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Abstract
Introduction: African swine fever (ASF) 2,683 Marine Fungal Metabolites
continues to be a significant threat to the Consensus  principalComponent

Docking Analysis

global livestock industry due to its severe 2 B & &

impact on pig populations. Currently, there are s ooms S
no approved therapeutic agents for the virus, profiling MD Simulations MMGBSA

and biosecurity measures such as culling have
led to substantial economic losses. In light of
its effects on food security and the economy, /4%@
our study aims to identify potential antiviral Q /\\ (
compounds from marine fungal metabolites | =

that target the dUTPase enzyme of the African
swine fever virus (ASFV).

Methods: We screened 4,683 marine fungal metabolites using a series of virtual screening techniques.
These included ADMET profiling to assess drug-likeness, consensus molecular docking to predict
preferred docking poses and rank the docking scores, 300 ns molecular dynamics (MD) simulations
to determine stability, principal component analysis (PCA) to verify simulation convergence, and
MMPB(GB)SA analysis to estimate binding affinity.

Results: Of the 4,683 compounds, 328 passed our ADMET filter, and the 10 highest-scoring ligands
from molecular docking were evaluated for stability and binding affinity against both swine and ASFV
dUTPase. Among the candidates, tricycloalternarene C (M1421), derived from Alternaria sp., emerged as a
promising candidate. It exhibited excellent drug-likeness, stability, and binding affinity comparable to the
three control compounds, while showing less affinity towards the swine dUTPase.

Conclusion: Tricycloalternarene C holds potential as a selective inhibitor of ASFV dUTPase. We
recommend further experimental validation to confirm its efficacy as an antiviral agent against African

tricycloalternarene C
(Alternaria sp.)
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swine fever.

Introduction

African swine fever (ASF) poses a serious global concern
to the livestock industry owing to its devastating impact
on swine population. The disease is highly contagious,
and without effective treatment, it remains highly fatal
to pigs. It can lead to the disruption of the entire pork
supply chain, threatening food security, and resulting
in substantial economic losses.”? In 2018, China culled
over 1.2 million pigs due to a major ASF outbreak that
infected over 150 million pigs and led to economic losses
estimated between US$89.5 billion and US$196.2 billion.**
As the world's largest pork producer, this outbreak not

only harmed China’s economy but also had significant
repercussions on global pork markets.® As of May 2024,
there have been 19,172 reported ASF outbreaks across
four continents since January 2022.” Biosecurity measures
have been undertaken to prevent and mitigate the
ongoing transmission of the disease; however, the lack of
a commercially available cure or vaccine remains a major
obstacle to achieve complete disease eradication.>® Thus,
ASF continues to be a significant threat that demands
urgent attention.

ASFiscaused by African swine fever virus (ASFV), alarge
enveloped double-stranded DNA virus of the Asfarviridae
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family. The virus encodes 150-165 structural and non-
structural proteins, each playing varying roles in viral
entry, attachment, and replication.” Additionally, ASFV
has its own repair proteins to rectify any damage caused
by mutagenic reactions. Among these, the ASFV enzyme
deoxyuridine  5’-triphosphate  nucleotidohydrolase
(dUTPase) (Supplementary file 1, Fig. S1) plays an
important role in maintaining DNA integrity by
preventing the misincorporation of uracil into the ASFV
DNA.!"*!"" The enzyme dUTPase catalyzes the hydrolysis
of deoxyuridine triphosphate (dUTP) into deoxyuridine
monophosphate (dUMP) and pyrophosphate, thereby
reducing the cellular concentration of dUTP. If dUTPase
function is disrupted, there is a higher chance that uracil
will be mistakenly added to the viral DNA. The ASFV
repair proteins then excise the integrated uracil in the
DNA, creating an abasic site. Without the conversion of
dUTP to dUMP, the dUTP/deoxythymine triphosphate
(dTTP) ratio increases, hindering the proper and
complete repair of the abasic site with the correct thymine
base. The repeated cycle of excision and repair involving
newly incorporated uracil triggers numerous DNA strand
breaks, ultimately leading to thymine-free cell death.'*'?
Given its essential role in maintaining the fidelity of DNA
replication and genome integrity, dUTPase is considered
a promising target for ASFV antiviral therapies.’

Marine fungal metabolites are a rich source of bioactive
compounds known for their diverse biological activities.
Of over 4000 identified metabolites, 46% show anticancer
activity, 13% are antibacterial, and 14% possess antifungal,
antiviral, or pesticide resistance properties.”*'* Notable
examples include cephalosporins, the first marine fungal
antibiotic, isolated from Acremonium chrysogenum,
and gliotoxin, a new type of diketopiperazine antibiotic
discovered from Aspergillus sp. Plinabulin, also sourced
from Aspergillus sp., is currently in late-stage clinical
trials for anticancer therapies.'*'® Furthermore, certain
compounds derived from the strains of Aspergillus,
Penicillium,  Cladosporium, and  Fusarium, have
demonstrated potent antiviral properties against a range
of viruses, such as enterovirus, HSV, HIV, influenza,
PRRSV, MCV, and RSV." Despite this progress, many
marine fungal metabolites remain underexplored. Their
pharmacological diversity highlights their potential as
novel antiviral inhibitors targeting ASFV dUTPase.

Recent advancements in computational methods have
renewed research interest in exploring natural compounds
as potential sources for new antiviral drugs.'®* Through
computer-aided drug discovery (CADD) methods,
various pharmacological factors such as bioavailability,
toxicity, protein-ligand stability, and binding strength can
be accurately predicted, enabling researchers to filter out
less promising compounds that are likely to fail, early in
the process. Furthermore, faster computers and advanced
screening techniques have significantly enhanced the

efficiency of CADD, reducing the time, cost, and effort
associated with the traditional experimental methods.?"*

In this study, we used a range of computer-aided drug
screening tools to identify selective inhibitors of ASFV
dUTPase from a pool of 4,683 fungal metabolites. The
most promising inhibitors were selected based on their
predicted safety, efficacy, and strong structural stability
with ASFV dUTPase, while ensuring they exhibited
less favorable affinity for swine dUTPase. Additionally,
we used two different docking software programs and
applied consensus docking to validate our results.
Principal component analysis (PCA) was employed to
verify molecular dynamics simulation convergence. We
also analyzed the binding site residues with the most
significant energy contribution and compared them to
the known ASFV dUTPase active site residues.

