
Macalalad and Orosco, BioImpacts. 2025;15:30815
doi: 10.34172/bi.30815
https://bi.tbzmed.ac.ir/

Marine fungal metabolites as antiviral agents: Computer-aided drug 
screening for selective inhibition of African swine fever virus dUTPase
Mark Andrian B. Macalalad1,2 ID , Fredmoore L. Orosco2,3,4* ID

1Virology and Vaccine Research Program, Department of Science and Technology - Industrial Technology Development Institute, 
Taguig, Metro Manila, 1631, Philippines
2Career Incentive Program, Department of Science and Technology – Science Education Institute, Taguig, Metro Manila, 1631, Philippines
3S&T Fellows Program, Department of Science and Technology, Taguig, Metro Manila, 1631, Philippines
4The UPLB Graduate School, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines

Introduction
African swine fever (ASF) poses a serious global concern 
to the livestock industry owing to its devastating impact 
on swine population. The disease is highly contagious, 
and without effective treatment, it remains highly fatal 
to pigs. It can lead to the disruption of the entire pork 
supply chain, threatening food security, and resulting 
in substantial economic losses.1-3 In 2018, China culled 
over 1.2 million pigs due to a major ASF outbreak that 
infected over 150 million pigs and led to economic losses 
estimated between US$89.5 billion and US$196.2 billion.4,5 
As the world's largest pork producer, this outbreak not 

only harmed China’s economy but also had significant 
repercussions on global pork markets.6 As of May 2024, 
there have been 19,172 reported ASF outbreaks across 
four continents since January 2022.7 Biosecurity measures 
have been undertaken to prevent and mitigate the 
ongoing transmission of the disease; however, the lack of 
a commercially available cure or vaccine remains a major 
obstacle to achieve complete disease eradication.5,8 Thus, 
ASF continues to be a significant threat that demands 
urgent attention.

ASF is caused by African swine fever virus (ASFV), a large 
enveloped double-stranded DNA virus of the Asfarviridae 
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Abstract
Introduction: African swine fever (ASF) 
continues to be a significant threat to the 
global livestock industry due to its severe 
impact on pig populations. Currently, there are 
no approved therapeutic agents for the virus, 
and biosecurity measures such as culling have 
led to substantial economic losses. In light of 
its effects on food security and the economy, 
our study aims to identify potential antiviral 
compounds from marine fungal metabolites 
that target the dUTPase enzyme of the African 
swine fever virus (ASFV). 
Methods: We screened 4,683 marine fungal metabolites using a series of virtual screening techniques. 
These included ADMET profiling to assess drug-likeness, consensus molecular docking to predict 
preferred docking poses and rank the docking scores, 300 ns molecular dynamics (MD) simulations 
to determine stability, principal component analysis (PCA) to verify simulation convergence, and 
MMPB(GB)SA analysis to estimate binding affinity. 
Results: Of the 4,683 compounds, 328 passed our ADMET filter, and the 10 highest-scoring ligands 
from molecular docking were evaluated for stability and binding affinity against both swine and ASFV 
dUTPase. Among the candidates, tricycloalternarene C (M1421), derived from Alternaria sp., emerged as a 
promising candidate. It exhibited excellent drug-likeness, stability, and binding affinity comparable to the 
three control compounds, while showing less affinity towards the swine dUTPase.
Conclusion: Tricycloalternarene C holds potential as a selective inhibitor of ASFV dUTPase. We 
recommend further experimental validation to confirm its efficacy as an antiviral agent against African 
swine fever.
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family. The virus encodes 150–165 structural and non-
structural proteins, each playing varying roles in viral 
entry, attachment, and replication.9 Additionally, ASFV 
has its own repair proteins to rectify any damage caused 
by mutagenic reactions. Among these, the ASFV enzyme 
deoxyuridine 5’-triphosphate nucleotidohydrolase 
(dUTPase) (Supplementary file 1, Fig. S1) plays an 
important role in maintaining DNA integrity by 
preventing the misincorporation of uracil into the ASFV 
DNA.10,11 The enzyme dUTPase catalyzes the hydrolysis 
of deoxyuridine triphosphate (dUTP) into deoxyuridine 
monophosphate (dUMP) and pyrophosphate, thereby 
reducing the cellular concentration of dUTP. If dUTPase 
function is disrupted, there is a higher chance that uracil 
will be mistakenly added to the viral DNA. The ASFV 
repair proteins then excise the integrated uracil in the 
DNA, creating an abasic site. Without the conversion of 
dUTP to dUMP, the dUTP/deoxythymine triphosphate 
(dTTP) ratio increases, hindering the proper and 
complete repair of the abasic site with the correct thymine 
base. The repeated cycle of excision and repair involving 
newly incorporated uracil triggers numerous DNA strand 
breaks, ultimately leading to thymine-free cell death.10-12 
Given its essential role in maintaining the fidelity of DNA 
replication and genome integrity, dUTPase is considered 
a promising target for ASFV antiviral therapies.9

Marine fungal metabolites are a rich source of bioactive 
compounds known for their diverse biological activities. 
Of over 4000 identified metabolites, 46% show anticancer 
activity, 13% are antibacterial, and 14% possess antifungal, 
antiviral, or pesticide resistance properties.13-15 Notable 
examples include cephalosporins, the first marine fungal 
antibiotic, isolated from Acremonium chrysogenum, 
and gliotoxin, a new type of diketopiperazine antibiotic 
discovered from Aspergillus sp. Plinabulin, also sourced 
from Aspergillus sp., is currently in late-stage clinical 
trials for anticancer therapies.14-16 Furthermore, certain 
compounds derived from the strains of Aspergillus, 
Penicillium, Cladosporium, and Fusarium, have 
demonstrated potent antiviral properties against a range 
of viruses, such as enterovirus, HSV, HIV, influenza, 
PRRSV, MCV, and RSV.17 Despite this progress, many 
marine fungal metabolites remain underexplored. Their 
pharmacological diversity highlights their potential as 
novel antiviral inhibitors targeting ASFV dUTPase.

Recent advancements in computational methods have 
renewed research interest in exploring natural compounds 
as potential sources for new antiviral drugs.18-20 Through 
computer-aided drug discovery (CADD) methods, 
various pharmacological factors such as bioavailability, 
toxicity, protein-ligand stability, and binding strength can 
be accurately predicted, enabling researchers to filter out 
less promising compounds that are likely to fail, early in 
the process. Furthermore, faster computers and advanced 
screening techniques have significantly enhanced the 

efficiency of CADD, reducing the time, cost, and effort 
associated with the traditional experimental methods.21,22 

In this study, we used a range of computer-aided drug 
screening tools to identify selective inhibitors of ASFV 
dUTPase from a pool of 4,683 fungal metabolites. The 
most promising inhibitors were selected based on their 
predicted safety, efficacy, and strong structural stability 
with ASFV dUTPase, while ensuring they exhibited 
less favorable affinity for swine dUTPase. Additionally, 
we used two different docking software programs and 
applied consensus docking to validate our results. 
Principal component analysis (PCA) was employed to 
verify molecular dynamics simulation convergence. We 
also analyzed the binding site residues with the most 
significant energy contribution and compared them to 
the known ASFV dUTPase active site residues.

