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Introduction
Alzheimer's disease (AD) is one of the most significant 
and complex neurodegenerative disorders, gradually 
leading to the loss of cognitive abilities and memory in 
affected individuals. Predominantly affecting older adults, 
it is recognized as the most common form of dementia. 
With the increase in life expectancy and the aging global 
population, the prevalence of Alzheimer's is expected to 
rise significantly in the coming decades. This underscores 
the critical need for early detection and diagnosis, as 
timely therapeutic interventions and disease management 

can improve patients' quality of life and reduce the societal 
and economic burden of the disease.1,2

Traditional methods for diagnosing Alzheimer's rely 
on clinical tests, cognitive assessments, and medical 
imaging techniques such as MRI and PET scans.3 While 
these approaches can be effective in some cases, they 
are often dependent on detecting the disease at its later 
stages and are less capable of identifying it in its early 
phases. This has highlighted the need for innovative 
and intelligent approaches to achieve more accurate and 
timely diagnosis. In this regard, artificial intelligence (AI), 
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Abstract
Introduction: Alzheimer's disease (AD) 
is a progressive neurodegenerative 
disorder that poses significant 
challenges for early detection. Advanced 
diagnostic methods leveraging machine 
learning techniques, particularly deep 
learning, have shown great promise in enhancing early AD diagnosis. This paper proposes a 
multimodal approach combining transfer learning, Transformer networks, and recurrent neural 
networks (RNNs) for diagnosing AD, utilizing MRI images from multiple perspectives to capture 
comprehensive features. 
Methods: Our methodology integrates MRI images from three distinct perspectives: sagittal, 
coronal, and axial views, ensuring the capture of rich local and global features. Initially, ResNet50 
is employed for local feature extraction using transfer learning, which improves feature quality 
while reducing model complexity. The extracted features are then processed by a Transformer 
encoder, which incorporates positional embeddings to maintain spatial relationships. Finally, 
2D convolutional layers combined with LSTM networks are used for classification, enabling the 
model to capture sequential dependencies in the data. 
Results: The proposed framework was rigorously tested on the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) dataset. Our approach achieved an impressive accuracy of 96.92% on test 
data and 98.12% on validation data, significantly outperforming existing methods in the field. 
The integration of Transformer and LSTM models led to enhanced feature representation and 
improved diagnostic performance. 
Conclusion: This study demonstrates the effectiveness of combining transfer learning, Transformer 
networks, and LSTMs for AD diagnosis. The proposed framework provides a comprehensive 
analysis that improves classification accuracy, offering a valuable tool for early detection and 
intervention in clinical practice. These findings highlight the potential for advancing neuroimaging 
analysis and supporting future research in AD diagnostics.
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particularly machine learning (ML) and deep learning 
algorithms, has emerged as a powerful tool capable of 
analyzing vast amounts of data to identify subtle patterns 
that are difficult for humans to detect.4,5 

Despite the potential of AI in diagnosing Alzheimer's, 
several challenges remain. One of the most critical 
issues is the limitation and quality of available data. 
Data used to train AI models must be accurate, diverse, 
and representative of the disease's many facets to ensure 
good performance in real-world conditions. The scarcity 
of such data, especially longitudinal data that tracks 
the disease's progression over time, poses a significant 
barrier. Additionally, individual differences in brain 
structure and the rate of disease progression require AI 
diagnostic models to be more personalized to account for 
these variations.6 

Another significant challenge is the interpretability of 
the results. Many deep learning models operate like "black 
boxes," making it difficult to explain the reasoning behind 
their decisions. This lack of transparency can hinder the 
adoption of AI technologies by medical professionals, as 
in the medical field, the ability to explain and trust the 
decision-making process is crucial.7,8 

Furthermore, integrating AI technologies into existing 
medical systems and utilizing them in clinical settings 
poses another challenge. AI methods not only need 
to be highly accurate but must also seamlessly fit into 
the workflow of healthcare professionals, serving as an 
assistive tool in clinical decision-making processes.

In conclusion, while significant progress has been made 
in utilizing AI for Alzheimer's diagnosis, further research 
and development are needed to overcome existing 
challenges. Improving data quality, enhancing the 
interpretability of AI models, and better integration with 
healthcare systems are essential steps toward realizing the 
full potential of AI in this field.9,10 

Alatrany et al11 present a machine learning model that 
classifies AD with high accuracy while also providing 
interpretable explanations for its decisions. This approach 
addresses the common "black box" problem in AI models, 
enhancing their trustworthiness in clinical settings

Researchers presented a machine learning framework 
that significantly enhances the predictive capability 
of brain MRI data. They employed the unsupervised 
learning algorithm of local linear embedding (LLE) to 
reduce multivariate MRI data regarding regional brain 
volume and cortical thickness into a lower-dimensional 
space, while retaining the global nonlinear structure. 
The extracted brain features were then utilized to train a 
classifier for predicting future conversion to AD based on 
baseline MRI scans.12 

In Altaf et al study,13 multi-class AD classification is 
achieved by integrating both image and clinical features. 
Researchers developed a framework that combines 
advanced machine learning algorithms to analyze MRI 

images alongside clinical data, improving diagnostic 
accuracy. The approach aims to effectively distinguish 
between various stages of AD, ultimately enhancing 
patient management and treatment strategies. Alam and 
colleagues utilized the ADNI dataset for AD diagnosis. 
They extracted various features from images using LDA 
and KPCA and performed classification with a multi-
kernel SVM. This approach enhances diagnostic accuracy 
and helps differentiate between various stages of AD.14 