Materials and Methods
Protein and ligand preparation
The 3D representations of the ASFV dUTPase (PDB ID:
6LJ3) and swine dUTPase (PDB ID: 6LJ])!! structures
were obtained from the Research Collaboratory for
Structural Bioinformatics Protein Data Bank (RCSB PDB)
(https://www.rcsb.org/). Before the molecular docking
experiments, the structures were adjusted using Modeller®
to incorporate any missing residues and refine the newly
generated loops. Subsequently, a 5000-step relaxation
utilizing the steepest descent algorithm was conducted to
eliminate any steric clashes and inappropriate geometries.
For the candidate compounds, the Comprehensive
Marine Natural Products Database (CMNPD)* provided
the structures of 4,683 marine fungal metabolites in
Structure Data Format (SDF). These structures were then
optimized using the OPLS 2005 force field in Schrodinger
Maestro to attain the configuration with the lowest
intramolecular potential energy.

ADMET profiling

The absorption, distribution, metabolism, excretion,
and toxicity (ADMET) properties of the marine fungal
metabolites were assessed using ADMETLab 2.0 (https://
admetmesh.scbdd.com/).* A total of 31 descriptors,
each with their own range of accepted values, were used
to evaluate the efficacy, safety, and drug-likeness of the
metabolites. These descriptors were selected based on their
relevance to pharmacokinetic and pharmacodynamic
properties in mammals, particularly pigs, to ensure the
potential applicability of the compounds as antiviral
agents in swine.”? These included four descriptors for
absorption, three for distribution, five for metabolism,
two for excretion, ten for toxicity, and seven drug-likeness
and bioavailability scoring tools, including Lipinski's
Rule of Five (Ro5) and Quantitative Estimate of Drug-
likeness (QED) (Table 1). According to Lipinski's Rule
of Five (Ro5), a compound is more likely to have good
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Table 1. List of ADMET parameters used in this study

Accept
Property Parameter vaI::s. el
uantitative estimate of drug-
Q € >0.67

likeness (QED)
Number of sp3 hybridized carbons  >0.42

Pan assay interference compounds

PAIN
Drug-likeness ( )
Lipinski’s rule of five Accepted
Pfizer rule Accepted
GSK rule Accepted
Golden triangle rule Accepted
Intestinal absorption 0-0.3
Oral bioavailability 0-0.3
Absorption
Caco-2 permeability >-5.15
MDCK permeability >2x10°cm/s
Plasma protein binding <90
Distribution Volume distribution 0.04-20
Fraction unbound in plasma 25%
Metabolism CYP 1.A2 /2C19/2C9/2D6/3A4 0-03
inhibitor
Clearance of drug >5
Excretion
Half-life 0-0.3
Hepatoxicity 0-0.3
Drug-induced liver injury 0-0.3
Ames toxicity 0-0.3
Maximum recommended daily dose 0-0.3
Carcinogenicity 0-03
Toxicity

Nongenotoxic carcinogenicity rule 0
Genotoxic carcinogenicity rule
Acute Toxicity rule
SureChEMBL rule

FAF-Drugs4 rule

permeation and absorption when administered orally if
it meets the following criteria: a molecular weight of less
than 500 g/mol, fewer than five hydrogen bond donors,
fewer than ten hydrogen bond acceptors, and an octanol-
water partition coefficient of less than five. QED provides
a more flexible classification than conventional ADMET
scoring tools based on the molecular properties of 771
existing oral drugs.® Compounds with a QED score
greater than 0.67 are considered to exhibit favorable
drug-likeness, whereas those with scores below 0.67 are
classified as non-drugs.”® In selecting compounds with
promising ADMET properties, two screening stages were
implemented. The first screening was based on the seven
drug-likeness and bioavailability tools, allowing only
those that passed all seven to proceed. In the second stage,
to avoid prematurely excluding potentially promising
compounds, ligands with minor ADMET violations were
allowed to proceed, while those with multiple violations

were excluded. Specifically, only metabolites that met
at least 20 out of the 24 ADMET criteria were selected
for further evaluation. This approach ensured a balance
between maintaining reasonable pharmacokinetic and
toxicity profiles and retaining chemical diversity for the
docking experiments.

Consensus docking

Two docking software, AutoDock 4.2*' and AutoDock
Vina 1.1, were used to predict the preferred binding
conformation and orientation of candidate ligands
against ASFV and swine dUTPase. Both programs were
developed by the Scripps Research Institute and utilized
similar empirical scoring functions but differed in their
conformational search algorithms. AutoDock 4.2 uses
a stochastic approach through the Lamarckian Genetic
Algorithm (LGA), while AutoDock Vina 1.1 employs a
gradient-based local search genetic algorithm, which is
generally faster and can provide more accurate predictions
than AutoDock 4.2,

For the docking parameters, the amino acid residues
were kept rigid, and only the rotatable bonds of the
ligands were allowed to change their conformation. Both
software packages used a 15 Ax15 Ax15 A cubic grid
box to define the boundary of the docking experiment.
In AutoDock 4.2, the grid point spacing was set to 0.375
A, with 40 grid points used to create a 15 A box length.
Employing smaller grid point spacing enhances both the
efficiency and accuracy of docking.* In AutoDock Vina,
the default grid spacing is always set to 1 A; therefore, 15
grid points were used to achieve similar box dimensions.
The binding site coordinates in Table S2 were determined
based on the locations of the active site residues. The grid
box was centered on these residues to localize the docking
process.

The protein was prepared in AutoDock Tools** by
adding polar hydrogens and converting it to the PDBQT
format. The candidate compounds were also saved in the
PDBQT format using the Python scripts prepare_gp4.py
and prepare_dp4.py The grid parameter files (GPF) and
docking parameter files (DPF) were then used as input
files for AutoDock 4.2, where docking experiments were
conducted using the Lamarckian genetic algorithm with
1,000 iterations. For AutoDock Vina, the exhaustiveness
was set to 20, the energy range to 1, and the number of
binding modes to 1000, with other parameters maintained
at their default values.