Materials and Methods
Protein and ligand preparation
The 3D representations of the ASFV dUTPase (PDB ID: 
6LJ3) and swine dUTPase (PDB ID: 6LJJ)11 structures 
were obtained from the Research Collaboratory for 
Structural Bioinformatics Protein Data Bank (RCSB PDB) 
(https://www.rcsb.org/). Before the molecular docking 
experiments, the structures were adjusted using Modeller23 
to incorporate any missing residues and refine the newly 
generated loops. Subsequently, a 5000-step relaxation 
utilizing the steepest descent algorithm was conducted to 
eliminate any steric clashes and inappropriate geometries.

For the candidate compounds, the Comprehensive 
Marine Natural Products Database (CMNPD)24 provided 
the structures of 4,683 marine fungal metabolites in 
Structure Data Format (SDF). These structures were then 
optimized using the OPLS 2005 force field in Schrödinger 
Maestro to attain the configuration with the lowest 
intramolecular potential energy.

ADMET profiling
The absorption, distribution, metabolism, excretion, 
and toxicity (ADMET) properties of the marine fungal 
metabolites were assessed using ADMETLab 2.0 (https://
admetmesh.scbdd.com/).25 A total of 31 descriptors, 
each with their own range of accepted values, were used 
to evaluate the efficacy, safety, and drug-likeness of the 
metabolites. These descriptors were selected based on their 
relevance to pharmacokinetic and pharmacodynamic 
properties in mammals, particularly pigs, to ensure the 
potential applicability of the compounds as antiviral 
agents in swine.26-29 These included four descriptors for 
absorption, three for distribution, five for metabolism, 
two for excretion, ten for toxicity, and seven drug-likeness 
and bioavailability scoring tools, including Lipinski's 
Rule of Five (Ro5) and Quantitative Estimate of Drug-
likeness (QED) (Table 1). According to Lipinski's Rule 
of Five (Ro5), a compound is more likely to have good 

https://www.rcsb.org/
https://admetmesh.scbdd.com/
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Macalalad and Orosco

   BioImpacts. 2025;15:30815 3

permeation and absorption when administered orally if 
it meets the following criteria: a molecular weight of less 
than 500 g/mol, fewer than five hydrogen bond donors, 
fewer than ten hydrogen bond acceptors, and an octanol-
water partition coefficient of less than five. QED provides 
a more flexible classification than conventional ADMET 
scoring tools based on the molecular properties of 771 
existing oral drugs.30 Compounds with a QED score 
greater than 0.67 are considered to exhibit favorable 
drug-likeness, whereas those with scores below 0.67 are 
classified as non-drugs.25 In selecting compounds with 
promising ADMET properties, two screening stages were 
implemented. The first screening was based on the seven 
drug-likeness and bioavailability tools, allowing only 
those that passed all seven to proceed. In the second stage, 
to avoid prematurely excluding potentially promising 
compounds, ligands with minor ADMET violations were 
allowed to proceed, while those with multiple violations 

were excluded. Specifically, only metabolites that met 
at least 20 out of the 24 ADMET criteria were selected 
for further evaluation. This approach ensured a balance 
between maintaining reasonable pharmacokinetic and 
toxicity profiles and retaining chemical diversity for the 
docking experiments.

Consensus docking
Two docking software, AutoDock 4.231 and AutoDock 
Vina 1.1,32 were used to predict the preferred binding 
conformation and orientation of candidate ligands 
against ASFV and swine dUTPase. Both programs were 
developed by the Scripps Research Institute and utilized 
similar empirical scoring functions but differed in their 
conformational search algorithms. AutoDock 4.2 uses 
a stochastic approach through the Lamarckian Genetic 
Algorithm (LGA), while AutoDock Vina 1.1 employs a 
gradient-based local search genetic algorithm, which is 
generally faster and can provide more accurate predictions 
than AutoDock 4.2.33-35 

For the docking parameters, the amino acid residues 
were kept rigid, and only the rotatable bonds of the 
ligands were allowed to change their conformation. Both 
software packages used a 15 Å × 15 Å × 15 Å cubic grid 
box to define the boundary of the docking experiment. 
In AutoDock 4.2, the grid point spacing was set to 0.375 
Å, with 40 grid points used to create a 15 Å box length. 
Employing smaller grid point spacing enhances both the 
efficiency and accuracy of docking.36 In AutoDock Vina, 
the default grid spacing is always set to 1 Å; therefore, 15 
grid points were used to achieve similar box dimensions. 
The binding site coordinates in Table S2 were determined 
based on the locations of the active site residues. The grid 
box was centered on these residues to localize the docking 
process.

The protein was prepared in AutoDock Tools36 by 
adding polar hydrogens and converting it to the PDBQT 
format. The candidate compounds were also saved in the 
PDBQT format using the Python scripts prepare_gp4.py 
and prepare_dp4.py The grid parameter files (GPF) and 
docking parameter files (DPF) were then used as input 
files for AutoDock 4.2, where docking experiments were 
conducted using the Lamarckian genetic algorithm with 
1,000 iterations. For AutoDock Vina, the exhaustiveness 
was set to 20, the energy range to 1, and the number of 
binding modes to 1000, with other parameters maintained 
at their default values. 