Researchers employed a multi-diagnostic approach 
using machine learning for the early diagnosis of AD, 
focusing on generalizability across diverse patient 
populations. They developed a framework that integrates 
data from multiple sources, significantly enhancing the 
model's effectiveness in identifying early signs of the 
disease. This strategy effectively addresses the limitations 
of traditional diagnostic methods and provides a reliable, 
scalable solution, ultimately improving the potential for 
early intervention in various clinical settings.15 

Tripathi et al,16 developed a method for classifying 
six types of cognitive impairment, including AD, using 
speech-based analysis. By analyzing speech data from 
DementiaBank’s Pitt Corpus with five machine learning 
algorithms, the study achieved a 75.59% overall accuracy, 
with XGBoost performing better than other algorithms, 
except for random forest. This innovative approach 
highlights the potential for creating a non-invasive and 
cost-effective diagnostic tool for the early detection 
and management of cognitive impairments, enhancing 
clinical practices in this critical area of healthcare.

Deep learning techniques have been increasingly used 
for diagnosing and classifying AD due to their ability 
to analyze complex medical imaging data, such as MRI 
and PET scans. Convolutional neural networks (CNNs) 
are particularly effective in extracting features from 
brain scans, helping to detect early signs of the disease. 
These models are capable of achieving high accuracy 
in classification tasks, often outperforming traditional 
methods. However, challenges remain in interpretability, 
the need for large datasets, and ensuring generalization 
across different populations.17,18 

In recent advancements, automated AD classification 
has seen improvements through the integration of deep 
learning models, particularly with the use of Soft-NMS 
(Soft Non-Maximum Suppression) and an enhanced 
ResNet50 architecture. This approach refines traditional 
classification methods by optimizing feature extraction 
and reducing false positives during the classification 
process. Soft-NMS enhances the model's ability to 
differentiate between subtle disease markers, while the 
improved ResNet50 boosts accuracy and efficiency 
in detecting Alzheimer's from medical imaging data, 
making the diagnosis process more reliable.19 Researchers 
employed a densely connected CNN with a connection-
wise attention mechanism to learn multi-level features 
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from brain MRI images for AD classification. The method 
extracts multi-scale features from pre-processed images, 
transforming them hierarchically into compact high-level 
features by combining connections from different layers. 
Additionally, the convolution operation is extended to 3D 
to capture spatial information. The approach is evaluated 
on MRI data from 968 subjects in the ADNI database for 
effective classification.20 

The use of deep neural networks based on convolutional 
networks has garnered significant attention from many 
researchers.21-25 

In Ebrahimi and Luo study,21 a CNN, consisting of 
2D convolutional and pooling layers, was utilized for 
AD detection. The dataset was divided for testing and 
training, with 70% allocated for training and 30% for 
testing. Results indicate that the proposed method 
demonstrates good performance. Samhan et al22 have 
proposed a machine learning method for the early 
diagnosis of AD and mild cognitive impairment (MCI) 
using high-resolution MRI. They analyzed regional 
morphological differences in the brain, achieving 
96.5% accuracy in distinguishing mild AD from healthy 
subjects, 91.74% for differentiating progressive MCI, and 
88.99% for classifying progressive MCI versus stable MCI. 
The approach focuses on macroscopic shape differences 
between groups, enhancing discrimination power.

Mehmood et al26 developed a Siamese convolutional 
neural network (SCNN) model inspired by VGG-16 to 
classify dementia stages in AD. They addressed issues of 
overfitting due to limited image samples by using data 
augmentation techniques. Testing on the OASIS dataset, 
their approach achieved an impressive accuracy of 99.05%. 
The proposed model outperformed state-of-the-art 
models in terms of performance, efficiency, and accuracy, 
demonstrating the effectiveness of machine learning in 
early AD diagnosis and dementia classification.

Given that deep CNNs (DCNNs) have many parameters 
and training these networks with a limited amount of 
data can be challenging, researchers have utilized transfer 
learning techniques. These methods allow for leveraging 
pre-trained models on larger datasets, which can enhance 
performance and reduce the need for extensive training 
data in specific applications, such as AD classification.27 

In the research presented in Acharya et al,28 the focus 
is on classifying MRI scans of AD patients into multiple 
categories by utilizing VGG16, ResNet-50, and AlexNet 
as transfer learning models, alongside CNNs. The goal 
is to enhance classification accuracy and effectively 
differentiate between various stages or types of AD based 
on MRI data.

However, using these methods alone is not sufficient. 
Therefore, researchers29-32 have employed ensemble 
learning techniques to improve the detection rate. By 
combining the strengths of multiple models, ensemble 
methods enhance classification accuracy and provide 

more robust predictions for AD diagnosis. In Khanna 
study,31 the method proposed for multi-level classification 
of AD utilizes DCNNs in conjunction with ensemble deep 
learning techniques. This approach combines the outputs 
of multiple models to enhance classification accuracy 
and improve detection rates, allowing for more robust 
differentiation among various stages of the disease.

