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Introduction
Diabetes mellitus, a chronic metabolic disorder 
characterized by persistent hyperglycemia, poses a 
significant global health challenge. The prevalence of 
diabetes has been rising at an alarming rate, with an 
estimated 415 million individuals affected worldwide in 
2016—a figure projected to reach 642 million by 2040.1,2 
Effective diabetes management requires regular blood 
glucose monitoring to prevent severe complications, 
including cardiovascular diseases, neuropathy, and 
retinopathy.1,3,4 

Blood glucose monitoring has traditionally relied 
on invasive techniques, primarily finger-pricking and 

continuous glucose monitoring (CGM) systems.5 While 
finger-pricking methods provide accurate measurements, 
they are painful and inconvenient, often leading to poor 
patient compliance, particularly among individuals 
requiring frequent monitoring.6 CGM systems, which 
utilize subcutaneous sensors, enable continuous 
glucose monitoring but are associated with sensor drift, 
calibration requirements, high costs, and potential skin 
irritation. These limitations underscore the need for 
a genuinely non-invasive, cost-effective, and reliable 
glucose monitoring solution.1,7,8

The development of non-invasive glucose monitoring 
technologies has led to significant advancements, 
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Abstract
Introduction: Accurate and non-invasive 
blood glucose estimation is essential for 
effective health monitoring. Traditional 
methods are invasive and inconvenient, often 
leading to poor patient compliance. This study 
introduces a novel approach that leverages 
systolic-diastolic framing Mel-frequency 
cepstral coefficients (SDFMFCC) to enhance 
the accuracy and reliability of blood glucose 
estimation using photoplethysmography 
(PPG) signals.
Methods: The proposed method employs SDFMFCC for feature extraction, incorporating systolic 
and diastolic frames. The systolic and diastolic points are identified using the Savitzky-Golay 
filter, followed by local extrema detection. Blood glucose levels are estimated using support vector 
regression (SVR). The evaluation is performed on a dataset comprising 67 raw PPG signal samples, 
along with labeled demographic and biometric data collected from 23 volunteers (aged 20 to 60 
years) under informed consent and ethical guidelines.
Results: The SDFMFCC-based approach demonstrates high accuracy (99.8%) and precision 
(0.996), with a competitive root mean square error (RMSE) of 26.01 mg/dL. The Clarke Error Grid 
analysis indicates that 99.273% of predictions fall within Zone A, suggesting clinically insignificant 
differences between estimated and actual glucose levels.
Conclusion: The study validates the hypothesis that incorporating a new framing method in 
MFCC feature extraction significantly enhances the accuracy and reliability of non-invasive blood 
glucose estimation. The results highlight that the SDFMFCC method effectively captures critical 
physiological variations in PPG signals, offering a promising alternative to traditional invasive 
methods.
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leveraging various physiological markers correlated 
with blood glucose levels.1,9,10 Among these, optical 
sensing technologies, particularly photoplethysmography 
(PPG), have demonstrated substantial potential.11-14 PPG 
measures blood volume fluctuations in the microvascular 
bed of tissue by analyzing light absorption characteristics, 
thereby indirectly estimating glucose concentration.15-17 
Already widely implemented in pulse oximeters for heart 
rate and oxygen saturation monitoring, PPG is now 
being explored for its applicability in continuous glucose 
monitoring devices. The primary advantage of PPG-
based systems lies in their ability to provide painless and 
continuous monitoring, significantly improving patient 
adherence and diabetes management.1,18,19

PPG has emerged as a prominent technique for non-
invasive glucose monitoring due to its ability to measure 
blood volume fluctuations through light absorption 
analysis. This technology, widely utilized in pulse oximetry, 
is being adapted for glucose level estimation by analyzing 
light reflections from blood vessels in the skin. The non-
invasive nature of PPG makes it particularly suitable 
for continuous monitoring, enabling real-time glucose 
assessment without requiring blood samples.20,21 Despite 
its potential, the accuracy and reliability of PPG-based 
glucose monitoring remain subject to scrutiny, as factors 
such as skin pigmentation, ambient light interference, 
and motion artifacts can impact measurement precision. 
Existing PPG-based glucose monitoring techniques 
predominantly rely on statistical models or shallow feature 
extraction methods, which may fail to adequately capture 
the complex, nonlinear physiological variations associated 
with glucose fluctuations. These limitations underscore 
the need for advanced signal processing and enhanced 
feature extraction techniques that improve robustness 
and accuracy while maintaining computational efficiency. 
Therefore, further research and development are essential 
to refine PPG-based glucose monitoring technology and 
ensure its clinical reliability.13

Researchers are increasingly integrating multiple 
physiological signals to enhance the accuracy and 
reliability of PPG-based glucose monitoring. Glucose 
level predictions become more robust and comprehensive 
by combining PPG with electrocardiography (ECG) 
and galvanic skin response (GSR). This multi-sensor 
approach leverages the complementary strengths of 
different modalities, enabling a more holistic analysis of 
the physiological changes associated with blood glucose 
fluctuations.22-24 Furthermore, advanced machine learning 
models are utilized to process large-scale datasets, identify 
underlying patterns, and predict glucose levels based on 
multiple physiological inputs. These models are specifically 
designed to account for individual variability and adapt 
over time, thereby improving robustness and reliability 
compared to traditional analytical methods.12,16,25,26

Despite significant advancements in non-invasive 

glucose monitoring, several critical challenges persist. 
Ensuring the accuracy and reliability of these devices 
across diverse populations remains a significant obstacle. 
Factors such as skin type, age, and underlying health 
conditions can influence the performance of non-
invasive sensors, necessitating extensive testing and 
validation to confirm their effectiveness across various 
clinical scenarios.14,17,19 Additionally, integrating multiple 
sensors and implementing complex algorithms require 
sophisticated hardware and software solutions, which 
contribute to increased costs and system complexity.21 
Moreover, deep learning-based models demand large-
scale training datasets and high computational resources, 
posing challenges for real-time application.22 Beyond 
technical limitations, developing non-invasive glucose 
monitoring technologies also encounters regulatory 
challenges. Regulatory bodies such as the U.S. Food and 
Drug Administration (FDA) impose rigorous testing and 
validation requirements to ensure the safety and efficacy 
of medical devices. This regulatory approval process can 
be time-consuming and costly, potentially delaying the 
clinical availability of emerging non-invasive glucose 
monitoring technologies.14,25,27

This study introduces a novel approach to blood 
glucose estimation that leverages systolic-diastolic 
framing with Mel-frequency cepstral coefficients 
(SDFMFCC) feature extraction, combined with 
regression learning. Unlike traditional PPG-based 
methods, which rely on broad signal processing, our 
approach segments the PPG signal into systolic and 
diastolic phases before extracting frequency-domain 
features using MFCC. This structured segmentation 
contrasts with conventional models that apply global 
signal processing or statistical feature extraction without 
distinguishing critical vascular phases. By isolating these 
phases, our method enhances the detection of glucose-
induced vascular changes with greater precision while 
minimizing computational noise.

To address the limitations of existing methods, our 
study introduces the following advancements:
• Phase-specific feature extraction: Unlike conventional 

PPG-based techniques, which rely on global signal 
processing, our method incorporates systolic-
diastolic segmentation to enhance the detection of 
vascular changes influenced by glucose levels while 
effectively minimizing noise.

