the upregulation of KRT20 and FAM118A genes 
and downregulation of LRAT and PROZ genes had the 
highest coefficient in the advanced stage. 

In this study, the Machine Learning analysis detected 40 
DEMs in the advanced stage of CRC, which targeted 68 
genes. Three miRNAs (mir-19b-1, mir-326, and mir-330) 
were upregulated in stages 3 and 4. These miRNA targeted 
eight mRNA, including OLFML2A, RGS16, SUPT3H, 
NFIC, DDIT4, GPRC5B, IKZF2, and COL14A1, which 
are involved in the proliferation and metastasis by Wnt 
and MAPK, mTOR, NF-κB signaling.35-39 Furthermore, 
the survival analysis revealed that dysregulation of hsa-
miR-28, which targeted CASS4, KCNIP2, and ATP8B1 
decreased OS in CRC patients. 

The potential role of the identified genes in different 
pathways, their native functions, their interactions with 
other genes, etc., are described in the following sections. 

C1orf174, chromosome 1 open reading frame 174, 
is located in the 1p36.32 and consists of 6 exons. Our 
analysis revealed both the diagnostic and prognostic 
value of C1orf174 in CRC. The function of C1orf174 is 
still unclear, and according to the HPA RNA-seq project, 
the highest expression of this gene was reported in the 
placenta and appendix. During tumorigenesis, cancer cells 
produce a wide range of proteins originally produced by 
the placental and embryo. The inappropriate expression 
of these proteins in developed tissue is considered a 
tumor marker. Carcinoembryonic antigen (CEA) and 
alpha-fetoprotein (AFP) are the most common placental 
and foetus tumor markers. Min et al. reported the 
C1orf174 gene as a prognostic marker in thyroid papillary 
carcinoma with an AUC value of 0.79.40 The result of 
the string dataset showed that C1orf174 significantly 
correlates with AJAP1 and IKZF1 genes. AJAP1 modulated 
the adhesion and migration of cancer cells, including 
glioblastoma,9 breast cancer,41 hepatocellular carcinoma,42 
and oesophageal squamous cell carcinoma,43 as well as 
serves as a potential prognostic biomarker. The IKZF1 
gene belongs to the zinc finger 1 Faily and is known as 

the Ikaros family, which plays a pivotal role in developing 
and regulating the immune system. Recent evidence 
showed that IKZF1 could be considered a prognostic and 
predictive marker.44-47