Recently, transformer-based methods have garnered 
attention due to their ability to capture complex 
dependencies in data, outperforming traditional CNNs 
and transfer learning approaches, particularly in handling 
multimodal data and missing information.33-35

Liu et al36 presented cascaded multi-modal mixing 
transformers for AD classification, effectively integrating 
various data modalities to enhance accuracy. The model 
demonstrates robustness against incomplete data, 
achieving improved performance in distinguishing 
different stages of AD, showcasing its potential utility in 
clinical applications. Li et al,37 introduced Trans-ResNet, 
an innovative architecture that merges the advantages 
of CNNs and transformers to enhance brain disease 
classification from MRI data. This model addresses 
CNNs' limitations in capturing global dependencies and 
was pre-trained on a large brain age estimation dataset. A 
model integrating CNN with shift window attention for 
enhanced classification of AD has been proposed. This 
method harnesses the strengths of both architectures, 
improving feature extraction and understanding of 
global context. The model showed promising results in 
accurately distinguishing between various stages of AD, 
highlighting its potential to advance diagnostic accuracy 
in clinical settings.38 

In AD diagnosis, traditional methods often rely on 
handcrafted features and classical machine learning 
models such as support vector machines (SVMs) and 
decision trees. These methods are typically limited in their 
ability to capture complex, non-linear features and model 
intricate temporal and spatial relationships in imaging 
data. Moreover, many of these approaches depend on a 
single view of the data (usually a subjective perspective), 
which restricts the model's ability to extract rich, multi-
dimensional information.

In contrast, our proposed approach leverages an 
advanced combination of transfer learning, transformer 
networks, and LSTM to effectively extract complex features 
and model both temporal and spatial dependencies. The 
use of ResNet50 for local feature extraction, along with 
Transformer networks to preserve spatial relationships 
and LSTM networks for capturing temporal dependencies, 
significantly enhances the system's diagnostic accuracy. 
Furthermore, the use of three distinct MRI views (sagittal, 
coronal, and axial) provides a richer representation 
of brain structure, leading to improved diagnostic 
performance.

Considering the challenges in early AD diagnosis and 
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the limitations of current methods, we propose a hybrid 
approach utilizing transformer networks for analyzing 
MRI images. This method involves the collection of MRI 
images from multiple angles to enhance data diversity. 
Features are extracted using transformer networks 
for each angle and then combined in the classification 
stage. Finally, recurrent and fully connected layers are 
employed for classification. This approach allows for a 
better understanding of the disease and aims to improve 
diagnostic accuracy. Our proposed approach introduces 
several innovations for early AD diagnosis. First, it 
employs a multi-modal strategy that utilizes MRI images 
from various angles to enhance data diversity. Second, 
we utilize an improved transformer-based network, 
which allows for more effective feature extraction and 
context understanding. Finally, the method incorporates 
an end-to-end framework, facilitating a seamless 
transition from feature extraction to classification. This 
comprehensive approach aims to significantly improve 
diagnostic accuracy and provide a deeper understanding 
of the disease. The main contributions of this paper are 
summarized as follows:
• Overcomes limitations of handcrafted feature 

extraction: Traditional methods rely on manual 
feature selection, which is often insufficient 
for capturing complex, non-linear patterns in 
Alzheimer's imaging data. Our method utilizes deep 
learning-based feature extraction through ResNet50, 
enhancing the quality of extracted features.

• Addresses limited ability to model temporal and 
spatial relationships: Existing methods struggle to 
model both spatial and temporal dependencies in 
MRI data. Our approach combines Transformer 
networks (for spatial relationships) and LSTM 
networks (for temporal dependencies), enabling a 
more comprehensive understanding of Alzheimer's-
related brain changes over time.

• Improves diagnostic accuracy by using multimodal 
MRI views: Traditional methods typically rely on a 
single MRI view, limiting the information captured. 
We use sagittal, coronal, and axial views, providing 
a richer and more detailed representation of brain 
structures, which enhances the model's diagnostic 
performance.

• Reduces model complexity with transfer learning: 
By using pre-trained networks like ResNet50, 
we minimize the need for large datasets while 
maintaining high accuracy, addressing the issue of 
overfitting and reducing training time compared to 
traditional deep learning models.

• Achieves superior performance compared to existing 
methods: Our method demonstrates a significant 
improvement in diagnostic accuracy (96.92% on 
test data, 98.12% on validation data) compared to 
traditional and other state-of-the-art methods in 

Alzheimer's detection, providing a more reliable tool 
for early diagnosis.

Methods
Given that feature extraction from MRI images is essential 
for the diagnosis of AD, this paper employs a multi-faceted 
approach for feature extraction. In the proposed method, 
images are utilized from three different perspectives: 
lateral, superior, and posterior views of the head. We 
applied several techniques to ensure optimal input data 
for the model. First, all MRI images were resized to a 
consistent size to ensure uniformity across the dataset. 
We performed normalization by scaling pixel values to 
the range [0, 1] to standardize the intensity values and 
reduce model bias due to varying image scales.

To extract features from these images, transfer learning 
is implemented, significantly reducing the number of 
model parameters. This decrease in parameters lowers 
the risk of model overfitting and enhances the quality of 
features extracted from the images. The model used in 
this phase is based on ResNet architectures.