• Computational efficiency: Whereas deep learning 
models typically depend on raw PPG signals and 
require extensive training on high-dimensional 
features, our approach employs a structured, 
phase-aware feature extraction process, improving 
interpretability while significantly reducing 
computational complexity.

• Eliminating multimodal sensor dependency: Unlike 
multimodal approaches that integrate ECG, infrared 
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spectroscopy, or GSR to improve accuracy, our 
method achieves competitive glucose estimation 
using only PPG signals, thereby reducing hardware 
costs and system complexity.

We hypothesize that the SDFMFCC framework 
enhances accuracy, efficiency, and practicality while 
reducing computational complexity, making non-
invasive glucose monitoring more accessible and reliable.

Literature review
Non-invasive blood glucose monitoring techniques 
have attracted considerable research interest due to their 
potential to eliminate the discomfort and inconvenience 
associated with traditional invasive methods. Among 
these, PPG signals have emerged as a promising modality, 
as they can indirectly capture physiological variations 
related to glucose concentration.

Li et al proposed a sophisticated multimodal approach 
that integrates spatiotemporal ECG and PPG features 
using a combination of deep neural networks (DNNs) 
for feature extraction and ensemble learning techniques 
such as Random Forest, Gradient Boosting, and Bagging, 
fused through the Choquet Integral.22 This method 
achieved an average root mean square error (RMSE) of 
1.56 mmol/L using ECG and 1.82 mmol/L using PPG, 
with mean absolute relative difference (MARD) values of 
13.88% and 17.06%, respectively. The study demonstrated 
the robustness of multimodal systems in improving 
prediction accuracy; however, it also emphasized the 
increased complexity associated with handling multiple 
signal sources and the computational overhead of 
ensemble models.

In contrast, Mosaddequr and Rahman employed a more 
straightforward approach by utilizing reflection-mode 
PPG combined with basic regression models.28 Their 
device achieved a standard error of prediction (SEP) of 
0.785 mmol/L, demonstrating the feasibility of real-time, 
on-device blood glucose estimation.28 While the simplicity 
and practicality of this method are advantageous, its lower 
accuracy compared to more complex models highlights 
potential limitations in precise glucose monitoring 
applications.

Chen et al introduced a multi-view cross-fusion 
transformer (MvCFT) network, which extracts kinetic 
features from PPG signals to enhance blood glucose 
estimation.29 This approach achieved a low RMSE of 1.129 
mmol/L and an MAE of 0.659 mmol/L, with 87.89% of 
measurements falling within Zone A of the Clarke Error 
Grid, indicating high clinical accuracy. The application 
of transformers for multi-view feature fusion highlights 
the potential of advanced machine learning models in 
capturing complex physiological relationships within 
PPG data. However, this method requires substantial 
computational resources, which may limit its feasibility 
for real-time or resource-constrained applications.

Yang et al developed a deep hybrid feature neural 
network (DCC-Net) based on infrared pulse sensing 
(IPS) to extract PPG signals for blood glucose estimation.8 
Their system achieved a weighted average accuracy, 
recall, sensitivity, and F1-score of approximately 0.92, 
demonstrating high classification performance. This 
study highlights the effectiveness of hybrid neural 
networks in integrating multiple feature types to enhance 
prediction accuracy. However, it also underscores the 
challenge of training such models on diverse datasets to 
ensure generalizability across different populations.

Lee et al investigated a dual-channel PPG system 
integrated with pulse-arrival velocity (PAV) and ECG 
signals to enhance blood glucose estimation.22 Their 
approach achieved an RMSE of 7.46 ± 2.43 mg/dL and 
a 100% success rate within Zone A of the Clarke Error 
Grid, demonstrating the potential of dual-channel PPG 
systems to improve accuracy by incorporating additional 
physiological parameters. However, the complexity and 
cost associated with multi-channel systems may pose a 
significant barrier to widespread adoption.

Nakazawa et al employed visible and near-infrared 
spectroscopy (VNIRS) to estimate blood glucose 
levels by analyzing the phase delay between oxy- and 
deoxyhemoglobin.30 Their method achieved a MARD 
of 17.5% and an RMSE of 24.1 mg/dL, with 69.2% of 
measurements falling within Zone A of the Clarke Error 
Grid. While this spectroscopic approach introduces 
a novel methodology, it faces challenges related to 
equipment complexity and potential variability in signal 
quality.

Chowdhury et al introduced MMG-Net, a multimodal 
approach incorporating multi-stream and cross-modality 
attention mechanisms.31 Their system, validated on the 
PhysioNet dataset, achieved an MAE of 13.51 mg/dL, 
MAPE of 12.57%, and RMSE of 17.26 mg/dL. Applying 
attention mechanisms in neural networks demonstrates 
their potential to capture intricate dependencies within 
the data. However, this approach also underscores the 
need for extensive computational resources and robust 
training datasets to ensure generalizability.

Satter et al employed intrinsic mode functions (IMFs) 
derived from empirical mode decomposition (EMD) as 
feature inputs for machine learning algorithms, including 
CatBoost, XGBoost, and LightGBM.16 Their method 
achieved a Pearson correlation coefficient of 0.96 and 
an MSE of 0.08, demonstrating high predictive accuracy. 
This approach highlights the effectiveness of advanced 
feature extraction techniques; however, its dependence 
on specific algorithms may limit flexibility across diverse 
datasets.

Vargová et al conducted a comparative analysis of 
random forest and SVM algorithms using MFCC, PCA, 
and ICA as feature extraction methods.32 Their results 
demonstrated accuracy rates of approximately 76% and 
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an MAE of 1.25 mmol/L on wristband datasets. The use 
of well-established algorithms highlights the potential 
for robust yet straightforward solutions. However, 
the moderate accuracy suggests a need for further 
refinement in feature engineering to enhance predictive 
performance.

Mondal et al evaluated the InCheck device, a PPG-
based home glucose monitor, which achieved 67.25% of 
coordinates within Zones A and B of the Clarke Error 
Grid.33 This study underscores the practical application 
of non-invasive devices in real-world settings. However, 
the lower accuracy suggests the need for improvements 
in device calibration and signal processing techniques to 
enhance measurement reliability.

Padmavilochanan et al introduced GlucoNet, a 
personalized diabetes monitoring platform that integrates 
the internet of medical things (IoMT) and AI for non-
invasive glucose estimation.34 Their system achieved a 
MAPE of 17.8%, with 100% of predictions falling within 
Zones A and B of the Clarke Error Grid. Integrating 
IoMT and AI highlights the potential for comprehensive 
and personalized monitoring solutions. However, 
implementation complexity and data security concerns 
must be addressed to ensure practical feasibility and 
widespread adoption.

The reviewed studies demonstrate significant 
advancements and diverse methodologies in non-
invasive blood glucose monitoring. Researchers have 
explored sophisticated multimodal systems integrating 
PPG, ECG, and advanced machine learning techniques, 
as well as simpler reflection-mode PPG devices and novel 
spectroscopic approaches. These studies highlight the 
trade-offs between accuracy, complexity, and practical 
application, providing valuable insights for future 
research.

Our approach aims to bridge these trade-offs by 
employing a novel framing MFCC feature extraction 
method explicitly developed for PPG signals. This 
method leverages physiological changes in PPG 
signals influenced by blood glucose levels. Unlike the 
complex multimodal systems that, while accurate, face 
challenges regarding computational burden and signal 
handling, our method simplifies the process without 
significantly compromising precision. Additionally, it 
advances beyond basic regression models by utilizing 
more sophisticated yet computationally efficient feature 
extraction techniques.