Since two docking software programs were used,
consensus docking approach was implemented to
consolidate the results. Studies have shown that
validation using consensus docking improved hit rates
and increased the likelihood of identifying the correct
binding pose of the ligand.*” The top binding pose of the
ligand with the most negative docking score in AutoDock
4.2 was compared to its corresponding docking pose from
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AutoDock Vina 1.1. If the root mean square deviation
(RMSD) between the two poses was less than 2 A, the
ligand was accepted for further analysis. However, if the
RMSD was greater than 2 A, the ligand was excluded
from the list of potential candidate inhibitors. The final
docking score of each ligand was calculated as the average
score from AutoDock 4.2 and AutoDock Vina 1.1. Only
the ligands with more negative docking scores than all
three control compounds were selected for molecular
dynamics (MD) simulations. The three controls include
deoxyuridine phosphate (dUTP), the main substrate of
dUTPase, deoxyuridine monophosphate (dUMP), the
product of dUTP hydrolysis, and 2’-deoxyuridine 5'-(a,B-
imido)triphosphate (DUPNPP), a potent inhibitor of
dUTPase.”® A decoy ligand was also generated using
LIDEB's Useful Decoys (LUDe) server® to assess the
docking protocol’s ability to identify true binders. The
server filters compounds from the CHEMBL database,
selecting those with similar physicochemical properties to
a known active compound but with distinct topological
features.

MD simulation

To assess stability and study the dynamics between
the protein and docked ligands, all-atom 300 ns
MD simulations were conducted using GROMACS
(Groningen Machine for Chemical Simulations) 2023.3.
The force fields for the protein-ligand complex were
assigned separately. The GROMACS built-in Chemistry
at Harvard Macromolecular Mechanics (CHARMM)
36 force field was used to parameterize the atoms and
define the potential energy of the proteins, while force
field parameters for the candidate ligands were assigned
using the CHARMM General Force Field (CGenFF)
server (cgenft.silcsbio.com).***® The PDB files of both the
protein and ligands were converted and combined into a
single GROMACS-compatible GRO file to generate the
molecular structure of the entire protein-ligand system.
The system was then enclosed in a cubic box with at
a distance of 10 A from the protein edge to prevent
interactions with periodic images from adjacent unit
cells. The box was subsequently filled with TIP3P water
molecules and neutralized with sodium and chlorine ions.
The TIP3P model was specifically used because CHARMM
is parameterized in conjunction with this water model.
TIP3P is essential when employing the CHARMM 36 force
field to ensure an accurate representation of solvent-solute
interactions.*"** Additional ions were added to achieve a
salt concentration of 0.15 M. The complete system, now
containing solvent and ions, underwent 50,000 relaxation
steps using steepest descent minimization to resolve any
steric clashes present. The water molecules and ions were
then equilibrated around the protein-ligand complex
using isochoric-isothermal (NVT) and isothermal-
isobaric (NPT) canonical ensembles to reach the desired

temperature and pressure of 312 K and 1 bar, respectively.
NVT equilibration was regulated using the modified
Berendsen thermostat, while NPT equilibration was
controlled using a Berendsen barostat. Finally, a 300 ns
MD simulation under NPT ensemble was conducted with
150,000,000 integration steps, saving snapshots every 100
ps, resulting in 3,000 trajectory frames.

The MD trajectories were analyzed using GROMACS
tools to evaluate the stability and dynamics of the
protein-ligand complexes. RMSD (gmx rms) was used to
assess structural stability, RMSF (gmx rmsf) to examine
residue flexibility, and gmx distance to calculate average
distances between the ligand and the binding pocket.
Hydrogen bonds formed during the simulation were
identified using gmx hbond. PCA was also performed to
verify convergence and identify the dominant motions of
the protein-ligand complexes. The GROMACS tool gmx
covar was used to calculate the covariance matrix, which
describes how atomic positions vary together over time.
This matrix was then diagonalized to obtain eigenvectors
and eigenvalues, where the -eigenvectors represent
directions of motion and the eigenvalues indicate the
magnitude of movement along each direction. The
eigenvector and eigenvalue files were subsequently used
as input for gmx anaeig to project the simulation data
onto the top principal components, which capture the
most significant motions in the system. A 2D projection
plot between the first and second principal components
(PC1 and PC2) was then generated to provide insight
into large-scale motions and conformational changes that
occurred during the simulation.

Molecular mechanics Poisson Boltzmann (generalized
born) surface area estimation

The complexes with stable behaviors were further
analyzed for their binding affinity using the molecular
mechanics Poisson-Boltzmann surface area (MMPBSA)
and molecular mechanics generalized born surface
area (MMGBSA) approaches. Both methods combine
molecular mechanics and continuum solvation
models through equation 1, and differ only in the
calculation of the polar solvation energy: the Poisson-
Boltzmann equation for MMPBSA and the generalized
Born approximation for MMGBSA. The molecular
mechanics energies were derived from the sum of the
van der Waals and electrostatic forces, obtained using
the Lennard-Jones and Coulomb potential functions,
respectively. The nonpolar solvation energy is assumed
to be linearly proportional to the solvent accessible
surface area (SASA).*** The entropic contribution was
estimated using the interaction entropy method, which
approximates entropy based on the fluctuations in the
interaction energy between the ligand and the receptor.
This method offers a less computationally expensive
alternative to traditional entropy estimation techniques
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such as normal mode analysis.*

AG,,,=AE , +AE, +AG, . +AG

elec polar

nonpolar TAS (1)
Binding free energy calculations were conducted using
the GROMACS-compatible package gmx_MMPBSA*
under the same set of conditions as the molecular
dynamics simulation. To ensure that the analysis reflected
the stabilized phase of the system, frames were extracted
from the last 100 ns of the 300 ns trajectory. Sampling was
performed every 10 frames, resulting in 100 representative
snapshots for MMPBSA and MMGBSA computations.

Results and Discussion

ADMET profiling

The initial screening process utilized seven drug-
likeness scoring tools, narrowing the pool of candidate
compounds from 4,683 to 507 that met the specified
criteria. These tools evaluated the similarity of the marine
fungal metabolites to existing drugs, which reflects their
potential success rate in clinical trials. All 507 compounds
passed Lipinski’s Rule of Five (Ro5), indicating good
absorption and permeability when administered orally,
and their favorable QED scores further suggested
potential drug efficacy. In the second screening phase, the
remaining metabolites were evaluated against 24 ADMET
parameters to refine the selection, with only those passing
at least 20 of these tests being considered. Fig. S2 of the
Supplementary file 1 summarizes the results of the entire
ADMET screening process.