Since two docking software programs were used, 
consensus docking approach was implemented to 
consolidate the results. Studies have shown that 
validation using consensus docking improved hit rates 
and increased the likelihood of identifying the correct 
binding pose of the ligand.37 The top binding pose of the 
ligand with the most negative docking score in AutoDock 
4.2 was compared to its corresponding docking pose from 

Table 1. List of ADMET parameters used in this study

Property Parameter Accepted 
values

Drug-likeness

Quantitative estimate of drug-
likeness (QED)  > 0.67

Number of sp3 hybridized carbons  ≥ 0.42

Pan assay interference compounds 
(PAIN) 0

Lipinski’s rule of five Accepted

Pfizer rule Accepted

GSK rule Accepted

Golden triangle rule Accepted

Absorption

Intestinal absorption 0 – 0.3 

Oral bioavailability 0 – 0.3 

Caco-2 permeability  > -5.15

MDCK permeability  > 2 × 10-6 cm/s

Distribution

Plasma protein binding  ≤ 90

Volume distribution 0.04 – 20

Fraction unbound in plasma  ≥ 5%

Metabolism CYP 1A2 / 2C19 / 2C9 / 2D6 / 3A4 
inhibitor 0 – 0.3 

Excretion
Clearance of drug  ≥ 5

Half-life 0 – 0.3 

Toxicity

Hepatoxicity 0 – 0.3

Drug-induced liver injury 0 – 0.3

Ames toxicity 0 – 0.3

Maximum recommended daily dose 0 – 0.3 

Carcinogenicity 0 – 0.3

Nongenotoxic carcinogenicity rule 0

Genotoxic carcinogenicity rule 0

Acute Toxicity rule 0

SureChEMBL rule 0

FAF-Drugs4 rule 0
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AutoDock Vina 1.1. If the root mean square deviation 
(RMSD) between the two poses was less than 2 Å, the 
ligand was accepted for further analysis. However, if the 
RMSD was greater than 2 Å, the ligand was excluded 
from the list of potential candidate inhibitors. The final 
docking score of each ligand was calculated as the average 
score from AutoDock 4.2 and AutoDock Vina 1.1. Only 
the ligands with more negative docking scores than all 
three control compounds were selected for molecular 
dynamics (MD) simulations. The three controls include 
deoxyuridine phosphate (dUTP), the main substrate of 
dUTPase, deoxyuridine monophosphate (dUMP), the 
product of dUTP hydrolysis, and 2′-deoxyuridine 5′-(α,β-
imido)triphosphate (DUPNPP), a potent inhibitor of 
dUTPase.10 A decoy ligand was also generated using 
LIDEB's Useful Decoys (LUDe) server38 to assess the 
docking protocol’s ability to identify true binders. The 
server filters compounds from the CHEMBL database, 
selecting those with similar physicochemical properties to 
a known active compound but with distinct topological 
features.

MD simulation
To assess stability and study the dynamics between 
the protein and docked ligands, all-atom 300 ns 
MD simulations were conducted using GROMACS 
(Groningen Machine for Chemical Simulations) 2023.3. 
The force fields for the protein-ligand complex were 
assigned separately. The GROMACS built-in Chemistry 
at Harvard Macromolecular Mechanics (CHARMM) 
36 force field was used to parameterize the atoms and 
define the potential energy of the proteins, while force 
field parameters for the candidate ligands were assigned 
using the CHARMM General Force Field (CGenFF) 
server (cgenff.silcsbio.com).39,40 The PDB files of both the 
protein and ligands were converted and combined into a 
single GROMACS-compatible GRO file to generate the 
molecular structure of the entire protein-ligand system. 
The system was then enclosed in a cubic box with at 
a distance of 10 Å from the protein edge to prevent 
interactions with periodic images from adjacent unit 
cells. The box was subsequently filled with TIP3P water 
molecules and neutralized with sodium and chlorine ions. 
The TIP3P model was specifically used because CHARMM 
is parameterized in conjunction with this water model. 
TIP3P is essential when employing the CHARMM 36 force 
field to ensure an accurate representation of solvent–solute 
interactions.41,42 Additional ions were added to achieve a 
salt concentration of 0.15 M. The complete system, now 
containing solvent and ions, underwent 50,000 relaxation 
steps using steepest descent minimization to resolve any 
steric clashes present. The water molecules and ions were 
then equilibrated around the protein-ligand complex 
using isochoric-isothermal (NVT) and isothermal-
isobaric (NPT) canonical ensembles to reach the desired 

temperature and pressure of 312 K and 1 bar, respectively. 
NVT equilibration was regulated using the modified 
Berendsen thermostat, while NPT equilibration was 
controlled using a Berendsen barostat. Finally, a 300 ns 
MD simulation under NPT ensemble was conducted with 
150,000,000 integration steps, saving snapshots every 100 
ps, resulting in 3,000 trajectory frames.

The MD trajectories were analyzed using GROMACS 
tools to evaluate the stability and dynamics of the 
protein–ligand complexes. RMSD (gmx rms) was used to 
assess structural stability, RMSF (gmx rmsf) to examine 
residue flexibility, and gmx distance to calculate average 
distances between the ligand and the binding pocket. 
Hydrogen bonds formed during the simulation were 
identified using gmx hbond. PCA was also performed to 
verify convergence and identify the dominant motions of 
the protein–ligand complexes. The GROMACS tool gmx 
covar was used to calculate the covariance matrix, which 
describes how atomic positions vary together over time. 
This matrix was then diagonalized to obtain eigenvectors 
and eigenvalues, where the eigenvectors represent 
directions of motion and the eigenvalues indicate the 
magnitude of movement along each direction. The 
eigenvector and eigenvalue files were subsequently used 
as input for gmx anaeig to project the simulation data 
onto the top principal components, which capture the 
most significant motions in the system. A 2D projection 
plot between the first and second principal components 
(PC1 and PC2) was then generated to provide insight 
into large-scale motions and conformational changes that 
occurred during the simulation.

Molecular mechanics Poisson Boltzmann (generalized 
born) surface area estimation 
The complexes with stable behaviors were further 
analyzed for their binding affinity using the molecular 
mechanics Poisson-Boltzmann surface area (MMPBSA) 
and molecular mechanics generalized born surface 
area (MMGBSA) approaches. Both methods combine 
molecular mechanics and continuum solvation 
models through equation 1, and differ only in the 
calculation of the polar solvation energy: the Poisson-
Boltzmann equation for MMPBSA and the generalized 
Born approximation for MMGBSA. The molecular 
mechanics energies were derived from the sum of the 
van der Waals and electrostatic forces, obtained using 
the Lennard-Jones and Coulomb potential functions, 
respectively. The nonpolar solvation energy is assumed 
to be linearly proportional to the solvent accessible 
surface area (SASA).43,44 The entropic contribution was 
estimated using the interaction entropy method, which 
approximates entropy based on the fluctuations in the 
interaction energy between the ligand and the receptor. 
This method offers a less computationally expensive 
alternative to traditional entropy estimation techniques 
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such as normal mode analysis.45

bind vdw elec polar nonpolarG E E G G T S∆ = ∆ + ∆ + ∆ + ∆ − ∆        (1)

Binding free energy calculations were conducted using 
the GROMACS-compatible package gmx_MMPBSA45 
under the same set of conditions as the molecular 
dynamics simulation. To ensure that the analysis reflected 
the stabilized phase of the system, frames were extracted 
from the last 100 ns of the 300 ns trajectory. Sampling was 
performed every 10 frames, resulting in 100 representative 
snapshots for MMPBSA and MMGBSA computations.