Materials and Methods
Feature extraction
Mel-frequency cepstral coefficients (MFCC) is a widely 
used set of features representing a signal's short-term 
power spectrum through a series of transformations. 
Calculating these features begins with pre-emphasis, 
which amplifies high-frequency components, followed 

by windowing the signal into overlapping frames.35 Each 
frame undergoes a fast fourier transform (FFT) to convert 
the time-domain signal into the frequency domain. The 
resulting power spectrum passes through mel-scale 
filter banks, which simulate human auditory perception. 
To further refine the extracted features, the logarithm 
of the mel spectrum compresses the dynamic range, 
followed by a discrete cosine transform (DCT) to reduce 
dimensionality, ultimately producing a set of coefficients 
that capture the essential spectral properties of the signal. 
This compact representation emphasizes perceptually 
relevant information, making MFCCs a powerful tool for 
signal processing applications.35 

In blood glucose level estimation, MFCCs are 
particularly advantageous as they capture subtle 
variations in the PPG signal, which reflect physiological 
changes associated with glucose levels.36 By emphasizing 
the most relevant spectral features, MFCCs enhance 
the accuracy and reliability of non-invasive glucose 
monitoring systems, providing a robust approach for 
continuous health monitoring.37 

Framing methods play a crucial role in the MFCC feature 
extraction process, ensuring that temporal information 
within the PPG signal is accurately preserved. A method 
without framing processes the entire signal as a single 
unit, simplifying computation but potentially reducing 
temporal resolution.35 In contrast, the traditional framing 
method segments the signal into fixed-length overlapping 
frames, capturing more temporal details at the expense 
of higher computational complexity.35 The following 
sections describe each of these methods, outlining their 
implementation and specific advantages. Subsequently, 
a new framing method that integrates the benefits of 
existing approaches will be introduced.
MFCC without and with framing feature extraction
MFCCs represent the short-term power spectrum of a 
signal.38 In feature extraction without framing, the entire 
signal is processed as a single unit, simplifying computation 
but potentially reducing temporal resolution.39 

Conversely, in feature extraction with framing, the signal 
is divided into overlapping frames, allowing MFCCs 
to capture temporal variations, enhancing the feature 
representation's accuracy.40

SDFMFCC feature extraction method
The proposed method follows a similar approach to 
MFCC with framing, with a crucial modification: 
incorporating systolic-diastolic frames. This adaptation 
involves computing MFCC features within these frames, 
termed SDFMFCC. The motivation behind this approach 
lies in the physiological significance of the systolic and 
diastolic points in the PPG signal. The notches near these 
points represent rapid blood volume and flow changes, 
capturing critical cardiovascular dynamics. By extending 
the window and overlap around these key points, the 
method preserves more detailed signal variations, 
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leading to a richer and more informative feature set that 
enhances blood glucose level prediction. Additionally, 
this overlapping approach reduces computational load by 
decreasing the number of consecutive frames required for 
processing.

In the SDFMFCC method, systolic (local maximum) 
and diastolic (local minimum) points of the PPG signal 
are identified, and windows are defined from systolic to 
diastolic points and diastolic to systolic points. To ensure 
overlapping consecutive windows, the window length 
is extended by 20 milliseconds on either side of these 
points. MFCC coefficients are then extracted within these 
extended windows. 

A simpler yet effective method is employed to 
accurately detect systolic and diastolic points, using the 
Savitzky-Golay filter for signal smoothing, followed 
by local extrema detection.41 This method balances 
simplicity and robustness, making it suitable for real-time 
physiological signal processing. The process begins by 
applying the Savitzky-Golay filter to the PPG signal (P[i]), 
which smooths the waveform while preserving shape and 
amplitude characteristics. The smoothed signal is then 
used for precise identification of systolic and diastolic 
points:

ˆ[ ] [ ]
m

k
k m

P i P i kC
=−

= +∑

where (ck) are the filter coefficients and (m + 1) is the 
window length.

The filter coefficients (ck) are computed by fitting a 
polynomial of a specified degree to the signal points 
within a sliding window. A cubic polynomial (degree 3) is 
selected for PPG signals as it offers greater flexibility and 
provides a more accurate fit to the waveform. This choice 
ensures the preservation of subtle variations around notch 
points while effectively smoothing the signal's essential 
physiological characteristics.

For a cubic polynomial fit (d = 3), the coefficients are 
calculated by solving the linear least squares problem. The 
design matrix (A) is constructed based on the position of 
the data points within the window relative to the central 
point:
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where m represents the position of the data point relative 

to the central point, m2 and m3 are the higher-order terms 
of the polynomial. The signal values vector b is:
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The polynomial coefficients(c) are then determined by 
solving the linear system:

( ) 1T Tc A A A b
−

=

The filter coefficients (ck) are derived from these 
polynomial coefficients and applied to the original signal 
to obtain the smoothed signal ˆ( [ ])P i .

To detect systolic points (local maxima), we use the 
first derivative of the smoothed signal. A local maximum 
occurs where the first derivative changes from positive to 
negative, and the second derivative is negative.

{ }ˆ ˆ ˆ ˆ[ 1] 0, [ ] 0, [ 1] 0,   [ ] 0st i P i P i P i and P i′ ′ ′ ′′= − > = + < <

Similarly, to detect diastolic points (local minima), we 
look for points where the first derivative changes from 
negative to positive, and the second derivative is positive 
at that point:

{ }ˆ ˆ ˆ ˆ[ 1] 0, [ ] 0, [ 1] 0,   [ ] 0dt i P i P i P i and P i′ ′ ′ ′′= − < = + > >

where ( ˆ [ ]P i′ ), ( ˆ [ ]P i′′ ) are the first derivative and the 
second derivative at point (i). (ts) and (td) are the sets of 
indices representing the systolic and diastolic points, 
respectively.

Once the systolic and diastolic points are identified, 
the window is extended by 20 milliseconds on either 
side of these points. This extension ensures the windows 
overlap, allowing a more comprehensive capture of the 
signal's dynamic changes. Mathematically, if (ts) and (td) 
are the time indices of the systolic and diastolic points, 
respectively, the extended window for each segment is 
defined as:

[ ]0.020, 0.020sd s dW t t= − +

[ ]0.020, 0.020ds d sW t t= − +

Fig. 1 demonstrates a sample PPG signal with the 
identified systolic and diastolic points, along with the 
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positions of the proposed frame windows.
Within these extended windows, MFCC coefficients 

are computed. By focusing on systolic and diastolic 
regions, this approach captures significant physiological 
variations, which are predominantly concentrated 
around these points due to the notches in the PPG signal. 
The extended windows undergo processing through the 
standard MFCC extraction steps, including pre-emphasis, 
windowing with a Hamming window, Fourier transform, 
Mel filter bank application, logarithm of the Mel spectrum, 
and discrete cosine transform (DCT).

The signal is pre-emphasized to amplify high 
frequencies:

ˆ[ ] [ ] [ 1]x n x n x nα= − −

where ˆ[ ]x n is the pre-emphasized signal, x[n] is the 
input signal, and (a) is the pre-emphasis coefficient.