CASS4 is a member of the Cas scaffold family, also 
known as HEPL, and regulates cell adhesion and 
invasion by colonizing focal molecules, such as FAK1 
and paxillin.48,9 Li et al reported that CASS4 decreased 
the eexpression of E-cadherin by phosphorylating the 
AKT, promoting metastasis in non-small cell lung cancer 
(NSCLC).50 Bioinformatics analysis of TCGA data of lung 
squamous carcinoma tissues and lung adenocarcinoma 
showed the dysregulation of CASS4.49 KCNIP2 belongs 
to the family of potassium Voltage-Gated channels. The 
RNASeq analysis data of ovarian cancer demonstrated 
that KCNIP2 increases cancer incidence and OS.51 In 
glioblastomas, KCNIP2 Expression is associated with 
OS.52 Previous evidence suggests that CLDN9 expression 
promotes tumorigenesis, metastasis, and poor survival 
in gastric cancer,53,54 hepatocellular carcinoma (HCC),55 
and cervical cancer.56 Claudin9 has two promoters: 
transcriptional factors, which bind to different sequences 
and activate cell growth, proliferation, and invasion.57 The 
high expression of CLDN9 increased metastasis in cervical 
cancer and HCC by activating the TyK2/Stat3 pathway.55,56 
ATP8B1 belongs to the ATPase class I type 8b member 1, 
critical in translocating molecules such as phospholipids. 
Some studies suggested ATP8B1 is a tumor suppressor 
gene downregulated in the CRC.58-60 In agreement with 
our result, Qiu et al. showed that RPIA overexpression 
reduced OS in CRC patients.61 Overexpression of RPIA 
increases the level of reactive oxygen species, resulting 
in cell proliferation. An in-vivo model showed a high 
level of RPIA-induced Wnt signalling pathway and 
enhanced HCC proliferation, and the knockdown of a 
gene by shRNA reduced the cell growth in the xenograft 
model.62 The previous investigation reported that RPIA 
is upregulated in the mRNA and protein level and is an 
appropriate prognostic biomarker in HCC and CRC, 
promoting cell growth via modulating Erk signalling.61,63 
HPRT1, Hypoxanthine phosphoribosyl transferase 1, 
a conversion enzyme that transfers 5-phosphoribosyl 
and produces inosine and guanosine, is recently known 
as a tumorigenesis factor.64,65 The RNASeq analysis of 
Uterine Corpus Endometrial Carcinoma (UCEC) data 
from TCGA showed the elevation of HPRT1 negatively 
associated with OS.66 The knockdown HPRT1 in breast 
cancer decreases cancer cell growth.66 ZNF805 is a zinc 
finger family member involved in binding transcription 
factors to DNA. The analysis of TCGA data revealed 
the upregulation of ZNF805 in the early stage of gastric 
cancer.67 The examine the blood of patients with small-
cell lung cancer (SCLC) showed ZNF805 significantly 
upregulated, so it can be considered a potential and non-
invasive marker.67
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KRT20, also known as CK20, is a member of the 
cytokeratin family reported as a marker in different 
diseases, including gastrointestinal and Merkel cell 
carcinoma.68 Chan et al showed that KRT20 is considered 
a biomarker in 38 different types of CRC cell lines.69 In-
silico analysis of data from the GEO dataset ( GSE113513, 
GSE37182, GSE25070, and GSE10950) demonstrated 
43 hub genes in CRC, including KRT20.70 The survival 
analysis of bladder cancer showed KRT20 overexpression 
is significantly associated with recurrence-free survival 
(RFS), progression-free survival (PFS), and cancer-
specific survival (CSS), so it can be a predictive 
marker for re-occurrence and progress of cancer.71 
Our findings showed that FAM118A (a family with 
sequence similarity 118 member A) was identified as a 
prognostic marker. A broad analysis of gene expression 
profiles using microarray, western blot, qPCR, and 
bioinformatic showed the high expression of FAM118A 
in glioblastoma.72 Our result showed downregulation of 
LRAT, which aligns with the previous reports. The LRAT 
expression decreased in various cancers, such as CRC, 
prostate, bladder, and renal.73-79 Cheng et al reported 
that LRAT was downregulated in the early stage of CRC 
due to hypermethylation of the promoter.74 PROZ gene 
encodes a vitamin K-dependent protein Z glycoprotein 
synthesized in the liver and is released in the blood. The 
previous data reported dysregulated expression of PROZ 
in pancreatic cancer and CRC.80-82

The results of this study suggest that ML-based 
prediction/classification models can effectively aid in 
the prognosis of CRC patients based on clinical and 
genetic indicators linked with CRC diagnosis/survival. 
In aggregate, our findings provide a novel insight 
into the prognostic and diagnostic value of C1orf174 
in CRC. Further functional studies are warranted to 
investigate the molecular function of C1orf174 in CRC 
and validate other novel identified biomarkers in a larger 
multicentre setting population of colorectal cancer. Our 
study had several limitations. Validation of combination 
biomarkers was not performed, although they had high 
specificity and sensitivity due to our in-silico analyses. 
The RNA-sequencing analysis was not performed on our 
own patients' samples. Furthermore, the sensitivity and 
specificity of the identified prognostic and diagnostic 
biomarkers were not compared with those of gold-
standard known markers. This should also be considered 
in further studies to help translate the novel findings of 
this research into the clinic.

Conclusion
Our findings underscore the utility of machine learning 
algorithms in identifying key dysregulated genes and 
miRNAs involved in the pathogenesis of CRC, which can 
facilitate early detection and improve patient outcomes. 
Moreover, the prognostic value of C1orf174 in CRC was 

demonstrated, providing a potential target for future 
research and therapeutic interventions. We recommend 
future research involving multi-omics analysis of 
C1orf174, further investigation into the protein's specific 
functions and conserved residues, and experimental 
validation of predicted protein interactions. Additionally, 
studying genetic variation in the C1orf174 gene and its 
expression across different cancer types could provide 
valuable insights for cancer therapy.
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