Of the 507 metabolites that passed the initial screening,
328 showed favorable results for at least 20 ADMET
properties, suggesting good safety and efficacy. These
compounds were selected as the final candidates for the
molecular docking experiments. Notably, 27 metabolites
passed all 24 ADMET tests. Coupled with excellent drug-

likeness scores, the 328 compounds demonstrate a higher
likelihood of success in downstream drug development
stages. Although some compoundsdid notmeet the required
criteria for certain ADMET parameters, their excellent
overall ADMET profile justifies further investigation.
Additionally, since this is only a preliminary screening,
their structures can be modified or used as templates to
create semi-synthetic compounds with improved ADMET
properties. The complete ADMET screening is presented
in Table S1 (see Supplementary file 2).

Consensus docking

Following ADMET profiling, the 328 metabolites were
docked against the known active region of ASFV dUTPase
to predict their preferred binding conformations and
associated docking scores. To ensure selectivity and
minimize off-target effects, these metabolites were also
docked against swine dUTPase.

Due to differences in the scoring algorithms
used, AutoDock 4.2 and AutoDock Vina generated
different docking scores and overall rankings (Table
S3 of Supplementary file 1). AutoDock 4.2 can better
discriminate the poses compared to Vina, which yielded
similar docking scores. Nevertheless, a consistent pattern
was observed when considering the ranking of all 328
metabolites. The top-ranked metabolites from AutoDock
4.2 also appeared among the highest scoring metabolites
identified by AutoDock Vina.

Using the LUDe server, the compound CHEMBL55407
(Fig. S3) was identified as a decoy ligand to validate the
performance of the two docking programs. As shown in
Table 2, all three control compounds exhibited stronger
binding affinities toward both ASFV and swine dUTPase,
whereas the decoy ligand showed noticeably weaker
binding. This supports the ability of the docking protocol
to reliably distinguish true binders from weak or non-

Table 2. Docking scores (kcal/mol) of the top nine highest-scoring ligands against ASFV dUTPase and swine dUTPase

Ligand Compoundname ASFV dUTPase Swine dUTPase

Vina AD4 RMSD Average Vina AD4 RMSD Average
(+)dump Deoxyuridine monophosphate -7.5 -7.68 0.732 -7.59 -9.1 -10.66 1.590 -9.88
(+)duTpP Deoxyuridine triphosphate -7.4 -7.54 1.310 -7.47 -10.2 -13.60 1.468 -11.90
(+)dUPNPP  a,B-imido-dUTP -7.3 -7.34 1.604 -7.32 -9.5 -13.32 1.386 -11.41
(-)Decoy CHEMBL554071 -5.9 -6.94 1.981 -6.77 -6.6 -9.04 1.179 -7.82
M3120 Tricycloalternarene K -7.6 -8.78 1.489 -8.19 -4.0 -11.12 1.870 -7.56
M1421 Tricycloalternarene C -6.9 -9.19 1.972 -8.05 -3.3 -9.86 0.881 -6.58
MA4555 Corynechromone H -7.3 -8.31 0.892 -7.81 -6.1 -9.45 0.926 -7.78
M1231 Nigrospin C -6.9 -8.70 1.235 -7.80 -6.4 -11.16 1.768 -8.78
MO0549 Aurantiomide B -7.6 -8.00 1.268 -7.80 -4.0 -7.77 0.703 -5.89
M0288 Fusaquinon A -7.7 -7.84 1.241 -7.77 -6.6 -10.07 1.190 -8.34
M1628 5'-Hydroxyasperentin -7.7 -7.72 1.159 -7.71 -6.7 -10.83 1.662 -8.77
M2440 Tricycloalternarene L -6.9 -8.42 1.730 -7.66 -5.9 -10.10 1.893 -8.00
M2989 Thomimarine A -7.4 -7.88 1.694 -7.64 -4.2 -9.33 1.624 -6.77
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binders. Out of the 328 metabolites subjected to molecular
docking, only nine compounds exhibited better or more
negative scores (-7.64 kcal/mol to -8.19 kcal/mol) than all
three control compounds (-7.32 kcal/mol to -7.59 kcal/
mol). Among these, tricycloalternarene K obtained the
best docking score, followed by tricycloalternarene C and
corynechromone H. Interestingly, the highest-scoring
ligands included three isomers: tricycloalternarene K,
tricycloalternarene C, and tricycloalternarene L, all of
which fall under the chemical class, sesquiterpenoid. In
addition to the three isomers, thomimarine A, which
ranked ninth, was also classified the same chemical
classification. The final candidate nine ligands also
registered less negative docking scores (-6.58 kcal/mol
to -8.78 kcal/mol) against the swine dUTPase compared
to all the three controls (-9.88 kcal/mol to -11.90 kcal/
mol). These compounds demonstrated favorable affinity
against the ASFV dUTPase while presenting weaker
binding associations with swine dUTPase. This suggests
that they are likely to have minimal interference with the
swine dUTPase, ensuring that their normal physiological
functions remain unaffected and thereby reducing
potential side effects. Fig. 1 illustrates the binding poses of
the ligands against the active site of ASFV dUTPase, while
Fig. 2 shows the interaction diagrams of the nine ligands
and the three controls with the protein.

The final nine candidate ligands adopted highly similar
binding poses against the two adjacent protomers within
the binding pocket of the ASFV dUTPase enzyme (Fig.
1). A significant portion of the ligands was embedded
in subunit 2, with some moieties extending into the first
subunit. As shown in Fig. 2, mostamino acids surrounding
the ligands were hydrophobic with a few polar residues.
Additionally, charged residues such as Glu 97, Asp 91,
Arg 71, and Lys 101 were also observed. The majority
of the hydrogen bonds are formed with polar residues,
including Asn 86 and Asn 72. For some ligands including
M4555 and M0549, hydrogen bonds were paired with the
charged residues Arg 71 and Lys 101.