Next, the output from the last layer of the ResNet 
network, which consists of images sized 16 by 16 pixels, is 
utilized. These images are constructed based on the various 
perspectives. They are treated as batches that need to be 
aggregated with positional embeddings before entering 
the subsequent module. This next module focuses on 
extracting local features using transformer encoder layers. 
These layers employ an attention mechanism to extract 
relevant features from the images. After the transformer 
module, the resulting feature vector-comprising rich, 
high-level features-is resized and combined with the 
features from various layers of the ResNet network. This 
process ensures that both detailed and low-level features 
are retained. Following this, a classification module 
is implemented. In this module, suitable features are 
initially extracted from the various images generated 
using the CONV2D layers. Since there exists a sequential 
relationship between the data and the generated images, 
LSTM layers are utilized to extract the most relevant 
features. Finally, in the concluding module, two pooling 
layers are applied to reduce parameter dimensions, 
followed by a fully connected layer for classification. Fig. 
1 illustrates the overall stages of the proposed method, 
which we will detail further in the following sections.

Feature extraction using ResNet
In the proposed method, three different views of the 
brain are utilized using MRI images: Sagittal (side view), 
Coronal (back view), and Axial (top view). Instead of 
using the Transformer alone as an encoder, this paper 
employs a CNN-Transformer combination. In this 
architecture, the CNN serves first as a feature extractor 
to generate feature maps. This approach is chosen for 
two main reasons: first, it allows us to utilize high-level 
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features during the decoding process, and second, it offers 
better performance compared to using the Transformer 
alone.

To this end, each image X ∈ RC × H × W with resolution 
H × W and C channels is fed into the ResNet50 network, 
which extracts local and deep features from the images. 
In this study, the choice of ResNet50 as the primary 
model architecture was driven by its unique capabilities 
in extracting complex features from medical images, 
particularly MRI scans. Unlike architectures such as 
VGG, which can lead to overfitting and increased training 
time due to the high number of parameters and model 
complexity, ResNet50 leverages residual networks to 
capture both local and deep features while overcoming 
the vanishing gradient problem. Furthermore, ResNet50 
is widely used in transfer learning, allowing us to benefit 
from its pretrained features to accelerate the feature 

extraction process. Additionally, when compared to 
other architectures like Efficient Net, ResNet50 has 
demonstrated superior performance in medical imaging 
tasks, particularly in brain disease detection from MRI 
images.

Additionally, by employing transfer learning, we can 
reduce the number of trainable parameters in the model. 
The output of this network for input data from each 
view is a tensor with dimensions 8 × 8 × d, where d = 2048 
represents the number of feature channels.

( )50        1, 2,3i iF ResNet XL i= =                                  (1)

Where XLi is the i-th MRI view (sagittal, coronal, or 
axial). Fi is the feature vector output from ResNet-50 for 
each view. Fig. 2 illustrates the overall architecture of the 
ResNet network. In this paper, we utilize the extracted 

Fig. 1. Overview of the proposed model and the details of its components.

Fig. 2. Architecture of ResNet used in the proposed method.
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features from different layers of the network in the 
subsequent stages. Therefore, the sizes of the generated 
images at each layer are indicated. For this purpose, the 
output from the last layer of this network, which contains 
2048 distinct images of size 8 × 8, is used as inputs to the 
Transformer network. Additionally, to capture more 
detailed features, outputs from the preceding layers are 
also combined and transformed into feature vectors 
using pooling layers. These features are then integrated 
via skip connections with the features extracted from the 
Transformer network.

Feature extraction with the transformer network
The features extracted from the final layer of ResNet-50 
are considered as patch features. Since the spatial 
arrangement of these patches is important, position 
embeddings are added to each patch to preserve their 
spatial order and positional information. This ensures that 
the model retains the contextual relationships between 
the patches during the subsequent processing stages.

By incorporating position embeddings, the Transformer 
can effectively understand the spatial context of the patch 
features, allowing for a more nuanced interpretation of 
the MRI data. This combination of feature extraction and 
positional information enhances the model’s ability to 
analyze and differentiate between various patterns within 
the brain images.

  i i iE F P= +                                                                          (2)

Here, Pi represents the position embedding for each 
patch. This step helps the model maintain the spatial 
relationships between the different image features. The 
local features, combined with the position embeddings, 
are fed as input to the Transformer encoder. The 
Transformer utilizes a self-attention mechanism to extract 
global features and relationships between different image 
patches. The attention mechanism is defined as follows:

( ), , .
T

k

QKAttention Q K V softmax V
d

 
=   

                       (3)

In this context, Q, K, and V represent the query, key, 
and value matrices, respectively. The transformer encoder 
operates in several layers to extract the final features for 
each input. The Transformer Encoder module consists 
of Nencoder = 2 transformer layers. Each transformer layer 
comprises four sub-layers as follows: First sub-layer: Layer 
Norm, second sub-layer: Multi-Head Self-Attention, third 
sub-layer: Layer Norm, fourth sub-layer: Feedforward 
layer (MLP). 

Feature fusion
After the high-level and global features are obtained 
through the transformer encoder, these features are 

combined with the local features extracted from ResNet. 
To do this, the output of the transformer is first resized so 
that its dimensions match those of the local features.

( )  L
fused i iF Resize H F= +                                                  (4)

In this equation, Ffused represents the combined features 
obtained from the integration of global and local features. 
Hi

L is the output of the transformer for the i-th view of the 
MRI images. L indicates the last layer of the transformer 
encoder, which provides high-level (global) features. 
Resize(Hi

L) is the resizing operation that transforms the 
output of the transformer encoder into a matrix format. 
This combination allows the model to simultaneously 
capture detailed local information (details) and overall 
global context (structural elements) of the MRI images, 
which is crucial for improving the diagnosis of AD.