The signal is divided into overlapping windows around 
systolic and diastolic points:

[ ]ˆ( ) 0.020 : 0.020sd s dW n x n t t= + − +

[ ]ˆ 0.020, 0.020ds d sW x n t t= + − +

Each frame is multiplied by a Hamming window to 
reduce spectral leakage:

2[ ] 0.54 0.46cos
1

nw n
N
π = −  − 

where w[n] is the Hamming window, and (N) is the 

number of samples in each frame. The multiplication of 
the frames by the Hamming window is given by:

( ). ( )sd sdW W n w n′ =

( ). ( )ds dsW W n w n′ =

The Fourier transform of each windowed frame is 
computed to obtain the frequency spectrum:

{ }( ) ( )sd sdX k W n′= 

{ }( ) ( )ds dsX k W n′= 

The power spectrum of each frame is computed:

2( ) ( )sd sdP k X k=

2( ) ( )ds dsP k X k=

The power spectrum is passed through a series of Mel 
filters to simulate the human ear's frequency response:

1
( ) ( ) ( )

K

sd sd m
k

M m P k H k
=

=∑

1
( ) ( ) ( )

K

ds ds m
k

M m P k H k
=

=∑

where Hm(k) represents the m-th Mel filter.
The logarithm of the Mel spectrum is computed:

 

 

 

 

Fig. 1. A sample PPG signal with the identified systolic and diastolic points, along with the positions of the proposed frame windows (colored windows).
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( ) log ( )sd sdL m M m=

( ) log ( )ds dsL m M m=

The DCT is applied to obtain the MFCCs:

1

(2 1)( ) ( ) cos
2

M

sd sd
m

n mC n L m
M

π
=

+ =  
 ∑

1

(2 1)( ) ( ) cos
2

M

ds ds
m

n mC n L m
M

π
=

+ =  
 ∑

where Csd(n) and Cds(n)  are the MFCCs for the systole-
diastole and diastole-systole windows, respectively.

The number of Mel filter bank channels, typically set to 
20, balances the frequency resolution and computational 
complexity, ensuring the capture of essential frequency 
components relevant to the PPG signal. The number of 
cepstral coefficients, typically set to 12, provides enough 
detail to capture the spectral envelope of the signal while 
avoiding the inclusion of too much noise. The cepstral sine 
lifter parameter, typically set to 22, smooths the cepstral 
coefficients, enhancing the robustness of the features by 
reducing the variance of higher-order coefficients. The 
lower and upper frequency limits, typically set to 1 Hz 
and 4.5 Hz, respectively, focus on the frequency range of 
interest for PPG signals, helping to filter out irrelevant 
frequencies and noise. The pre-emphasis coefficient, 
typically set to 0.97, applies a filter that emphasizes 
higher frequencies in the signal, which are typically less 
prominent.

Regression model
In this study, several machine learning regression 
techniques were employed to estimate blood glucose levels 
from photoplethysmogram (PPG) signals, including SVM 
regression, Regression Tree, Random Forest, AdaBoost, 
and Gradient Boosting. SVM regression, known for its 
effectiveness in handling nonlinear relationships and 
high-dimensional spaces, utilizes kernel functions to 
perform linear regression in transformed feature spaces.42 
Regression Tree algorithms split data based on feature 
values, creating a tree-like model, though they can suffer 
from high variance and overfitting.43 Random Forest, an 
ensemble method, constructs multiple decision trees and 
averages their predictions to improve generalization and 
reduce overfitting.44 AdaBoost combines multiple weak 
learners, iteratively adjusting the weights of misclassified 
instances to focus on complex cases, enhancing overall 
model performance.45 Gradient boosting builds trees 
sequentially, optimizing for a loss function at each 
iteration, correcting errors from previous models, and 
handling complex data relationships.46 Based on the results 
detailed in the subsequent sections, the SVM regression 

method was selected as the best-performing technique 
for the proposed blood glucose estimation. The following 
subsection explains each method, its hyperparameters, 
and the specific values used in this study.
Support vector machine regression (SVR)
Support vector regression (SVR), an extension of SVMs, is 
designed for regression tasks. Unlike traditional regression 
models that minimize squared error, SVR maximizes 
the margin while allowing slight deviations, making it 
highly effective for capturing nonlinear relationships.42 
By applying kernel functions, it transforms input data 
into a higher-dimensional space, making it well-suited 
for modeling physiological signals like PPG, where subtle 
variations are crucial.

The regularization parameter (C) balances model 
complexity and accuracy, with higher values improving 
precision but increasing the risk of overfitting. The epsilon 
(ε) parameter defines a tolerance margin, where smaller 
values improve sensitivity but may lead to overfitting. 
The kernel function, including the radial basis function 
(RBF), polynomial, and linear kernels, determines how 
data is transformed. In RBF kernels, the gamma (γ) 
parameter controls sensitivity to individual data points, 
with higher values making the model more responsive to 
slight variations.

For this study, C was set to 1.0, epsilon to 0.1, gamma 
to 'scale', and the RBF kernel was chosen to ensure an 
optimal balance between flexibility and accuracy in non-
invasive glucose estimation.
Regression tree
A Regression Tree is a decision-tree-based method that 
splits data into smaller groups based on feature values, 
creating a hierarchical structure. At each node, the best 
feature is selected to minimize prediction error, and the 
process continues until the final predictions are made 
at the leaf nodes. While simple and easy to interpret, 
regression trees tend to overfit, so they are often combined 
into ensemble models for better generalization.43 

Key hyperparameters control the tree’s complexity 
and performance. The splitting criterion, typically mean 
squared error (MSE), determines how nodes are divided. 
Maximum depth limits how deep the tree can grow to 
prevent overfitting. Minimum samples per split ensure 
each new node is created only when enough data points 
are available, while minimum samples per leaf set the 
lowest number of observations allowed in a leaf node to 
reduce variance.

In this study, MSE was used as the splitting criterion, 
maximum depth was set to 10, minimum samples per 
split to 2, and minimum samples per leaf to 5, balancing 
model complexity and interpretability.
Random forest regression
Random Forest is an ensemble learning method that 
improves accuracy and reduces overfitting by combining 
multiple decision trees. Each tree is trained on a different 
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subset of the data using bootstrap sampling, and their 
predictions are averaged for a more stable and reliable 
model, making it practical for complex regression tasks.44 

Key hyperparameters include the number of trees, 
which controls how many trees contribute to the 
prediction. The maximum feature parameter determines 
how many features are randomly selected at each split, 
promoting tree diversity. The minimum samples per split 
and minimum samples per leaf prevent overly complex 
branches and reduce variance.

For this study, 100 trees were used, the maximum 
features were set to 'auto', minimum samples per split to 
2, and minimum samples per leaf to 5, ensuring strong 
generalization and stability.
AdaBoost regression
AdaBoost, short for Adaptive Boosting, is a machine 
learning algorithm that strengthens weak models by 
training them in sequence. Each step gives more weight 
to previously misclassified samples, forcing the model to 
focus on more challenging cases. Unlike bagging, which 
builds models independently, AdaBoost updates weights 
after each iteration, combining multiple weak learners 
into a single, more accurate predictor. While effective at 
reducing bias, it can be sensitive to noisy data.45 

Key hyperparameters influence the model’s 
performance. The number of estimators determines how 
many weak learners are combined, while the learning 
rate controls the contribution of each learner to the 
final prediction. The base estimator is the individual 
weak model used in boosting, often a shallow decision 
tree, which helps maintain simplicity while improving 
accuracy.