Seven residues interacted with all nine ligands and the

. subunit 1
. subunit 2
[ subunit3

three control compounds: Asn 85, Gly 88, Leu 89, Ile 90,
Tyr 94, and Met 99 from subunit 2, and Ser 72 from subunit
1 (Fig. 2). Among these, Tyr 94 plays a crucial role in the
catalytic process. Mutation of this residue, along with Asp
91, Arg 71, and Arg 149, led to a reduced or complete
loss of enzymatic activity. Additionally, mutation of Leu
89 resulted in a 4 to 7-fold increase in the Michaelis-
Menten constant (Km), indicating decreased substrate
binding efficiency. A similar case was also observed with
the mutation of residue Ile 90, highlighting its critical
role in the catalytic process."! Given the well-established
catalytic importance of these residues, ligand interactions
at these sites are likely to interfere with substrate binding
or turnover. This could potentially impair enzymatic
activity and may contribute to potential antiviral effects.
Apart from the protein residues, the magnesium ion is
also an integral component of the catalytic mechanism, as
it coordinates and stabilizes intermediates formed during
substrate binding and hydrolysis." From Fig. 2, five
candidate ligands—M1421, M1628, M2440, M3120, and
M4555—maintained close contact with the magnesium
ion after docking. Establishing a stable connection with
the ion can also potentially enhance the efficacy of the
inhibitor.

MD simulation

After obtaining the structure of the protein with the
bound ligands, the nine final complexes and three control
complexes were subjected MD simulations to determine
their stability and assess their dynamic interactions, using
RMSD, RMSF, and mean distance analysis.

Before production runs, the systems underwent energy
minimization and equilibration to correct geometries,
equilibrate solvent and ions, and reach target temperature
and pressure. As shown in Fig. S4, potential energy
decreased steadily during equilibration, stabilizing
around -850,000 kJ/mol and remaining consistent during
production, indicating well-relaxed systems.* All systems
reached the target temperature of 312 K with a minimal
SEM of ~0.250. Pressure stabilized between 1.356 and

Fig. 1. Binding poses of the nine highest-scoring ligands against the dual-subunit active site of the ASFV dUTPase.
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Fig. 2. Ligand interaction diagram of the top nine ligands and the three control compounds against the binding pocket of ASFV dUTPase. Residues shown
are within 4 A from the ligand.

1.976 bar (SEM: 2.6), with expected fluctuations typical Fig. 3A illustrates the RMSD trajectories over the
of MD simulations, while average pressure stayed near 1 300 ns simulation period. Eight of the nine top-scoring
bar. Density profiles also stabilized around 1035 kg/m?, ligands exhibited unstable behavior, as indicated by rising
confirming system equilibration.**” and erratic RMSD fluctuations. In contrast, only M1421
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Fig. 3. Stability analysis of the protein—ligand complexes using RMSD and distance-based metrics. (A) Complex RMSD of all nine ligands and the three
control compounds against dUTPase. (B) Complex RMSD of the stable complexes. (C) Time-resolved distance between the center of mass of each ligand
and the center of mass of the binding pocket. (D) Time-resolved distance between the center of mass of the stable ligands and the center of mass of the
binding pocket. (E) RMSF of subunit 1 for all simulated complexes, including nine candidate ligands and three control compounds. (F) RMSF of subunit 1
for the stable complexes only. (G) RMSF of subunit 2 for the same set of complexes. (H) RMSF of subunit 2 for the stable complexes. Red blocks below the

x-axis indicate the positions of the active site residues.

displayed a stable trajectory throughout the simulation.
Ligands M0288, M1231, M1628, M2440, and M3120
initially displayed stable behaviors at the start of the
simulation. However, before reaching 100 ns, a sharp
increase in the RMSD was observed, indicating that the
ligands had detached from the binding pocket. Moreover,
ligands M0549, M2989, and M4555 also presented
plateaued trajectories within the first 100 ns but eventually
became unstable towards 150 ns.

Most of the eight unstable ligands had over five oxygen-
and nitrogen-containing groups, which extensively
interacted with water during MD simulations. To maintain
stable binding within the active site, an optimal number
of internal interactions are required to anchor these
groups in place. As shown in Fig. 2, aside from ion-dipole
and dipole-dipole interactions, only hydrogen bonds
contributed significantly to the binding stability. Ligands
with multiple polar groups, including M0549, M0288, and
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M1628, depended on forming several hydrogen bonds,
similar to the control compounds, to remain stably bound
in the binding pocket. However, in these cases, the number
of hydrogen bonds formed may have been insufficient
to fully stabilize the ligands against the protein, leading
to their observed instability. M2989 possessed only
three polar functional groups with one hydrogen bond;
however, two of these were oriented toward a glycine
residue, which has a side chain with zero net charge. As a
result, its interaction with M2989 was relatively weak due
to the lack of strong electrostatic attraction. The binding
poses of the eight unstable ligands may have also been
suboptimal due to the spatial positioning of their oxygen
and nitrogen atoms, with polar groups near nonpolar
residues and vice versa, leading to weak interactions. In
contrast, the polar groups of M1421 are clustered at one
end, forming favorable interactions with the oppositely
charged polar residues like Gln 120 and Glu 97, while its
nonpolar tail aligned with the hydrophobic pocket which
enhanced its binding stability.

Among the nine final candidate ligands, only M1421
exhibited a stable behavior comparable to that of the
three reference compounds (Fig. 3B). During the first few
nanoseconds, the increasing RMSD plot indicated that the
system was undergoing initial conformational adjustments
to adapt to the simulated physiological conditions,
including the presence of water molecules and ions that
were absent in the original docked structure. This phase
involved ligand repositioning and movement of flexible
loops and side chains toward a more stable, energetically
favorable state. Once the system stabilized and the ligand
settled into its final pose, the RMSD plateaued around
2 A, similar to the control compounds. Distance plots
(Fig. 3C and 3D) further support these observations.
The eight unstable ligands exhibited erratic and highly

== 60 Nns == 120 ns

fluctuating distance profiles, with some drifting as far as
70 A from the binding site. In contrast, M1421 maintained
a relatively stable distance throughout the simulation,
closely matching the profiles of the control compounds,
reinforcing its stable binding within the pocket.

These observations suggest that M1421 successfully
adopted a low-energy conformation and remained
stably bound within the active site over the entire 300 ns
simulation, highlighting its structural stability.