Results and Discussion
ADMET profiling
The initial screening process utilized seven drug-
likeness scoring tools, narrowing the pool of candidate 
compounds from 4,683 to 507 that met the specified 
criteria. These tools evaluated the similarity of the marine 
fungal metabolites to existing drugs, which reflects their 
potential success rate in clinical trials. All 507 compounds 
passed Lipinski’s Rule of Five (Ro5), indicating good 
absorption and permeability when administered orally, 
and their favorable QED scores further suggested 
potential drug efficacy. In the second screening phase, the 
remaining metabolites were evaluated against 24 ADMET 
parameters to refine the selection, with only those passing 
at least 20 of these tests being considered. Fig. S2 of the 
Supplementary file 1 summarizes the results of the entire 
ADMET screening process. 

Of the 507 metabolites that passed the initial screening, 
328 showed favorable results for at least 20 ADMET 
properties, suggesting good safety and efficacy. These 
compounds were selected as the final candidates for the 
molecular docking experiments. Notably, 27 metabolites 
passed all 24 ADMET tests. Coupled with excellent drug-

likeness scores, the 328 compounds demonstrate a higher 
likelihood of success in downstream drug development 
stages. Although some compounds did not meet the required 
criteria for certain ADMET parameters, their excellent 
overall ADMET profile justifies further investigation. 
Additionally, since this is only a preliminary screening, 
their structures can be modified or used as templates to 
create semi-synthetic compounds with improved ADMET 
properties. The complete ADMET screening is presented 
in Table S1 (see Supplementary file 2).

Consensus docking
Following ADMET profiling, the 328 metabolites were 
docked against the known active region of ASFV dUTPase 
to predict their preferred binding conformations and 
associated docking scores. To ensure selectivity and 
minimize off-target effects, these metabolites were also 
docked against swine dUTPase. 

Due to differences in the scoring algorithms 
used, AutoDock 4.2 and AutoDock Vina generated 
different docking scores and overall rankings (Table 
S3 of Supplementary file 1). AutoDock 4.2 can better 
discriminate the poses compared to Vina, which yielded 
similar docking scores. Nevertheless, a consistent pattern 
was observed when considering the ranking of all 328 
metabolites. The top-ranked metabolites from AutoDock 
4.2 also appeared among the highest scoring metabolites 
identified by AutoDock Vina.

Using the LUDe server, the compound CHEMBL55407 
(Fig. S3) was identified as a decoy ligand to validate the 
performance of the two docking programs. As shown in 
Table 2, all three control compounds exhibited stronger 
binding affinities toward both ASFV and swine dUTPase, 
whereas the decoy ligand showed noticeably weaker 
binding. This supports the ability of the docking protocol 
to reliably distinguish true binders from weak or non-

Table 2. Docking scores (kcal/mol) of the top nine highest-scoring ligands against ASFV dUTPase and swine dUTPase

Ligand Compound name
ASFV dUTPase Swine dUTPase

Vina AD4 RMSD Average Vina AD4 RMSD Average

( + )dUMP Deoxyuridine monophosphate -7.5 -7.68 0.732 -7.59 -9.1 -10.66 1.590 -9.88

( + )dUTP Deoxyuridine triphosphate -7.4 -7.54 1.310 -7.47 -10.2 -13.60 1.468 -11.90

( + )dUPNPP α,β-imido-dUTP -7.3 -7.34 1.604 -7.32 -9.5 -13.32 1.386 -11.41

(-)Decoy CHEMBL554071 -5.9 -6.94 1.981 -6.77 -6.6 -9.04 1.179 -7.82

M3120 Tricycloalternarene K -7.6 -8.78 1.489 -8.19 -4.0 -11.12 1.870 -7.56

M1421 Tricycloalternarene C -6.9 -9.19 1.972 -8.05 -3.3 -9.86 0.881 -6.58

M4555 Corynechromone H -7.3 -8.31 0.892 -7.81 -6.1 -9.45 0.926 -7.78

M1231 Nigrospin C -6.9 -8.70 1.235 -7.80 -6.4 -11.16 1.768 -8.78

M0549 Aurantiomide B -7.6 -8.00 1.268 -7.80 -4.0 -7.77 0.703 -5.89

M0288 Fusaquinon A -7.7 -7.84 1.241 -7.77 -6.6 -10.07 1.190 -8.34

M1628 5′-Hydroxyasperentin -7.7 -7.72 1.159 -7.71 -6.7 -10.83 1.662 -8.77

M2440 Tricycloalternarene L -6.9 -8.42 1.730 -7.66 -5.9 -10.10 1.893 -8.00

M2989 Thomimarine A -7.4 -7.88 1.694 -7.64 -4.2 -9.33 1.624 -6.77
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binders. Out of the 328 metabolites subjected to molecular 
docking, only nine compounds exhibited better or more 
negative scores (-7.64 kcal/mol to -8.19 kcal/mol) than all 
three control compounds (-7.32 kcal/mol to -7.59 kcal/
mol). Among these, tricycloalternarene K obtained the 
best docking score, followed by tricycloalternarene C and 
corynechromone H. Interestingly, the highest-scoring 
ligands included three isomers: tricycloalternarene K, 
tricycloalternarene C, and tricycloalternarene L, all of 
which fall under the chemical class, sesquiterpenoid. In 
addition to the three isomers, thomimarine A, which 
ranked ninth, was also classified the same chemical 
classification. The final candidate nine ligands also 
registered less negative docking scores (-6.58 kcal/mol 
to -8.78 kcal/mol) against the swine dUTPase compared 
to all the three controls (-9.88 kcal/mol to -11.90 kcal/
mol). These compounds demonstrated favorable affinity 
against the ASFV dUTPase while presenting weaker 
binding associations with swine dUTPase. This suggests 
that they are likely to have minimal interference with the 
swine dUTPase, ensuring that their normal physiological 
functions remain unaffected and thereby reducing 
potential side effects. Fig. 1 illustrates the binding poses of 
the ligands against the active site of ASFV dUTPase, while 
Fig. 2 shows the interaction diagrams of the nine ligands 
and the three controls with the protein.

The final nine candidate ligands adopted highly similar 
binding poses against the two adjacent protomers within 
the binding pocket of the ASFV dUTPase enzyme (Fig. 
1). A significant portion of the ligands was embedded 
in subunit 2, with some moieties extending into the first 
subunit. As shown in Fig. 2, most amino acids surrounding 
the ligands were hydrophobic with a few polar residues. 
Additionally, charged residues such as Glu 97, Asp 91, 
Arg 71, and Lys 101 were also observed. The majority 
of the hydrogen bonds are formed with polar residues, 
including Asn 86 and Asn 72. For some ligands including 
M4555 and M0549, hydrogen bonds were paired with the 
charged residues Arg 71 and Lys 101.