In the proposed method, a stack of Feature Fusion 
layers is used as the combiner. The Feature Fusion 
layer consists of four layers as follows: two ResUnits are 
embedded separately within this layer, one for the input 
features and the other for the skip connection. To increase 
the dimensions of the input features, they pass through an 
UpSampling layer after leaving the ResUnit. Additionally, 
to reduce the dimensions, a Conv1D operation is applied 
to decrease the number of input channels. Finally, the 
inputs are added together. The details of this phase are 
illustrated in Fig. 3.

Classification module
After feature extraction using ResNet and Transformer 
networks and combining them, the classification module, 
which includes features from Con2D layers, LSTM, and 
fully connected layers, is used for data classification. To 
combine different features, 2D CNN layers are utilized.

To integrate the features between the CNN and LSTM 
layers, we first extract spatial features from the MRI images 
using the ResNet50-based CNN architecture. The CNN 
layers focus on capturing local spatial patterns in the data, 
such as texture and structure, which are crucial for detecting 
subtle differences in brain regions. These extracted features 
are then passed into the LSTM network, which captures 
temporal or sequential dependencies between the features 
across different perspectives (sagittal, coronal, and axial 
views). The LSTM layers allow the model to learn the 
relationships and changes in the features over different 
slices of the MRI, providing a dynamic representation of 
the data. This combination of CNN and LSTM facilitates 
the effective integration of both spatial and sequential 
information, crucial for accurate AD classification. In 
this stage, the final combined feature vectors are fed 
into multiple 2D CNN layers. These layers apply two-
dimensional convolution operations on the data to extract 
higher-level and more complex features from the images. 
The convolution operation is defined as follows:
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( )2i fusedO CNN D F=                                                           (5)

Where Oi is the output of the CNN layer and Ffused 
represents the input features. After extracting spatial 
features from the images using CNN, the outputs are 
fed into LSTM to model the sequential and temporal 
relationships between the images and their segments. 
LSTM is used for sequence modeling and is capable of 
effectively capturing time-dependent information. The 
general formula for LSTM is as follows: 

( )1 ,t t th LSTM O h −=                                                         (6)

In this formula, ht represents the hidden state at time 
t and Ot is the output of the CNN at time t. Finally, the 
features obtained from LSTM are fed into a pooling layer 
to reduce dimensions, and then into the fully connected 
layer. In this layer, the final classification for Alzheimer’s 
detection is performed using the Softmax function.

Model training
In this paper, we employ the Binary Cross-Entropy 
Loss function, which is suitable for binary classification 
problems. The loss function is defined as:

( ) ( ) ( ) ( )
N

i i i i
i 1

1L y ,  y  ( y log y 1 y l 1ˆ ˆ og y
N

ˆ
=

 = − + − − ∑   (7)

Where, N represents the number of samples, yi denotes 
the true label for the ith sample, ˆ  iy indicates the predicted 
probability that the ith sample belongs to the positive 
class.

To optimize the model, we implement the Adam 
Optimizer, an advanced optimization algorithm that 
combines the benefits of two other stochastic gradient 

descent extensions. Adam dynamically adjusts the 
learning rate for each parameter and employs moving 
averages of both the gradients and the squared gradients. 
The parameter update rule is expressed as follows:

1  t
t t

t

m
v

θ θ α−= −
−∈                                                            (8)

Where, α is the learning rate, mt is the first moment 
estimate (the mean of the gradients), vt is the second 
moment estimate (the uncentered variance of the 
gradients), ϵ is a small constant to prevent division by zero. 
The first and second moments are updated according to:

( )1 1 11t t tm m gβ β−= + −                                                       (9)

( ) 2
2 1 21t t tv v gβ β−= + −                                                    (10)

gt represents the gradient of the loss function with 
respect to the model parameters at time step t, β1 and β2  
are hyperparameters controlling the decay rates of the 
moment estimates. In the proposed method, the learning 
rate is set to lr = 1e−3, with β1 = 0.5 and β2 = 0.99, and mini-
batches of size 32. To prevent overfitting and improve 
generalization, we employed the regularization technique 
of dropout, which randomly sets a portion of the input 
units to zero during training, ensuring the model does not 
become overly reliant on specific neurons. Additionally, 
to optimize the learning process and avoid overfitting, we 
used the Adam optimizer, which automatically adjusts 
the learning rate and performs efficient updates to the 
model's parameters, helping the model converge faster 
while maintaining robustness. The pseudocode of the 
proposed method is shown in Box 1.

Fig. 3. An overview of the architecture proposed for feature fusion.
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Results
After training, this section evaluates the proposed method, 
which is based on multimodule and the transformer 
network and recurrent networks, by examining the 
model's performance using various evaluation metrics. 
The metrics used include accuracy, precision, ROC curve, 
and confusion matrix.

Dataset
This study focuses on identifying two main classes, 
namely AD and cognitively normal control groups (CN), 
using MRI image data from the ADNI database. Initially, 
a total of 47,825 scans were collected from various angles; 
however, to concentrate more on relevant anatomical 
information, only 10% of the middle slices from each 
scan were selected. This region was specifically chosen 
due to its provision of more meaningful information for 
distinguishing between the AD and CN classes. After this 
selection process, the final dataset consisted of 10,500 
images for the AD class and 9300 images for the CN class.