The ligand binding poses at different time points, as
shown in Fig. 4, further confirmed its stability, with the
initial conformation largely preserved throughout the
simulation. The ligand consistently adopted similar
orientations across various time frames and maintained
close contact with key active site residues, indicating
strong and persistent interactions. This conformational
consistency underscores the robustness of the ligand's
binding within the pocket. Moreover, the molecular
dynamics simulation video (Supplementary file 3, Video
S1) visually demonstrated that the ligand remained
confined within the binding site for the duration of the
simulation. While minor conformational adjustments
were observed, likely due to interactions with surrounding
amino acid residues and solvent molecules, no significant
translational displacement of the ligand occurred.

The RMSF plots in Fig. 3E to 3F illustrate the rotational
movements of the ASFV dUTPase residues. The known
critical residues, highlighted by the red bars on the axis,
consistently exhibited minimal movements, suggesting
that the binding pocket remained unchanged and that the
stable ligands maintained a strong connection with the
active site residues. Additionally, ligands that exhibited
instability, such as M0288, M0549, M2440, and M2989,
showed higher RMSF values, particularly in subunit 2 of
the protein, where most of theligand interactions occurred.

|

180 ns == 240 ns == 300 ns

Fig. 4. Binding poses of (A) M1421, (B) dUMP, (C) dUPNPP, and (D) dUTP at different trajectory frames, captured every 60 ns. Magnesium ions, represented

by a small sphere, are also shown.
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Since the unstable ligands dissociated from the binding
pocket, the active site residues gained more freedom to
interact with other residues and water molecules, leading
to increased residue movements and higher RMSF values.
High RMSF values were also observed in residues at the
ends of the protein sequence, particularly in the second
subunit. These regions, located external to the protein
trimer, exhibited increased flexibility due to direct
interactions with water molecules. Additionally, subunit 2
has a longer end chain that moves freely with the solvent,
leading to elevated RMSF values at residues 140 to 160.
Since these residues are distant from the active site and do
not directly interact with the ligand, they do not influence
the binding of the compounds.

To confirm the convergence of the simulations and
further validate the stability of the complexes, PCA was
performed. PCA provides a qualitative and descriptive

overview of the dominant conformational motions
sampled by the protein-ligand complexes during the MD
simulations. While RMSD and distance-based metrics
capture structural deviations and stability over time, PCA
complements these by visualizing large-scale, collective
motions. This allows for assessment of whether the system
remains confined to a stable conformational space or
continues to explore alternative structural states. Tightly
clustered data points in the PCA plot, representing a
smaller conformational space, suggest limited atomic
motion and minimal structural fluctuations. Accordingly,
the more stable complexes occupy compact regions in the
principal component space, supporting the convergence
of the simulations. In contrast, more scattered data
points reflect increased atomic mobility and may indicate
significant shifts in ligand binding positions.

The scree plot in Fig. 5A highlights the top two
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Fig. 5. Principal component analysis of M1421 and three control compounds complexed with swine dUTPase. (A) Scree plot of the first 20 eigenvectors
against the explained variance. Also shown are projections of ligand motions along PC1 and PC2: (B) M1421, (C) dUMP, (D) dUPNPP, and (E) dUTP, and

the corresponding trace of the covariance matrix.
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principal components (PC1 and PC2) as the dominant
contributors to the total atomic motion in the simulated
systems. For the complexes of compounds M1421,
dUMP, and dUPNPP, PC1 and PC2 together accounted
for 71.03% to 80.85% of the total variance, indicating that
the majority of the conformational fluctuations can be
described along just two principal axes. In contrast, for
the control compound dUTP, PC1 and PC2 accounted for
only 48.88% of the total variance. While this is lower than
the values observed for the other complexes, it remains
sufficient for qualitative analysis. The reduced variance in
the first two components suggests that the dUTP complex
undergoes more distributed or multidimensional
motions, potentially involving higher-order principal
components. Importantly, a lower percentage of variance
captured by PC1 and PC2 does not necessarily indicate
poor stability convergence. This is further supported by
the stability metrics, including RMSD and mean distance
analyses, which confirm the overall structural stability of
the dUTP complex.

The PCA plot for M1421 revealed tight clusters over
different time durations (Fig. 5B). During the first 60 ns,
the data points occupied a relatively larger area as the
complex equilibrated to a lower energy state. This binding
pose was maintained until 120 ns, at which point the ligand
transitioned to a different conformation and held this new
pose until approximately 240 ns (Fig. 4A). Toward the end
of the simulation, the cluster of blue points moved closer
to the red and orange clusters, indicating that the ligand's
pose had shifted back to its original conformation. From
the visual representation in Fig. 4A, the ligand's pose at
60, 120, and 300 ns were highly superimposed, consistent
with the PCA plot and confirming the stability of the
ligand over time. Furthermore, the tight blue cluster near
the end of the 300 ns run signified convergence of the
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100
80
60
40
20
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simulation. These results are also consistent with RMSD
and mean distance analyses, collectively reinforcing the
observed stability of the protein-ligand interactions

In contrast, the control compounds, dUMP and
dUTP, formed tighter clusters throughout the simulation
and displayed uniform binding poses (Fig. 5C to 5E),
reflecting a higher degree of stability compared to
dUPNPP and M1421. Additionally, the trace values of
the control compounds dUMP and dUTP, were lower
than those of dUPNPP and M1421. The trace of the
covariance matrix corresponds to the total variance
present in the dataset.*® It provides a quantitative measure
of the total atomic motion throughout the simulation.
Lower trace values are typically associated with stable and
well-converged complexes. Although dUTP exhibited
a lower percentage of variance in its first two principal
components, it recorded the smallest trace value among
all the complexes. This low trace (0.398) indicates reduced
overall atomic motion, suggesting that the dUTP-bound
complex remained structurally stable throughout the
entire 300 ns. In contrast, the control compound dUPNPP,
which has a larger structure and more functional groups,
engaged in more extensive interactions with surrounding
residues and water molecules. These interactions likely
contributed to increased atomic fluctuations, resulting in
the highest trace value observed (5.4129), and reflecting
greater overall motion compared to the other ligands. As
shown in Fig. 5D, the blue clusters of dUPNPP shifted
away from the other clusters as the ligand settled into
its final binding conformation. This shift was consistent
with Fig. 4C, where the binding pose at 300 ns differed
from the initial configurations. Despite this minimal shift,
dUPNPP remained stable within the binding pocket.