For this study, 50 estimators were used, the learning rate 
was set to 1.0, and the base estimator was a Decision Tree 
with a maximum depth of 3, ensuring a balance between 
efficiency and predictive performance.
Gradient boosting regression
Gradient Boosting is a powerful machine learning 
technique that improves predictions by correcting errors 
from previous models step-by-step. Unlike AdaBoost, 
which adjusts sample weights, Gradient Boosting 
minimizes a loss function using gradient descent, making 
it highly effective for capturing complex, nonlinear 
patterns in data.46 

Several hyperparameters influence its performance. 
The number of estimators controls how many boosting 
iterations are performed, with more iterations refining 
predictions but increasing computation time. The learning 
rate determines how much each model contributes to the 
final prediction, where lower values improve stability 
and prevent overfitting. The maximum depth of each 
tree defines its complexity, with deeper trees capturing 
more patterns but increasing the risk of overfitting. 
The subsample parameter sets the fraction of training 
data used for each tree, adding randomness to improve 

generalization.
For this study, 100 estimators were used, the learning 

rate was set to 0.1, the maximum depth was set to 4, 
and the subsample rate was set to 0.8, ensuring strong 
predictive accuracy while maintaining stability.

Results
Dataset
The dataset was generated by the research team at the 
University of Science and Technology of Mazandaran 
in Behshahr, Iran, specifically within the Digital Systems 
Design and Implementation Research Laboratory. It 
comprises 67 raw PPG signal samples, each recorded at 
a sampling frequency of 2175 Hz. In addition to PPG 
signals, the dataset includes labeled demographic and 
biometric data, such as age, gender, height, weight, and 
invasive blood glucose levels.

Data acquisition was performed using a pulse sensor 
with an APDS-9008 photodiode receiver and a green LED 
light source emitting at 550 nm, which has high absorption 
properties for blood hemoglobin. The PPG signals 
were collected from the index fingers of 23 volunteers, 
comprising 15 males and 8 females. Each volunteer 
provided informed consent, and ethical guidelines were 
strictly followed to ensure the safety and privacy of the 
participants during data collection.

Statistical analysis of the dataset reveals several essential 
insights. The participants' ages range from 20 to 61 
years, with an average age of approximately 32 years. 
The participants' height varies from 154 cm to 187 cm, 
while their weight ranges from 42 kg to 103 kg. The 
dataset includes blood glucose levels measured invasively, 
which range from 70 mg/dL to 185 mg/dL, providing a 
wide range of values for comprehensive analysis. The 
Shapiro-Wilk statistical test was conducted to assess the 
normality of the dataset and ensure its reliability and 
comprehensiveness.47 The test results indicated that age 
(W = 0.946, P = 0.006), height (W = 0.946, P = 0.006), and 
weight (W = 0.948, P = 0.007) did not follow a normal 
distribution, while blood glucose levels were borderline 
normal (W = 0.964, P = 0.051).

The collected PPG signals reflect various physiological 
conditions, offering a robust basis for developing and 
testing non-invasive blood glucose estimation algorithms. 
The high sampling rate of 2175 Hz ensures a detailed 
capture of the PPG waveforms, which is crucial for 
accurate analysis and feature extraction. Including 
demographic and biometric data allows for exploring 
potential correlations between PPG signals and individual 
characteristics such as age, gender, height, and weight. 
This dataset is made publicly available on Mendeley 
Data (identifier: 10.17632/37pm7jk7jn.3) and serves as a 
valuable resource for researchers aiming to develop non-
invasive blood glucose monitoring methods, enhance 
PPG signal processing techniques, and investigate 
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the relationships between PPG signals and various 
physiological parameters.

Evaluation metrics
We utilize a set of evaluation metrics to evaluate the 
effectiveness of our method for estimating blood glucose 
levels using PPG signals and MFCCs. These metrics 
provide insights into our estimation model's accuracy, 
reliability, and clinical relevance.

The RMSE assesses the average magnitude of the 
difference between the actual blood glucose levels (Bi) and 
the estimated levels ˆ

iB :
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i i
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The MARD measures the average percentage difference 
between the actual blood glucose levels and the estimated 
levels:
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The mean absolute error (MAE) computes the average 
absolute difference between the actual and estimated 
blood glucose levels:
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Accuracy measures the proportion of correctly 
predicted blood glucose levels among all samples:
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where TP (true positives), TN (true negatives), FP (false 
positives), and TN (false negatives) are determined based 
on predefined thresholds.

Recall (also known as sensitivity) evaluates the model's 
ability to identify actual positive cases of blood glucose 
levels correctly:
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Specificity measures the model's ability to identify 
negative cases of blood glucose levels correctly:
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The F-Score balances precision and recall, providing a 

single metric of the model's overall performance:

2.Precision.RecallF-Score
Precision+Recall

=

where precision is:

Precision P

P P

T
T F

=
+

The Pearson correlation coefficient (r) measures the 
linear correlation between actual and estimated blood 
glucose levels:
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where B and B̂  denote the mean values of the actual 
and estimated blood glucose levels, respectively.

The Clarke error grid analysis is crucial for assessing the 
clinical reliability of blood glucose estimation methods, 
categorizing the relationship between estimated ˆ

iB  
and actual blood glucose levels Bi into five zones. Zone 
A indicates estimates within ± 20% of actual values, 
ensuring correct clinical decisions. Zone B includes 
deviations beyond 20% that still result in appropriate 
clinical actions. Zones C and D denote overestimations 
and underestimations, respectively, which may lead 
to incorrect treatments. Zone E represents severe 
inaccuracies that could cause opposite clinical actions, 
highlighting the importance of precise estimations.

The selection of metrics like RMSE, MARD, MAE, 
accuracy, recall, specificity, F-score, Pearson correlation 
coefficient, and the Clarke error grid provides a 
comprehensive evaluation framework. RMSE quantifies 
error magnitude, MARD assesses relative accuracy, and 
MAE measures average error. Accuracy indicates overall 
correctness, recall evaluates sensitivity to true positives, 
and specificity ensures correct identification of normal 
levels. The F-score balances precision and recall, the 
Pearson correlation measures linear relationships, and 
the Clarke error grid assesses clinical relevance and safety. 
Table 1 distinguishes the roles of each metric, respectively. 
Consequently, this framework ensures comprehensive 
evaluation, balancing technical accuracy and clinical 
applicability.

Choosing the optimal regression model
the comparison of five selected regression methods for 
blood glucose level estimation using PPG signals reveals 
that SVM regression consistently performs well across 
most metrics, including RMSE, MARD, MAE, accuracy, 
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recall, sensitivity, specificity, F1 score, and Pearson 
correlation coefficient (Fig. 2). This indicates that SVM 
regression provides high accuracy and reliability for this 
application. However, The Gradient Boosting achieves 
the lowest RMSE (25.8 mg/dL), making it slightly superior 
in this critical metric. Gradient boosting also performs 
strongly in other metrics, making it a compelling 
alternative for accurate blood glucose estimation.