To maintain balance and accuracy in the analysis, an 
equal number of images were chosen from each imaging 
angle. For instance, from the 9300 CN images, 3100 were 
selected from the sagittal view, 3100 from the axial view, 
and 3100 from the coronal view. The same approach was 
applied to the AD class as well. This careful selection aids in 
enhancing the accuracy of detection and analysis models.38

Evaluation metrics
In binary classification tasks, after classifying samples, 
four distinct outcomes can be observed. These outcomes 
are defined as follows:
• True Negative (TN): The number of instances 

correctly classified as negative.
• False Positive (FP): The number of instances 

incorrectly classified as positive.
• True Positive (TP): The number of instances correctly 

classified as positive.
• False Negative (FN): The number of instances 

incorrectly classified as negative.
To evaluate the effectiveness of classification methods, 

several metrics are used. Accuracy measures the 
proportion of correctly classified instances out of the total 
number of instances, calculated as:

TP TNAccurcy
TP TN FP FN

+
=

+ + +                                   (11)

Specificity indicates the percentage of true negatives 
correctly identified as such:

TNSpecificity
TN FP

=
+

                                                    (12)

Sensitivity measures the percentage of true positives 
correctly identified:

TPSensitivity
TP FN

=
+

                                                     (13)

Precision measures the accuracy of positive predictions. 
Specifically, it is the proportion of true positive instances 
among all instances classified as positive. This metric is 
particularly useful when the cost of false positives is high. 
Precision is calculated as:

TPPrecision
TP FP

=
+                                                        (14)

A high precision value indicates that when the classifier 
predicts a positive outcome, it is likely to be correct.

The Matthews correlation coefficient (MCC) provides 
a comprehensive measure of a classifier's performance, 
taking into account true positives, true negatives, false 
positives, and false negatives. MCC is especially useful 
for imbalanced datasets because it considers all four 
confusion matrix categories. It is calculated as:

( )( )( )( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
× − ×

=
+ + + + (15)

MCC returns a value between -1 and + 1, where:
 + 1 indicates a perfect classification.
0 indicates no better than random classification.
-1 indicates a total disagreement between prediction 

Box 1. The pseudocode of the proposed method

Input: MRI slices (Axial, Coronal, Sagittal views)
1. Feature Extraction

• For each slice (Axial, Coronal, Sagittal):
• Pass the slice through a pre-trained ResNet50 network.
• Extract the feature vector from the output of the ResNet50.

2. Patch and Position Embedding
• Divide the extracted feature maps into patches.
• Add position embeddings to each patch to encode spatial 

information.
3. Transformer Encoding

• Pass the patch embeddings (from each view) through a 
Transformer Encoder.

• Output: Encoded features for each view.
4. Feature Fusion

• Resize the encoded features to a uniform shape.
• Concatenate the features from all views.

5. 2D CNN + LSTM Sequence Modeling
• Pass the fused features through multiple 2D CNN layers to 

capture spatial patterns.
• Feed the CNN output into LSTM layers to model sequential 

dependencies.
6. Pooling

• Apply pooling to the LSTM output.
7. Fully Connected Layer

• Pass the pooled features through a fully connected layer for 
classification.

• Output: Classification probabilities for target classes
Output: Predicted class probabilities
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and observation.
MCC is a robust metric for binary classification, 

providing a balanced measure that is particularly 
informative in scenarios with class imbalance.38,39 

Hyper-parameter tuning
The parameters selected in this research using the 
hyperparameter tuning technique, are the learning rate, 
optimizer, momentum, batch size, recurrent network 
type, and cache memory. The values provided for tuning 
the hyperparameters for the learning rate are 0.1, 0.01, 
0.001, and 0.0001. Additionally, the values given for the 
cache memory are 16, 64, and 128. Table 1 shows the 
hyperparameters used in the proposed method.

These values were obtained based on various 
experiments. For this purpose, 500 images from the 
dataset were randomly selected from two classes. Then, 
the model was trained using these data based on the best 
configuration of each hyperparameter. For example, the 
learning rate was tested with different values, and the best 
value was found to be 0.01. Then, with this hyperparameter 
fixed, the momentum value was calculated.

Initially, given the importance of recurrent layers in the 
proposed method, the models were tested with different 
layers. These layers include LSTM, GRU, and recurrent 
neural network (RNN). The results of these experiments 
on the test data, based on accuracy, precision, and other 
metrics, are presented in Table 2. It is noteworthy that in 
all experiments, the cache memory and the number of 
iterations for training the models were set to 16 and 100, 

respectively.
As shown in the results of the table, a 100% accuracy rate 

was reported on the training dataset, and other metrics 
also performed at a high level. Importantly, there is not 
a significant numerical gap between the various metrics, 
indicating that the proposed method has effectively 
learned the features of both classes. Furthermore, all 
three recurrent networks demonstrate a high detection 
rate, suggesting that the proposed method is not heavily 
dependent on the type of recurrent network. However, 
among the three recurrent networks, the GRU network 
has the highest detection rate.