M1421 consistently formed an average of two to three
hydrogen bonds throughout the simulation (Fig. 6).

Fig. 6. Number of hydrogen bonds between the ASFV dUTPase (Subunit 1 and 2) and M1421. Also shown are the number of hydrogen bonds of three

control compounds.
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Notably, subunit 2 exhibited more hydrogen bonding
interactions compared to subunit 1, suggesting that
its residues provide a more favorable environment for
ligand stabilization. This is consistent with the structural
composition of the binding pocket, which is primarily
formed by residues from subunit 2. Among the three
controls, dUTP formed the most hydrogen bonds due
to its structure having more polar functional groups.
The control dUPNPP also formed a substantial number
of hydrogen bonds toward the end of the simulation.
Despite having fewer moieties capable of hydrogen
bonding compared to the controls, M1421 generated
nearly the same number of hydrogen bonds as dUMP. The
consistent hydrogen bonding of M1421 likely contributed
to its observed stability, underscoring its potential as an
antiviral drug.

Molecular mechanics Poisson Boltzmann (generalized
born) surface area estimation

The binding energies of M1421 and the three control
compounds were predicted to estimate their relative
binding strengths. Although the MMGBSA and
MMPBSA methods yielded different magnitudes for the
polar and non-polar solvation energies, they showed
similar rankings across all energy terms (Table S4).
M1421 exhibited stronger binding energies (MMGBSA:
-28.05 kcal/mol, MMPBSA: -23.70 kcal/mol) than the two
control compounds, dUMP (MMGBSA: -13.61 kcal/mol,
MMPBSA: -12.21 kcal/mol) and dUPNPP (MMGBSA:
-5.98 kcal/mol, MMPBSA: -4.4 kcal/mol), but had weaker
binding affinity compared to dUTP (MMGBSA: -32.19
kcal/mol, MMPBSA: -32.19 kcal/mol) (Fig. 7A and 7B).
M1421, dUMP, and dUTP all exhibited stronger binding
affinities toward subunit 2, whereas dUPNPP showed
a clear preference for subunit 1 and even displayed
repulsive behavior toward subunit 2 (Fig. 7C-7F). This
is further supported by the hydrogen bond analysis in
Fig. 6, which shows that dUPNPP formed an increasing
number of hydrogen bonds with subunit 1 over time,
while interactions with subunit 2 remained minimal. In
contrast, M1421, dUMP, and dUTP consistently favored
hydrogen bond formation with subunit 2 throughout the
simulation.

Statistically, the enthalpic binding energy (excluding
entropy) of compound M1421 is significantly more
favorable than that of the control compound dUMP, as
indicated by the very low P value (<0.0001) and a large
effect size (R*=0.4303) (Table 3). In contrast, M1421
shows weaker binding than both dUPNPP (P<0.0001,
R*=0.1132) and dUTP (P<0.0001, R*=0.7859). The
relatively low effect size in the MI1421 vs dUPNPP
comparison suggests that, although the difference is
statistically significant, the actual magnitude is small.
Specifically, only about 11% of the variance in binding
energy can be attributed to differences between the two

ligands. This is supported by the significant F-test result
(P<0.0001), indicating the inconsistent binding behavior
of dUPNPP across simulation frames. Interestingly,
this variability also corresponds to its stronger binding
affinity toward subunit 1 (Fig. 7C and 7D), signifying
that dUPNPP exhibits a distinct binding preference
for subunit 1 compared to the other ligands, which
show stronger binding affinity toward subunit 2 (Fig.
7E and 7F). In the MMGBSA results, M1421 binds
significantly more strongly than dUMP (p<0.0001,
R*=0.6658), while dUTP again exhibits more favorable
binding than M1421 (P<0.0001, R*=0.4295). When
comparing M1421 to dUPNPP, it reveals a negligible and
statistically insignificant mean difference (-0.0502 kcal/
mol, P=0.9317), with a small effect size (R*=3.68x107°),
suggesting nearly identical enthalpic binding energies
under this method.

In both binding energy estimation approaches, the
inclusion of entropic contributions reveals that M1421
exhibits significantly stronger total binding free energy
than both dUPNPP. The reduced affinity of dUPNPP
is attributed to its larger molecular size and greater
flexibility, which result in a higher entropic penalty. This
highlights the importance of including entropy in binding
free energy calculations, especially for larger ligands with
a higher number of rotatable bonds, whose entropic costs
can substantially diminish their overall binding affinity.

For all systems, van der Waals interactions provided the
strongest energy contributions, effectively counteracting
the positive polar solvation and entropic energies.
The control compounds dUTP and dUPNPP, which
have the most polar groups, exhibited the strongest
electrostatic energies but also the most positive polar
solvation energies. Again, the larger molecular size and
greater conformational flexibility of dUPNPP resulted
in a significantly higher entropic cost, ultimately leading
to the weakest overall binding affinity among all tested
complexes. Although M1421 showed weaker affinity than
dUTP, one of the main substrates of ASFV dUTPase,
its negative binding energy still indicates spontaneity.
Moreover, since it had a stronger affinity than the other
two controls, the core structure of M1421 could be
modified or used as a scaffold for creating new compounds
with enhanced binding strength and increased potency as
an antiviral drug.

Since all ligands interacted more with subunit 2,
the residues in this subunit provided more attractive
interactions compared to those in subunit 1. As shown in
Fig. 8A and 8B, the residues that consistently contributed
the most to binding in both the MMGBSA and MMPBSA
methods were Asp 29, Leu 30, Gly 31, Arg 71, Ser 72,
and Gln 120 from subunit 1, and Ile 48, Ile 68, Gly 88,
Leu 89, Ile 90, Asp 91, Tyr 94, Leu 98, Met 99, Leu 100,
and Lys 101 from subunit 2. Among these, Asp 29, Arg
71, Ser 72, Gly 89, Ile 90, Tyr 94, and Gln 120 have been
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Table 3. Pairwise statistical comparison of the MMPBSA and MMGBSA binding energies between the candidate compound 1421 and the control compounds

dUMP, dUPN, and dUTP, based on 100 data points per group

Comparison Mean Difference 95% CI of Difference Pt-;/t:Is:e Effect Size (R?) P'::;'r:e
MMPBSA