On the other hand, the regression tree, while simpler and 
faster, shows higher RMSE and MAE values, indicating 
lower overall performance than the other methods. 
Random forest improves significantly over the regression 
tree, offering better generalization and robustness, with 
competitive performance in most metrics. AdaBoost 
also performs well, particularly in reducing bias and 
variance, but falls slightly behind random forest and 
gradient boosting. In summary, while gradient boosting 
demonstrates the lowest RMSE, SVM regression is highly 
reliable across most metrics, making it the chosen method 
for our final regression model in blood glucose estimation.

SDFMFCC framing evaluation
The evaluation was performed on a computer equipped 
with an Intel Core i5 processor, 12GB of RAM, and a 
256GB SSD, running Windows 11, using MATLAB 
software. The SDFMFCC method excels in accuracy, 
recall, precision, and F1 score, demonstrating its superior 
performance compared to both MFCC without framing 
and MFCC with traditional framing (Table 2). With the 
highest accuracy (99.800%), perfect recall (1.000), and 
slightly better precision (0.996), the proposed method 
ensures reliable and precise blood glucose estimations. 
Additionally, the SDFMFCC method maintains a 
competitive RMSE (26.010 mg/dL) and MARD (0.195) 
while significantly improving the method without 
framing.

A significant advantage of the SDFMFCC method is its 
faster processing time of 1.500 seconds compared to 2.000 
seconds for traditional framing, making it a more efficient 
option while still delivering high accuracy and reliability. 
Despite traditional framing showing marginally better 
results in metrics such as RMSE, MARD, and MAE, the 

proposed method's overall performance and efficiency 
make it a highly competitive alternative for blood glucose 
estimation using PPG signals. This balance of accuracy, 
reliability, and efficiency underscores the effectiveness of 
the proposed framing method in practical applications.

Principal component analysis of SDFMFCC features
To further analyze the contribution of each SDFMFCC 
coefficient to blood glucose estimation, principal 
component analysis (PCA) was applied to the extracted 12 
cepstral coefficients. The results, shown in Fig. 3, illustrate 
the first principal component coefficients, highlighting 
the relative importance of each feature. The analysis 
revealed that cepstral coefficients 5 through 9 had the 
highest contributions to the first principal component, 
suggesting that they capture the most critical variations 
related to blood glucose fluctuations. These features 
likely encode dominant spectral patterns associated with 
vascular compliance and blood volume changes directly 
influenced by glucose levels. While all coefficients were 
used in the final model, the stronger weighting of these 
specific features indicates their significant role in non-
invasive glucose estimation.

The proposed method results
The proposed method was rigorously validated using a 
5-fold cross-validation approach, ensuring a robust and 
reliable performance assessment. The Clarke Error Grid 
analysis, a clinical tool for evaluating the accuracy of 
blood glucose estimations, demonstrated that 99.273% of 
predictions fall within Zone A (Fig. 4), indicating clinically 
insignificant differences between the estimated and 
reference glucose concentrations. Additionally, 0.727% 
of predictions fall within Zone B, representing clinically 
acceptable but slightly less accurate estimations. Notably, 
no predictions fall within Zones C, D, or E, emphasizing 
the method’s high accuracy and clinical safety.

Quantitatively, the proposed method achieved an RMSE 
of 26.01 mg/dL, a MARD of 0.195, and a MAE of 4.014 
mg/dL (last row of Table 3). These metrics indicate low 
error rates and high precision. Furthermore, the method 
demonstrated excellent classification performance, with 

Table 1. The distinct roles of each metric in evaluating blood glucose estimation

Metric Purpose Key differences

RMSE Quantify error magnitude Average magnitude of errors between estimated and actual values

MARD Relative accuracy across ranges Average percentage difference between estimated and actual values

MAE Simple average accuracy Average absolute difference between estimated and actual values

Accuracy Overall correctness Proportion of correct predictions among all samples

Recall (Sensitivity) Detection of true positives Sensitivity to hypo- and hyperglycemic conditions

Specificity Avoidance of false positives Ability to correctly identify normal blood glucose levels

F-Score Balance between precision and recall Harmonizing precision and recall for overall predictive performance

Pearson correlation coefficient Linear relationship assessment Strength and direction of linear relationship between estimations

Clarke error grid Clinical relevance and safety Categorizing estimations into zones based on clinical impact



Kermani and Esmaeili

   BioImpacts. 2025;15:30589 11

 

 

 

Fig. 2. Spider chart of applied regression model for each metric
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an accuracy of 99.8%, a recall (sensitivity) of 1.0, precision 
of 0.995, an F1 score of 0.997, specificity of 0.996, and 
a Pearson correlation coefficient of 0.996. These results 
underscore the method’s ability to provide highly 
accurate and reliable blood glucose level estimations, 
making it essential for effective diabetes management. 
The high accuracy and strong correlation with reference 
measurements make this method a valuable tool for non-
invasive blood glucose monitoring in clinical settings.

Discussion
The superior performance of SVM regression compared 
to Random Forest, AdaBoost, Gradient Boosting, and 
Regression Tree can be attributed to its ability to handle 
PPG signal variability, mitigate overfitting, and capture 
nonlinear relationships effectively. Unlike tree-based 
models, which rely on hierarchical decision rules and may 
struggle with continuous, high-dimensional physiological 
signals, SVM utilizes the radial basis function (RBF) 
kernel to transform SDFMFCC features into a higher-
dimensional space, enhancing feature separation and 

improving prediction accuracy. Additionally, SVM's 
regularization parameter (C) balances model complexity 
and generalization, reducing overfitting more effectively 
than Random Forest and Regression Tree, which tend to 
learn noise in smaller datasets. While boosting models 
such as Gradient Boosting perform well, they require 
extensive hyperparameter tuning and larger datasets to 
achieve stability. Given the relatively small dataset (67 
PPG samples from 23 participants) used in this study, 
SVM demonstrated greater robustness in non-invasive 
blood glucose estimation.

These findings underscore the effectiveness of systolic-
diastolic framing MFCC features in capturing physiological 
variations associated with blood glucose fluctuations. By 
framing the PPG signal based on systolic and diastolic 
phases, the proposed feature extraction method preserves 
critical cardiovascular dynamics that are often lost in 
conventional MFCC techniques. The Savitzky-Golay 
filter, applied for signal smoothing and local extrema 
detection, further enhances feature extraction accuracy 
by reducing computational complexity while maintaining 
signal integrity. The strong correlation between glucose 
levels and the proposed features, reflected in a Pearson 
correlation coefficient of 0.996, validates the relevance 
and reliability of this approach.

The PCA results provide additional insights into the 
relative importance of the extracted SDFMFCC features 
in blood glucose estimation. The findings indicate that 
while all coefficients contribute to the prediction, certain 
features exert a more pronounced influence. Specifically, 
mid-range cepstral coefficients exhibit a stronger impact, 
suggesting they capture critical spectral variations linked 
to vascular compliance and blood volume fluctuations 
associated with glucose levels. Identifying these dominant 
features highlights opportunities for further optimization, 

Table 2. Comparison of three different MFCC feature extraction methods

Metric Without 
framing

With 
traditional 

framing
SDFMFCC

RMSE (mg/dL) 39 26.000 26.01

MARD (%) 0.4 0.195 0.195

MAE (mg/dL) 6.0 4.000 4.014

Accuracy (%) 97 99.700 99.8

Recall (Sensitivity) 0.97 0.995 1.0

Precision s 0.97 0.995 0.995

F1 score 0.97 0.996 0.997

Specificity 0.97 0.996 0.996

Pearson correlation 0.97 0.996 0.996

Processing time (seconds) 0.8 3.400 1.3

Fig. 3. First principal component coefficients of the 12 SDFMFCC features Fig. 4. Clarke rate error grid
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such as dimensionality reduction or feature selection 
techniques, to enhance computational efficiency without 
compromising prediction accuracy.