Convergence Process
Given that the proposed method has a large number of 
parameters, learning these parameters can be challenging. 
To evaluate the learning process of the proposed method, 
the error and accuracy charts of the training and evaluation 
datasets are presented in Fig. 4. As shown in Fig. 4, the 
error rate in both the training and evaluation sets for 
various recurrent networks has decreased. Although 
the gap between the error charts in the training and 
evaluation sets is large, this does not indicate overfitting 
of the proposed model; because, in different iterations, 
this error gap does not increase and the error remains at 
a constant level.

Additionally, considering the accuracy chart of the 
training and evaluation datasets shown in Fig. 5, it can be 
seen that the learning process is proceeding correctly. The 
model’s accuracy gradually increases and, after a certain 
point, the model’s accuracy remains stable and does not 
decrease. This indicates that the model has reached a stable 
level of learning and provides satisfactory performance in 
data separation.

Batch size is one of the most important parameters in 
deep learning models, referring to the number of samples 
the model processes in each step. The batch size analysis 
in the proposed method was conducted using batch sizes 
of 16, 32, 64, and 128. The experiment was carried out 
over 10 epochs, with 80% of the data used for training. 
The learning rate was kept constant at 0.001 for all cases. 
The results showed that a batch size of 32 provided 

Table 1. Investigating the amount of hyperparameters used in the proposed 
method

Hyperparameter Tested values Chosen value

Loss function CrossEntropyLoss CrossEntropyLoss

Optimizer SGD, Adam Adam

Momentum 1e-6, 1e-5,1e-4,1e-3 1e-6

Learning rate 0.1, 0.01,0.001,0.0001 0.001

Batch size 16,32,64 32

Hidden state 16,32,64,128 64

Recurrent network LSTM, GRU, RNN LSTM

Table 2. Results of the proposed method based on various metrics using different recurrent networks

Eval metric Model Data Accuracy Precision Recall F1 score ROC curve

RNN

Train 1 0.999 1 0.999 0.9973

Validation 0.963 0.967 0.962 0.964 0.9843

Test 0.946 0.9481 0.9432 0.9451 0.9720

LSTM

Train 1 0.998 1 1 0.9994

Validation 0.9812 0.986 0.981 0.982 0.9941

Test 0.9692 0.9636 0.9625 0.9634 0988

GRU

Train 1 1 1 1 0.9999

Validation 0.977 0.976 0.972 0.97 0.9896

Test 0.9508 0.9516 0.9577 0.9593 0.9812
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the best performance with an accuracy of 96.92%. 
The accuracies achieved for batch sizes 128, 64, and 16 
were 93.21%, 94.72%, and 94.23%, respectively. Using 
a confusion matrix is suitable for better evaluating the 
proposed method and examining the model’s ability to 
predict different classes. In Fig. 4, the confusion matrices 
resulting from training the model with different hidden 
state sizes and iterations, trained using LSTM, are shown. 
As observed, with 100 iterations and a hidden state vector 
length of 64, the RNN performs best.

Additionally, to evaluate the performance of different 
recurrent networks, Fig. 6 shows the confusion matrices 
of three models: LSTM, GRU, and RNN, with the 
same number of iterations and hidden states. In this 
experiment, the hidden state vector length, number of 
iterations, and other parameters such as learning rate and 
activation function are set the same for all three networks. 
As observed, all recurrent networks have suitable 
performance, indicating that the combined features are 
independent of the type of recurrent network. Moreover, 

among these three networks, GRU shows better 
performance due to having fewer parameters compared 
to LSTM and greater capability compared to RNN.

Given the imbalance of data in the two classes, Figs. 
7 and 8 show the ROC and PR curves for the proposed 
method. The PR curve, which stands for Precision and 
Recall, is a two-dimensional chart that shows precision 
and recall at each iteration. Additionally, the ROC curve is 
a graphical chart that displays the performance of a binary 
classification model by plotting the true positive rate 
(sensitivity) against the false positive rate (1-specificity) at 
various threshold settings.

Comparison with other methods
The evaluation and comparison of the proposed method 
with other methods have been examined based on the 
accuracy criterion. The results of this experiment are 
presented in Table 3. Since there is no uniform and 
standard dataset for testing different models, the methods 
selected for this comparison have all been published in 

Fig. 4. Confusion matrix for LSTM networks with different hidden state lengths: a) Hidden state vector length 16, b) Hidden state vector length 32, c) Hidden 
state vector length 64, d) Hidden state vector length 128.
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reduces the number of trainable parameters through 
transfer learning, the inclusion of the Transformer 
and LSTM layers introduces additional computational 
complexity. The Transformer encoder, with its multi-
head self-attention mechanism, requires substantial 
processing power, especially when handling the high-
dimensional feature maps from the ResNet network. 
Furthermore, LSTM layers, though efficient at capturing 
sequential dependencies, increase the computational load 
due to their recurrent nature, which processes the data 
step-by-step.

Despite these complexities, our model achieves a 
reasonable balance between accuracy and execution 
time. We observed that, although the model's execution 
time is longer compared to simpler architectures, the 
inclusion of these advanced modules results in improved 
classification performance, which justifies the additional 
computational cost. Additionally, optimizations such 
as the use of pre-trained networks, the Adam optimizer 
for efficient training, and regularization techniques like 
dropout help manage the computational burden and 
reduce the risk of overfitting, making the model practical 
for real-world applications in medical diagnostics.

The time complexity of the proposed method can be 
analyzed by considering the main components of the 
architecture: ResNet50, the Transformer encoder, and the 
LSTM layers.