1421 vs dUMP 5.462 +0.4443 4.585 10 6.338 <0.0001 0.4303 0.8205
1421 vs dUPNPP -2.816 £0.5574 -3.915to0 -1.717 <0.0001 0.1132 <0.0001
1421 vs dUTP -12.21 £ 0.4508 13.10to -11.32 <0.0001 0.7859 0.6130
MMGBSA

1421 vs dUMP 8.413 £0.4215 7.582 t09.244 <0.0001 0.6658 0.1185
1421 vs dUPNPP -0.0502 +0.585 -1.204 to 1.103 0.9317 3.682e-005 <0.0001
1421 vs dUTP -5.096 +0.415 -5.915 to -4.277 <0.0001 0.4295 0.1924

Note: The values presented are binding energy estimates derived from molecular mechanics and polar solvation energies, excluding entropic contributions’.
*The gmx_MMPBSA package does not provide entropic values per frame, but only a single final entropic estimate per system.
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Fig. 8. Binding energy contribution of the residues from subunit 1 and 2 of ASFV dUTPase, calculated using (A) MMGBSA and (B) MMPBSA. Blue bars

represent attractive forces, while red bars represent repulsive forces.

identified through kinetic studies as crucial for binding.
Mutations or deletions of any of these residues led to
decreased binding efficiency, weakening or disrupting
the interaction of dUTPase with its natural substrate
and severely impacting enzymatic activity."" The strong
binding of M1421 to these key residues underscores its
potential as an antiviral compound for inhibiting ASFV
dUTPase and highlights the importance of these residues
as specific targets in designing more effective inhibitor
compounds. Similar observations for the three control
compounds further validated the results of our binding
energy experiments.

Bioactivity of tricycloalternarene C (M1421)

M1421, identified as tricycloalternarene C, is a
sesquiterpenoid fungal metabolite derived from the
sponge-associated fungus Alternaria sp.* It is known
for its inhibitory activity against the NF-«kB protein
complex, which is linked to autoimmune diseases,
inflammatory conditions, and cancer.**® However, to
the best of our knowledge, its antiviral activity against
any pathogenic swine viruses has not been explored.
Going back to the ADMET profiling, tricycloalternarene
C performed favorably in 23 of the 24 ADMET tests. It
scored 92.3% in the Protein Plasma Binding (PPB) test
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under Distribution, which exceeds the recommended
threshold of less than 90%. Despite this, the compound
met the criteria for other Distribution descriptors, such
as Volume Distribution (VD) and Fraction Unbound
in Plasma (Fu). Additionally, the fungus Alternaria sp.,
from which it was derived, is known for its wide range
of bioactivities, including antitumor, antibacterial, and
antitoxic effects. Apart from its observed antiviral activity
against SARS-CoV-2 with Alternaria sp. HJT-Y7, no
other antiviral activities against other viruses have been
reported.”"*

While there are currently no approved antiviral drugs
specifically targeting ASFV, several naturally occurring
small molecules have shown promising inhibitory effects
against key viral proteins. Flavonoids like kaempferol,
apigenin, and dihydromyricetin have demonstrated
antiviral activity,”*® but most findings are limited to
in vitro studies, and their specific viral targets remain
unconfirmed. Despite favorable ADMET profiles, their
potential interaction with native swine proteins raises
safety concerns. In contrast, tricycloalternarene C
specifically targets the ASFV A179L protein, showing
strong binding and stability, suggesting better selectivity
and safety.

Other strategies include nucleoside analogues (NAs)
and siRNAs.>>7 NAs, such as genistein and HPMPC,
inhibit viral replication but suffer from poor solubility,
bioavailability, and dose-limiting toxicity.”® Their
activation also depends on phosphorylation, a rate-
limiting step that can significantly reduce their overall
antiviral efficacy.” Similarly, siRNAs can suppress viral
replication but face challenges like off-target effects, poor
stability, and limited delivery efficiency.””**¢! In contrast,
small-molecule inhibitors are generally more stable
and can directly bind to viral target proteins with high
specificity.®*®* These properties make tricycloalternarene
C a more practical and potentially promising ASFV
antiviral candidate.

Conclusion

A series of CADD techniques were used to screen and
identify potential antiviral inhibitors against dUTPase
from a pool of 4,683 marine fungal metabolites. The
compounds were initially assessed for safety and efficacy
through ADMET profiling, resulting in 328 metabolites
with  acceptable drug-likeness properties. These
metabolites were then subjected to consensus molecular
docking to predict their binding conformations with
the lowest potential energy against the ASFV dUTPase
active site. Ligands were further tested for their binding
affinity to ensure they did not interfere with the normal
function of swine dUTPase. Subsequently, the stability
of the ten best-scoring complexes was examined through
300 ns molecular dynamics simulations. Among these,
tricycloalternarene C (M1421) was the only metabolite

Research Highlights

What is the current knowledge?

o ASFV continues to be a persistent threat to the livestock
industry

o There are no commercially available antiviral drugs for
ASFV

e Marine fungal metabolites are valuable sources of
antiviral compounds against pathogenic swine viruses.

What is new here?

o Computer-aided drug screening techniques and PCA
were used to identify theoretical leads from marine
fungal metabolites to inhibit the dUTPase enzyme of
ASFV.

o Tricycloalternarene C holds potential as a theoretical
lead candidate for selectively inhibiting ASFV dUTPase.

that demonstrated a stable behavior with ASFV dUTPase,
exhibiting RMSD trajectories similar to the three control
compounds. Principal component analysis of the 300 ns
MD run confirmed simulation convergence. The binding
strength of tricycloalternarene C against the protein
was also predicted using MMGBSA and MMPBSA
methods and showed comparable binding energy with
the control compounds. Van der Waals and electrostatic
forces, along with hydrogen bonding, contributed to the
stability and observed favorable binding affinity. Critical
residues such as Asp 29, Arg 71, Ser 72, Gly 89, Ile 90,
Tyr 94, and Gln 120 were also identified as significant for
binding. Tricycloalternarene C has demonstrated activity
in inhibiting the NF-kB protein, which is associated with
autoimmune diseases and cancer. However, its antiviral
properties against pathogenic viruses have not yet been
explored. Further in vivo and in vitro studies are needed
to confirm its potential as an antiviral inhibitor of ASFV
dUTPase.
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