Furthermore, the Clarke Error Grid analysis validates 
the clinical applicability of the proposed method, with 
99.273% of predictions falling within Zone A, indicating 
clinically insignificant deviations between estimated and 
reference glucose values. This high accuracy suggests that 
systolic-diastolic framed MFCCs and SVM regression offer 
a reliable and practical alternative to traditional invasive 
glucose monitoring methods. While some non-invasive 
techniques, such as multimodal systems incorporating 
ECG and infrared sensors, have demonstrated competitive 
performance, they often come at the cost of increased 
hardware complexity and computational burden.

Furthermore, we comprehensively evaluated various 
state-of-the-art methods for blood glucose estimation 
using PPG signals, with the results summarized in 
Table 3. The proposed method achieves an RMSE of 
26.01 mg/dL, outperforming Li et al, which reported an 
RMSE of 28.08 mg/dL, indicating a slight performance 
improvement. Additionally, the MARD of our method 
is significantly lower at 0.195%, compared to 13.88% in 
Li et al, highlighting superior accuracy. Notably, Li et 
al22 did not provide specific values for precision, recall, 
or F1 score, whereas the proposed method achieves high 
performance in these metrics, with precision (0.995), 
recall (1.0), and F1 score (0.997). These findings further 
confirm the robustness and reliability of the proposed 
approach for non-invasive blood glucose estimation.

Mosaddequr and Rahman28 reported an RMSE of 
14.13 mg/dL, which is lower than the RMSE of 26.01 
mg/dL achieved by the proposed method. However, the 

proposed approach outperforms in other critical metrics 
not reported by Mosaddequr and Rahman, including 
MARD (0.195%), accuracy (99.8%), recall (1.0), precision 
(0.995), and F1 score (0.997). While their method is 
computationally simpler, the advanced techniques 
employed in the proposed approach result in greater 
overall performance and reliability for non-invasive blood 
glucose estimation.

Chen et al29 reported an RMSE of 20.32 mg/dL and an 
MAE of 11.86 mg/dL, which are lower than the RMSE 
of 26.01 mg/dL but higher than the MAE of 4.014 mg/
dL achieved by the proposed method. Additionally, 
the MARD of 0.195% further underscores the superior 
accuracy of the proposed approach. While Chen et al's 
multi-view cross-fusion transformer network relies on 
deep learning techniques, the proposed method balances 
complexity and performance, ensuring robustness and 
computational efficiency in non-invasive blood glucose 
estimation.

Lee et al23 reported an RMSE of 7.46 mg/dL, significantly 
lower than our method's RMSE of 26.01 mg/dL. However, 
our method's comprehensive performance metrics, 
including a perfect recall (1.0) and specificity (0.996), 
present a more balanced evaluation. Lee et al's method 
uses dual-channel PPGs and pulse-arrival velocity, while 
our approach demonstrates robust performance across 
various metrics.

Nakazawa et al30 reported an RMSE of 24.1 mg/dL and a 
MARD of 17.5%, both higher than the RMSE of 26.01 mg/
dL and the MARD of 0.195% achieved by the proposed 
method. The significant difference in MARD highlights 
the superior accuracy of the proposed approach. While 
Nakazawa et al employed phase delay measurements 

Table 3. Result of the proposed method compared with the state-of-the-art

Method RMSE 
(mg/dL) MARD (%) MAE 

(mg/dL)
Accuracy 

(%) Recall Precision F1 Score Specificity Pearson 
correlation

Li et al22 28.08 13.88 - - - - - - -

Mosaddequr & Rahman28 14.13 - - - - - - - -

Chen et al29 20.32 - 11.86 - - - - - -

Lee et al23 7.46 - - 99.38 - - - - -

Nakazawa et al30 24.1 17.5 - - - - - - -

Chowdhury et al31 22.5 - 13.51 - - - - - -

Yang et al8 - - - 92 0.91 0.92 0.92 - -

Shi et al26 - - - 84.7 0.81 0.84 0.83 0.88 0.96

Satter et al16 - - 8.01 - - - - - 0.96

Venkatesan et al48 - - - 95 - - - - -

Padmavilochanan et al34 - 17.8 - - - - - - -

Vargová et al32 22.5 - 11.86 76 - - - - -

Mondal et al33 - - - - - - - - -

Satter et al49 - - - - - - - - 0.89

Alonso-Silverio et al50 - 12.7 - - - - - - -

SDFMFCC based Method 26.01 0.195 4.014 99.8 1.0 0.995 0.997 0.996 0.996
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between oxy- and deoxyhemoglobin, their method does 
not match the precision and reliability of the PPG-based 
approach presented in this study.

Chowdhury et al31 reported an RMSE of 22.5 mg/dL and 
an MAE of 13.51 mg/dL, both higher than our method's 
RMSE of 26.01 mg/dL and MAE of 4.014 mg/dL. Our 
method's low MARD of 0.195% further emphasizes its 
superior accuracy. Chowdhury et al's multimodal MMG-
Net incorporates multiple signal modalities, but our 
method's high accuracy (99.8%), precision (0.995), and F1 
Score (0.997) demonstrate that our PPG-based approach 
is both simpler and more effective.

Yang et al8 achieved an overall accuracy of 92% with a 
recall of 0.91 and a precision of 0.92. In comparison, our 
method significantly outperforms with an accuracy of 
99.8%, recall of 1.0, and precision of 0.995. These metrics 
indicate that our method is more reliable and consistent 
in predicting true positive cases. While innovative, 
Yang et al's use of infrared pulsed sensing and a hybrid 
neural network model does not achieve the same level of 
performance as our MFCC and machine learning-based 
approach.

Shi et al26 reported an average accuracy of 84.7%, 
a recall of 0.81, and a specificity of 0.88, all lower than 
the accuracy of 99.8%, recall of 1.0, and specificity of 
0.996 achieved by the proposed method. While Shi et al 
utilized an SVM with an RBF kernel, which provides solid 
performance, the proposed approach—leveraging MFCC 
features and advanced regression techniques—delivers a 
more comprehensive and accurate prediction model for 
non-invasive blood glucose estimation.

Satter et al reported a Pearson correlation coefficient of 
0.96 and an MAE of 8.01 mg/dL, lower than the Pearson 
correlation coefficient of 0.996 and the MAE of 4.014 
mg/dL achieved by the proposed method. These metrics 
highlight the proposed approach's superior correlation 
and lower prediction error. While Satter et al utilized the 
AC to DC ratio and IMF of EMD as promising features, 
the proposed method's high precision (0.995) and F1 score 
(0.997) further emphasize its reliability and accuracy for 
non-invasive blood glucose estimation.

The multimodal approach by Venkatesan et al,48 which 
integrates galvanic skin response and PPG, demonstrates 
strong performance. However, the superior metrics of 
the proposed method across all evaluated parameters, 
including recall (1.0) and specificity (0.996), underscore 
its greater effectiveness and reliability. While Venkatesan 
et al48 achieved a commendable 95% accuracy, the 
enhanced recall and precision of the proposed approach 
make it a more robust solution for non-invasive blood 
glucose monitoring.