Seven residues interacted with all nine ligands and the 

three control compounds: Asn 85, Gly 88, Leu 89, Ile 90, 
Tyr 94, and Met 99 from subunit 2, and Ser 72 from subunit 
1 (Fig. 2). Among these, Tyr 94 plays a crucial role in the 
catalytic process. Mutation of this residue, along with Asp 
91, Arg 71, and Arg 149, led to a reduced or complete 
loss of enzymatic activity. Additionally, mutation of Leu 
89 resulted in a 4 to 7-fold increase in the Michaelis-
Menten constant (Km), indicating decreased substrate 
binding efficiency. A similar case was also observed with 
the mutation of residue Ile 90, highlighting its critical 
role in the catalytic process.11 Given the well-established 
catalytic importance of these residues, ligand interactions 
at these sites are likely to interfere with substrate binding 
or turnover. This could potentially impair enzymatic 
activity and may contribute to potential antiviral effects. 
Apart from the protein residues, the magnesium ion is 
also an integral component of the catalytic mechanism, as 
it coordinates and stabilizes intermediates formed during 
substrate binding and hydrolysis.10 From Fig. 2, five 
candidate ligands—M1421, M1628, M2440, M3120, and 
M4555—maintained close contact with the magnesium 
ion after docking. Establishing a stable connection with 
the ion can also potentially enhance the efficacy of the 
inhibitor.

MD simulation 
After obtaining the structure of the protein with the 
bound ligands, the nine final complexes and three control 
complexes were subjected MD simulations to determine 
their stability and assess their dynamic interactions, using 
RMSD, RMSF, and mean distance analysis. 

Before production runs, the systems underwent energy 
minimization and equilibration to correct geometries, 
equilibrate solvent and ions, and reach target temperature 
and pressure. As shown in Fig. S4, potential energy 
decreased steadily during equilibration, stabilizing 
around -850,000 kJ/mol and remaining consistent during 
production, indicating well-relaxed systems.46 All systems 
reached the target temperature of 312 K with a minimal 
SEM of ~0.250. Pressure stabilized between 1.356 and 

Fig. 1. Binding poses of the nine highest-scoring ligands against the dual-subunit active site of the ASFV dUTPase.
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1.976 bar (SEM: 2.6), with expected fluctuations typical 
of MD simulations, while average pressure stayed near 1 
bar. Density profiles also stabilized around 1035 kg/m³, 
confirming system equilibration.46,47

Fig. 3A illustrates the RMSD trajectories over the 
300 ns simulation period. Eight of the nine top-scoring 
ligands exhibited unstable behavior, as indicated by rising 
and erratic RMSD fluctuations. In contrast, only M1421 

Fig. 2. Ligand interaction diagram of the top nine ligands and the three control compounds against the binding pocket of ASFV dUTPase. Residues shown 
are within 4 Å from the ligand.
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displayed a stable trajectory throughout the simulation. 
Ligands M0288, M1231, M1628, M2440, and M3120 
initially displayed stable behaviors at the start of the 
simulation. However, before reaching 100 ns, a sharp 
increase in the RMSD was observed, indicating that the 
ligands had detached from the binding pocket. Moreover, 
ligands M0549, M2989, and M4555 also presented 
plateaued trajectories within the first 100 ns but eventually 
became unstable towards 150 ns. 

Most of the eight unstable ligands had over five oxygen- 
and nitrogen-containing groups, which extensively 
interacted with water during MD simulations. To maintain 
stable binding within the active site, an optimal number 
of internal interactions are required to anchor these 
groups in place. As shown in Fig. 2, aside from ion–dipole 
and dipole–dipole interactions, only hydrogen bonds 
contributed significantly to the binding stability. Ligands 
with multiple polar groups, including M0549, M0288, and 

Fig. 3. Stability analysis of the protein–ligand complexes using RMSD and distance-based metrics. (A) Complex RMSD of all nine ligands and the three 
control compounds against dUTPase. (B) Complex RMSD of the stable complexes. (C) Time-resolved distance between the center of mass of each ligand 
and the center of mass of the binding pocket. (D) Time-resolved distance between the center of mass of the stable ligands and the center of mass of the 
binding pocket. (E) RMSF of subunit 1 for all simulated complexes, including nine candidate ligands and three control compounds. (F) RMSF of subunit 1 
for the stable complexes only. (G) RMSF of subunit 2 for the same set of complexes. (H) RMSF of subunit 2 for the stable complexes. Red blocks below the 
x-axis indicate the positions of the active site residues.
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M1628, depended on forming several hydrogen bonds, 
similar to the control compounds, to remain stably bound 
in the binding pocket. However, in these cases, the number 
of hydrogen bonds formed may have been insufficient 
to fully stabilize the ligands against the protein, leading 
to their observed instability. M2989 possessed only 
three polar functional groups with one hydrogen bond; 
however, two of these were oriented toward a glycine 
residue, which has a side chain with zero net charge. As a 
result, its interaction with M2989 was relatively weak due 
to the lack of strong electrostatic attraction. The binding 
poses of the eight unstable ligands may have also been 
suboptimal due to the spatial positioning of their oxygen 
and nitrogen atoms, with polar groups near nonpolar 
residues and vice versa, leading to weak interactions. In 
contrast, the polar groups of M1421 are clustered at one 
end, forming favorable interactions with the oppositely 
charged polar residues like Gln 120 and Glu 97, while its 
nonpolar tail aligned with the hydrophobic pocket which 
enhanced its binding stability.

Among the nine final candidate ligands, only M1421 
exhibited a stable behavior comparable to that of the 
three reference compounds (Fig. 3B). During the first few 
nanoseconds, the increasing RMSD plot indicated that the 
system was undergoing initial conformational adjustments 
to adapt to the simulated physiological conditions, 
including the presence of water molecules and ions that 
were absent in the original docked structure. This phase 
involved ligand repositioning and movement of flexible 
loops and side chains toward a more stable, energetically 
favorable state. Once the system stabilized and the ligand 
settled into its final pose, the RMSD plateaued around 
2 Å, similar to the control compounds. Distance plots 
(Fig. 3C and 3D) further support these observations. 
The eight unstable ligands exhibited erratic and highly 

fluctuating distance profiles, with some drifting as far as 
70 Å from the binding site. In contrast, M1421 maintained 
a relatively stable distance throughout the simulation, 
closely matching the profiles of the control compounds, 
reinforcing its stable binding within the pocket.

These observations suggest that M1421 successfully 
adopted a low-energy conformation and remained 
stably bound within the active site over the entire 300 ns 
simulation, highlighting its structural stability.

The ligand binding poses at different time points, as 
shown in Fig. 4, further confirmed its stability, with the 
initial conformation largely preserved throughout the 
simulation. The ligand consistently adopted similar 
orientations across various time frames and maintained 
close contact with key active site residues, indicating 
strong and persistent interactions. This conformational 
consistency underscores the robustness of the ligand's 
binding within the pocket. Moreover, the molecular 
dynamics simulation video (Supplementary file 3, Video 
S1) visually demonstrated that the ligand remained 
confined within the binding site for the duration of the 
simulation. While minor conformational adjustments 
were observed, likely due to interactions with surrounding 
amino acid residues and solvent molecules, no significant 
translational displacement of the ligand occurred.

The RMSF plots in Fig. 3E to 3F illustrate the rotational 
movements of the ASFV dUTPase residues. The known 
critical residues, highlighted by the red bars on the axis, 
consistently exhibited minimal movements, suggesting 
that the binding pocket remained unchanged and that the 
stable ligands maintained a strong connection with the 
active site residues. Additionally, ligands that exhibited 
instability, such as M0288, M0549, M2440, and M2989, 
showed higher RMSF values, particularly in subunit 2 of 
the protein, where most of the ligand interactions occurred. 

Fig. 4. Binding poses of (A) M1421, (B) dUMP, (C) dUPNPP, and (D) dUTP at different trajectory frames, captured every 60 ns. Magnesium ions, represented 
by a small sphere, are also shown. 



Macalalad and Orosco

BioImpacts. 2025;15:3081510

Since the unstable ligands dissociated from the binding 
pocket, the active site residues gained more freedom to 
interact with other residues and water molecules, leading 
to increased residue movements and higher RMSF values. 
High RMSF values were also observed in residues at the 
ends of the protein sequence, particularly in the second 
subunit. These regions, located external to the protein 
trimer, exhibited increased flexibility due to direct 
interactions with water molecules. Additionally, subunit 2 
has a longer end chain that moves freely with the solvent, 
leading to elevated RMSF values at residues 140 to 160. 
Since these residues are distant from the active site and do 
not directly interact with the ligand, they do not influence 
the binding of the compounds.

To confirm the convergence of the simulations and 
further validate the stability of the complexes, PCA was 
performed. PCA provides a qualitative and descriptive 

overview of the dominant conformational motions 
sampled by the protein–ligand complexes during the MD 
simulations. While RMSD and distance-based metrics 
capture structural deviations and stability over time, PCA 
complements these by visualizing large-scale, collective 
motions. This allows for assessment of whether the system 
remains confined to a stable conformational space or 
continues to explore alternative structural states. Tightly 
clustered data points in the PCA plot, representing a 
smaller conformational space, suggest limited atomic 
motion and minimal structural fluctuations. Accordingly, 
the more stable complexes occupy compact regions in the 
principal component space, supporting the convergence 
of the simulations. In contrast, more scattered data 
points reflect increased atomic mobility and may indicate 
significant shifts in ligand binding positions.

The scree plot in Fig. 5A highlights the top two 

Fig. 5. Principal component analysis of M1421 and three control compounds complexed with swine dUTPase. (A) Scree plot of the first 20 eigenvectors 
against the explained variance. Also shown are projections of ligand motions along PC1 and PC2: (B) M1421, (C) dUMP, (D) dUPNPP, and (E) dUTP, and 
the corresponding trace of the covariance matrix.
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principal components (PC1 and PC2) as the dominant 
contributors to the total atomic motion in the simulated 
systems. For the complexes of compounds M1421, 
dUMP, and dUPNPP, PC1 and PC2 together accounted 
for 71.03% to 80.85% of the total variance, indicating that 
the majority of the conformational fluctuations can be 
described along just two principal axes. In contrast, for 
the control compound dUTP, PC1 and PC2 accounted for 
only 48.88% of the total variance. While this is lower than 
the values observed for the other complexes, it remains 
sufficient for qualitative analysis. The reduced variance in 
the first two components suggests that the dUTP complex 
undergoes more distributed or multidimensional 
motions, potentially involving higher-order principal 
components. Importantly, a lower percentage of variance 
captured by PC1 and PC2 does not necessarily indicate 
poor stability convergence. This is further supported by 
the stability metrics, including RMSD and mean distance 
analyses, which confirm the overall structural stability of 
the dUTP complex.

The PCA plot for M1421 revealed tight clusters over 
different time durations (Fig. 5B). During the first 60 ns, 
the data points occupied a relatively larger area as the 
complex equilibrated to a lower energy state. This binding 
pose was maintained until 120 ns, at which point the ligand 
transitioned to a different conformation and held this new 
pose until approximately 240 ns (Fig. 4A). Toward the end 
of the simulation, the cluster of blue points moved closer 
to the red and orange clusters, indicating that the ligand's 
pose had shifted back to its original conformation. From 
the visual representation in Fig. 4A, the ligand's pose at 
60, 120, and 300 ns were highly superimposed, consistent 
with the PCA plot and confirming the stability of the 
ligand over time. Furthermore, the tight blue cluster near 
the end of the 300 ns run signified convergence of the 

simulation. These results are also consistent with RMSD 
and mean distance analyses, collectively reinforcing the 
observed stability of the protein–ligand interactions

In contrast, the control compounds, dUMP and 
dUTP, formed tighter clusters throughout the simulation 
and displayed uniform binding poses (Fig. 5C to 5E), 
reflecting a higher degree of stability compared to 
dUPNPP and M1421. Additionally, the trace values of 
the control compounds dUMP and dUTP, were lower 
than those of dUPNPP and M1421. The trace of the 
covariance matrix corresponds to the total variance 
present in the dataset.48 It provides a quantitative measure 
of the total atomic motion throughout the simulation. 
Lower trace values are typically associated with stable and 
well-converged complexes. Although dUTP exhibited 
a lower percentage of variance in its first two principal 
components, it recorded the smallest trace value among 
all the complexes. This low trace (0.398) indicates reduced 
overall atomic motion, suggesting that the dUTP-bound 
complex remained structurally stable throughout the 
entire 300 ns. In contrast, the control compound dUPNPP, 
which has a larger structure and more functional groups, 
engaged in more extensive interactions with surrounding 
residues and water molecules. These interactions likely 
contributed to increased atomic fluctuations, resulting in 
the highest trace value observed (5.4129), and reflecting 
greater overall motion compared to the other ligands. As 
shown in Fig. 5D, the blue clusters of dUPNPP shifted 
away from the other clusters as the ligand settled into 
its final binding conformation. This shift was consistent 
with Fig. 4C, where the binding pose at 300 ns differed 
from the initial configurations. Despite this minimal shift, 
dUPNPP remained stable within the binding pocket.