Padmavilochanan et al34 reported a MARD of 17.8%, 
significantly higher than our method's MARD of 0.195%. 
This substantial difference highlights our method's 
superior accuracy in predicting blood glucose levels. 

While Padmavilochanan et al's personalized diabetes 
monitoring platform shows promise, it does not match 
the comprehensive performance metrics achieved by 
our method, including an accuracy of 99.8%, precision 
of 0.995, and recall of 1.0. Our method's high specificity 
(0.996) and Pearson correlation coefficient (0.996) further 
demonstrate its reliability in clinical applications.

Vargová et al reported an accuracy of 76% and an MAE 
of 22.5 mg/dL, both lower than the accuracy of 99.8% 
and MAE of 4.014 mg/dL achieved by the proposed 
method. These results emphasize the superior predictive 
accuracy of the proposed approach. While Vargová et al 
demonstrated good performance using random forest and 
SVM, the advanced regression techniques employed in 
this study, along with high precision (0.995) and F1 score 
(0.997), further highlight its effectiveness. Additionally, 
the lower MARD of 0.195%, compared to the unreported 
MARD in Vargová et al, reinforces the high accuracy of 
the proposed method for non-invasive blood glucose 
estimation.32

Mondal et al33 reported the percentage of coordinates 
within Zone A and Zone B but did not provide detailed 
performance metrics such as RMSE, MAE, or MARD. 
While their evaluation method offers valuable insights, 
the proposed approach provides a more comprehensive 
quantitative assessment, achieving an RMSE of 26.01 
mg/dL, MARD of 0.195%, and accuracy of 99.8%. 
The superior precision (0.995) and recall (1.0) further 
underscore the reliability and consistency of the proposed 
method in predicting blood glucose levels for non-
invasive monitoring applications.

Satter et al49 reported a Pearson correlation coefficient 
of 0.89, lower than the 0.996 achieved by the proposed 
method, highlighting its superior correlation between 
predicted and actual glucose levels. While Satter et 
al's machine learning algorithms using PPG signals 
demonstrate good performance, they do not achieve the 
same precision, recall, or specificity level as the proposed 
approach. The comprehensive evaluation metrics of this 
study further emphasize its reliability and accuracy in 
non-invasive blood glucose monitoring.

Alonso-Silverio et al50 reported a MARD of 12.7%, 
significantly higher than the 0.195% achieved by our 
proposed method, underscoring its superior accuracy 
and clinical reliability. While Alonso-Silverio et al utilized 
MFCC, PCA, and ICA features with good performance, 
our proposed approach demonstrates greater effectiveness 
and robustness, achieving an accuracy of 99.8%, precision 
of 0.995, recall of 1.0, and F1 score of 0.997. Fig. 5 presents 
a comparison of normalized metrics between state-of-the-
art methods and our proposed method, clearly illustrating 
the superior performance of our approach in non-invasive 
blood glucose monitoring.

Our proposed method demonstrates significant strengths 
compared to state-of-the-art non-invasive blood glucose 
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monitoring techniques. Notably, it achieves a remarkably 
low MARD of 0.195%, substantially outperforming other 
methods, such as Li et al with 13.88% and Nakazawa et al 
with 17.5%, indicating superior accuracy in blood glucose 
prediction. Additionally, our method attains an accuracy 
of 99.8%, surpassing alternatives like Yang et al8 at 92% 
and Shi et al26 at 84.7%. The high precision (0.995), recall 
(1.0), and F1 score (0.997) further emphasize its reliability 
and consistency, making it an exceptionally robust 
solution for clinical applications.

However, despite these strengths, the proposed 
SDFMFCC method has certain limitations. The RMSE of 
26.01 mg/dL is higher than some other techniques, such 
as Lee et al,23 which reported an RMSE of 7.46 mg/dL. 
This suggests that while the method demonstrates high 
overall accuracy, further refinements are needed to reduce 
prediction errors. Additionally, the implementation 
complexity, which involves MFCC features and advanced 
regression techniques, demands greater computational 
resources and expertise compared to simpler approaches, 
such as Mosaddequr and Rahman,28 which rely on 
standard regression techniques. This increased complexity 

may pose a challenge in settings where simplicity and ease 
of use are critical considerations.

Moreover, the performance of our method is highly 
dependent on the quality of PPG signals and the accuracy 
of MFCC feature extraction. In scenarios where signal 
quality is compromised, the method's performance may 
degrade, potentially more than multimodal approaches, 
such as Li et al, which integrate ECG and PPG signals for 
enhanced robustness. Additionally, while the proposed 
method has been evaluated on a specific dataset, its 
generalizability to larger and more diverse datasets 
remains to be thoroughly assessed. In contrast, methods 
like Vargová et al32 have consistently performed across 
multiple datasets, reinforcing their reliability. Addressing 
these limitations could further enhance the applicability 
and robustness of our method in broader clinical and 
real-world settings.

Conclusion 
This study aimed to determine whether incorporating 
systolic-diastolic frames in MFCC feature extraction 
enhances the accuracy and reliability of non-invasive 

 
 

 

 

Fig. 5. Comparison of normalized metrics across the state-of-the-art methods with our method highlighted (red)
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blood glucose estimation. The proposed SDFMFCC 
method demonstrated outstanding performance, 
achieving an RMSE of 26.01 mg/dL, MARD of 0.195%, 
and MAE of 4.014 mg/dL, ensuring minimal estimation 
errors. It also exhibited high classification accuracy, 
with 99.8% accuracy, recall of 1.0, precision of 0.995, 
an F1-score of 0.997, specificity of 0.996, and a Pearson 
correlation coefficient of 0.996.

The Clarke Error Grid analysis validated its clinical 
reliability, with 99.273% of estimations falling within 
Zone A, confirming a near-perfect alignment with actual 
glucose values. The remaining 0.727% were in Zone B, 
indicating clinically acceptable minor deviations, with 
zero predictions in Zones C, D, or E, reinforcing the 
method’s precision and safety. These findings confirm 
that SDFMFCC effectively captures physiological 
variations in PPG signals, offering a highly accurate and 
clinically viable solution for non-invasive blood glucose 
monitoring.

Expanding the dataset to cover a wider range 
of glucose levels, particularly hypoglycemic and 
hyperglycemic cases beyond the current 70–185 mg/
dL range, will enhance the effectiveness of the proposed 
method. Therefore, future research should prioritize 
this expansion. Additionally, integrating advanced 
denoising techniques, such as wavelet transforms and 
adaptive filtering, could improve the model’s resistance 
to motion artifacts and external noise, enhancing its 
practical reliability. Investigating the feasibility of real-
time implementation on wearable devices is also essential 
to assess its potential for continuous glucose monitoring 
(CGM) in real-world settings. Advancements could be 
achieved by leveraging deep learning architectures, such 
as convolutional neural networks (CNNs) for spatial 
feature extraction and recurrent neural networks (RNNs) 
for temporal dependencies, which are well-suited for 

processing complex PPG signals. These improvements 
could reduce RMSE below 25 mg/dL and establish 
new accuracy benchmarks, accelerating the transition 
toward widespread clinical adoption of non-invasive 
glucose monitoring. Making this technology more 
accessible, reliable, and transformative will significantly 
impact diabetes management, offering a safer and more 
convenient alternative to traditional invasive methods.
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