M1421 consistently formed an average of two to three 
hydrogen bonds throughout the simulation (Fig. 6). 

Fig. 6. Number of hydrogen bonds between the ASFV dUTPase (Subunit 1 and 2) and M1421. Also shown are the number of hydrogen bonds of three 
control compounds.
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Notably, subunit 2 exhibited more hydrogen bonding 
interactions compared to subunit 1, suggesting that 
its residues provide a more favorable environment for 
ligand stabilization. This is consistent with the structural 
composition of the binding pocket, which is primarily 
formed by residues from subunit 2. Among the three 
controls, dUTP formed the most hydrogen bonds due 
to its structure having more polar functional groups. 
The control dUPNPP also formed a substantial number 
of hydrogen bonds toward the end of the simulation. 
Despite having fewer moieties capable of hydrogen 
bonding compared to the controls, M1421 generated 
nearly the same number of hydrogen bonds as dUMP. The 
consistent hydrogen bonding of M1421 likely contributed 
to its observed stability, underscoring its potential as an 
antiviral drug.

Molecular mechanics Poisson Boltzmann (generalized 
born) surface area estimation 
The binding energies of M1421 and the three control 
compounds were predicted to estimate their relative 
binding strengths. Although the MMGBSA and 
MMPBSA methods yielded different magnitudes for the 
polar and non-polar solvation energies, they showed 
similar rankings across all energy terms (Table S4). 
M1421 exhibited stronger binding energies (MMGBSA: 
-28.05 kcal/mol, MMPBSA: -23.70 kcal/mol) than the two 
control compounds, dUMP (MMGBSA: -13.61 kcal/mol, 
MMPBSA: -12.21 kcal/mol) and dUPNPP (MMGBSA: 
-5.98 kcal/mol, MMPBSA: -4.4 kcal/mol), but had weaker 
binding affinity compared to dUTP (MMGBSA: -32.19 
kcal/mol, MMPBSA: -32.19 kcal/mol) (Fig. 7A and 7B). 
M1421, dUMP, and dUTP all exhibited stronger binding 
affinities toward subunit 2, whereas dUPNPP showed 
a clear preference for subunit 1 and even displayed 
repulsive behavior toward subunit 2 (Fig. 7C–7F). This 
is further supported by the hydrogen bond analysis in 
Fig. 6, which shows that dUPNPP formed an increasing 
number of hydrogen bonds with subunit 1 over time, 
while interactions with subunit 2 remained minimal. In 
contrast, M1421, dUMP, and dUTP consistently favored 
hydrogen bond formation with subunit 2 throughout the 
simulation.

Statistically, the enthalpic binding energy (excluding 
entropy) of compound M1421 is significantly more 
favorable than that of the control compound dUMP, as 
indicated by the very low P value ( < 0.0001) and a large 
effect size (R² = 0.4303) (Table 3). In contrast, M1421 
shows weaker binding than both dUPNPP (P < 0.0001, 
R² = 0.1132) and dUTP (P < 0.0001, R² = 0.7859). The 
relatively low effect size in the M1421 vs dUPNPP 
comparison suggests that, although the difference is 
statistically significant, the actual magnitude is small. 
Specifically, only about 11% of the variance in binding 
energy can be attributed to differences between the two 

ligands. This is supported by the significant F-test result 
(P < 0.0001), indicating the inconsistent binding behavior 
of dUPNPP across simulation frames. Interestingly, 
this variability also corresponds to its stronger binding 
affinity toward subunit 1 (Fig. 7C and 7D), signifying 
that dUPNPP exhibits a distinct binding preference 
for subunit 1 compared to the other ligands, which 
show stronger binding affinity toward subunit 2 (Fig. 
7E and 7F). In the MMGBSA results, M1421 binds 
significantly more strongly than dUMP (p < 0.0001, 
R² = 0.6658), while dUTP again exhibits more favorable 
binding than M1421 (P < 0.0001, R² = 0.4295). When 
comparing M1421 to dUPNPP, it reveals a negligible and 
statistically insignificant mean difference (–0.0502 kcal/
mol, P = 0.9317), with a small effect size (R² = 3.68 × 10⁻⁵), 
suggesting nearly identical enthalpic binding energies 
under this method.

In both binding energy estimation approaches, the 
inclusion of entropic contributions reveals that M1421 
exhibits significantly stronger total binding free energy 
than both dUPNPP. The reduced affinity of dUPNPP 
is attributed to its larger molecular size and greater 
flexibility, which result in a higher entropic penalty. This 
highlights the importance of including entropy in binding 
free energy calculations, especially for larger ligands with 
a higher number of rotatable bonds, whose entropic costs 
can substantially diminish their overall binding affinity.

For all systems, van der Waals interactions provided the 
strongest energy contributions, effectively counteracting 
the positive polar solvation and entropic energies. 
The control compounds dUTP and dUPNPP, which 
have the most polar groups, exhibited the strongest 
electrostatic energies but also the most positive polar 
solvation energies. Again, the larger molecular size and 
greater conformational flexibility of dUPNPP resulted 
in a significantly higher entropic cost, ultimately leading 
to the weakest overall binding affinity among all tested 
complexes. Although M1421 showed weaker affinity than 
dUTP, one of the main substrates of ASFV dUTPase, 
its negative binding energy still indicates spontaneity. 
Moreover, since it had a stronger affinity than the other 
two controls, the core structure of M1421 could be 
modified or used as a scaffold for creating new compounds 
with enhanced binding strength and increased potency as 
an antiviral drug.

Since all ligands interacted more with subunit 2, 
the residues in this subunit provided more attractive 
interactions compared to those in subunit 1. As shown in 
Fig. 8A and 8B, the residues that consistently contributed 
the most to binding in both the MMGBSA and MMPBSA 
methods were Asp 29, Leu 30, Gly 31, Arg 71, Ser 72, 
and Gln 120 from subunit 1, and Ile 48, Ile 68, Gly 88, 
Leu 89, Ile 90, Asp 91, Tyr 94, Leu 98, Met 99, Leu 100, 
and Lys 101 from subunit 2. Among these, Asp 29, Arg 
71, Ser 72, Gly 89, Ile 90, Tyr 94, and Gln 120 have been 
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Fig. 7. Binding free energy decomposition of compound M1421 and the control ligands dUMP, dUPNPP, and dUTP. (A) MMPBSA and (B) MMGBSA total 
binding energy components for the entire protein over the last 100 nanoseconds of simulation. (C) MMPBSA and (D) MMGBSA decomposition by subunit 1. 
(E) MMPBSA and (F) MMGBSA decomposition by subunit 2. Total enthalpy is the sum of van der Waals, electrostatic, polar and non-polar solvation energies.
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identified through kinetic studies as crucial for binding. 
Mutations or deletions of any of these residues led to 
decreased binding efficiency, weakening or disrupting 
the interaction of dUTPase with its natural substrate 
and severely impacting enzymatic activity.11 The strong 
binding of M1421 to these key residues underscores its 
potential as an antiviral compound for inhibiting ASFV 
dUTPase and highlights the importance of these residues 
as specific targets in designing more effective inhibitor 
compounds. Similar observations for the three control 
compounds further validated the results of our binding 
energy experiments.

Bioactivity of tricycloalternarene C (M1421)
M1421, identified as tricycloalternarene C, is a 
sesquiterpenoid fungal metabolite derived from the 
sponge-associated fungus Alternaria sp.49 It is known 
for its inhibitory activity against the NF-κB protein 
complex, which is linked to autoimmune diseases, 
inflammatory conditions, and cancer.49,50 However, to 
the best of our knowledge, its antiviral activity against 
any pathogenic swine viruses has not been explored. 
Going back to the ADMET profiling, tricycloalternarene 
C performed favorably in 23 of the 24 ADMET tests. It 
scored 92.3% in the Protein Plasma Binding (PPB) test 

Table 3. Pairwise statistical comparison of the MMPBSA and MMGBSA binding energies between the candidate compound 1421 and the control compounds 
dUMP, dUPN, and dUTP, based on 100 data points per group

Comparison Mean Difference 95% CI of Difference t-test
P-value Effect Size (R²) F-test 

P-value

MMPBSA

1421 vs dUMP 5.462 ± 0.4443 4.585 to 6.338  < 0.0001 0.4303 0.8205

1421 vs dUPNPP -2.816 ± 0.5574 -3.915 to -1.717  < 0.0001 0.1132  < 0.0001

1421 vs dUTP -12.21 ± 0.4508 13.10 to -11.32  < 0.0001 0.7859 0.6130

MMGBSA

1421 vs dUMP 8.413 ± 0.4215 7.582 to 9.244  < 0.0001 0.6658 0.1185

1421 vs dUPNPP -0.0502 ± 0.585 -1.204 to 1.103 0.9317 3.682e-005  < 0.0001

1421 vs dUTP -5.096 ± 0.415 -5.915 to -4.277  < 0.0001 0.4295 0.1924

Note: The values presented are binding energy estimates derived from molecular mechanics and polar solvation energies, excluding entropic contributions*.
*The gmx_MMPBSA package does not provide entropic values per frame, but only a single final entropic estimate per system.

Fig. 8. Binding energy contribution of the residues from subunit 1 and 2 of ASFV dUTPase, calculated using (A) MMGBSA and (B) MMPBSA. Blue bars 
represent attractive forces, while red bars represent repulsive forces.
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under Distribution, which exceeds the recommended 
threshold of less than 90%. Despite this, the compound 
met the criteria for other Distribution descriptors, such 
as Volume Distribution (VD) and Fraction Unbound 
in Plasma (Fu). Additionally, the fungus Alternaria sp., 
from which it was derived, is known for its wide range 
of bioactivities, including antitumor, antibacterial, and 
antitoxic effects. Apart from its observed antiviral activity 
against SARS-CoV-2 with Alternaria sp. HJT-Y7, no 
other antiviral activities against other viruses have been 
reported.51,52 

While there are currently no approved antiviral drugs 
specifically targeting ASFV, several naturally occurring 
small molecules have shown promising inhibitory effects 
against key viral proteins. Flavonoids like kaempferol, 
apigenin, and dihydromyricetin have demonstrated 
antiviral activity,53-56 but most findings are limited to 
in vitro studies, and their specific viral targets remain 
unconfirmed. Despite favorable ADMET profiles, their 
potential interaction with native swine proteins raises 
safety concerns. In contrast, tricycloalternarene C 
specifically targets the ASFV A179L protein, showing 
strong binding and stability, suggesting better selectivity 
and safety.

Other strategies include nucleoside analogues (NAs) 
and siRNAs.55,57 NAs, such as genistein and HPMPC, 
inhibit viral replication but suffer from poor solubility, 
bioavailability, and dose-limiting toxicity.58 Their 
activation also depends on phosphorylation, a rate-
limiting step that can significantly reduce their overall 
antiviral efficacy.59 Similarly, siRNAs can suppress viral 
replication but face challenges like off-target effects, poor 
stability, and limited delivery efficiency.57,60,61 In contrast, 
small-molecule inhibitors are generally more stable 
and can directly bind to viral target proteins with high 
specificity.62,63 These properties make tricycloalternarene 
C a more practical and potentially promising ASFV 
antiviral candidate. 

Conclusion
A series of CADD techniques were used to screen and 
identify potential antiviral inhibitors against dUTPase 
from a pool of 4,683 marine fungal metabolites. The 
compounds were initially assessed for safety and efficacy 
through ADMET profiling, resulting in 328 metabolites 
with acceptable drug-likeness properties. These 
metabolites were then subjected to consensus molecular 
docking to predict their binding conformations with 
the lowest potential energy against the ASFV dUTPase 
active site. Ligands were further tested for their binding 
affinity to ensure they did not interfere with the normal 
function of swine dUTPase. Subsequently, the stability 
of the ten best-scoring complexes was examined through 
300 ns molecular dynamics simulations. Among these, 
tricycloalternarene C (M1421) was the only metabolite 

that demonstrated a stable behavior with ASFV dUTPase, 
exhibiting RMSD trajectories similar to the three control 
compounds. Principal component analysis of the 300 ns 
MD run confirmed simulation convergence. The binding 
strength of tricycloalternarene C against the protein 
was also predicted using MMGBSA and MMPBSA 
methods and showed comparable binding energy with 
the control compounds. Van der Waals and electrostatic 
forces, along with hydrogen bonding, contributed to the 
stability and observed favorable binding affinity. Critical 
residues such as Asp 29, Arg 71, Ser 72, Gly 89, Ile 90, 
Tyr 94, and Gln 120 were also identified as significant for 
binding. Tricycloalternarene C has demonstrated activity 
in inhibiting the NF-κB protein, which is associated with 
autoimmune diseases and cancer. However, its antiviral 
properties against pathogenic viruses have not yet been 
explored. Further in vivo and in vitro studies are needed 
to confirm its potential as an antiviral inhibitor of ASFV 
dUTPase.
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