ResNet50: The time complexity of feature extraction 
using ResNet50 is dominated by the convolutional layers. 
Since ResNet50 consists of several convolutional layers 
and residual blocks, the time complexity for processing an 
input image can be approximated as O(n × m × C × H × W), 
where n is the number of input images, m is the number 
of layers, C is the number of channels, and H and W are 
the height and width of the input image.

Transformer Encoder: The Transformer encoder 
applies multi-head self-attention, which has a time 
complexity of O(N^2 × d), where N is the number of 
input patches (corresponding to the number of features 
after the ResNet extraction) and d is the dimensionality of 
the feature space. The self-attention mechanism requires 
comparing each patch with every other patch, leading to 
the quadratic dependency on the number of patches.

LSTM: The time complexity of the LSTM layer is 
O(T × d), where T is the length of the sequence (number 
of MRI slices or views) and d is the dimensionality of the 
feature vector at each time step. Since the LSTM processes 
the data sequentially, it introduces a linear complexity 
with respect to the sequence length.

Overall, the time complexity of the entire model is 
dominated by the Transformer encoder due to its quadratic 
dependency on the number of patches. Therefore, 
the overall time complexity can be approximated as 
O(N^2 × d + T × d), where N is the number of patches 
from the ResNet output, d is the feature dimensionality, 

Fig 5. Loss function and accuracy of the proposed method on training 
and evaluation dataset.

recent years and have used the ADNI dataset for image 
collection. Additionally, deep learning-based methods 
have been selected.

The results indicate that the proposed method 
outperforms many existing approaches, with the exception 
of VGG-based methods, which demonstrate comparable 
performance. However, the primary distinction lies in 
the number of images utilized; the VGG-based methods 
employ a significantly larger dataset than our proposed 
approach. Furthermore, methods based on VGG16 and 
the modified version of AlexNet exhibit much longer 
execution times. While these methods independently 
achieve detection rates ranging from 82% to 95%, our 
proposed method consistently demonstrates 1% to 14% 
better performance compared to other methods.

Computational cost analysis
The execution time of the proposed method is influenced 
by several factors, including the use of ResNet50 for 
feature extraction, the Transformer encoder for high-
level feature extraction, and the LSTM layers for sequence 
modeling. While the ResNet50 model significantly 
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Fig. 7. ROC curve on the test dataset for two classes based on different recurrent models. a) LSTM recurrent network, b) GRU recurrent network.

Fig. 6. The confusion matrix for different recurrent networks with a hidden state length of 16 (a) LSTM recurrent network, (b) GRU recurrent network, (c) 
RNN recurrent network.
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and T is the sequence length for the LSTM layers. This 
suggests that the execution time grows quadratically with 
the number of input patches but linearly with respect to 
the sequence length in the LSTM module.

Conclusion 
In this article, we propose a Multimodal approach to 
feature extraction from MRI images for diagnosing AD. 
By utilizing images from sagittal, coronal, and axial 
views, we first employ ResNet50 for effective local feature 

Fig. 8. PR curve on the test dataset for two classes based on different recurrent models. a) LSTM recurrent network, b) GRU recurrent network.

Table 3. Comparison of the proposed method with other methods

Method Year Data Participants Accuracy

Multimodal42 2024 EEG + SNP + PRS 270 86.2

ResNet 43 2020 MRI 394 89.3

Lasso 44 2021 MRI + PET 302 84.7

CNN 45 2020 MRI 2490 82.4

CNN 46 2020 PET 479 83.0

PCA Net 3D ShuffleNet 47 2021 MRI 2450 85.2

VGG16, ResNet  50 and modified AlexNet 28 2021 MRI 22300 95.70

VGG 48 2022 MRI 21000 95.89

Proposed method 2024 MRI 19800 96.92



Wu et al

BioImpacts. 2025;15:3084914

extraction. This is followed by a Transformer encoder 
that integrates positional embeddings to maintain 
spatial relationships, enabling nuanced interpretations 
of the MRI data. The resulting feature vectors are fused 
to retain both high-level and detailed information. For 
classification, we incorporate 2D CNN and LSTM layers 
to address the sequential nature of the data, culminating 
in a fully connected layer that uses the Softmax function 
for final classification. Our method demonstrates 
superior performance on the ADNI dataset, achieving 
high accuracy rates of 96.92% on test data and 98.12% on 
validation data.

The proposed method successfully combines the 
strengths of CNN and Transformer architectures, 
significantly enhancing feature extraction and 
classification accuracy. By leveraging transfer learning 
and employing a multi-view approach, we improve 
the model's ability to discern complex patterns within 
MRI data. The results indicate that our framework not 
only serves as a reliable diagnostic tool but also sets a 
benchmark for future research in this area. The achieved 
accuracy rates represent a substantial advancement over 
existing methodologies, paving the way for more effective 
early diagnosis and intervention strategies for AD.

Authors' Contribution
Conceptualization: Yannan Wang.
Data curation: Qi Wu, Yannan Wang, Kuanyu Che.
Formal analysis: Qi Wu , Yannan Wang, Xiaojuan Zhang, Hongqiang Zhang.
Investigation: Qi Wu, Yannan Wang, Xiaojuan Zhang, Hongqiang Zhang.
Methodology: Qi Wu, Yannan Wang.
Project administration: Yannan Wang, Hongqiang Zhang.
Supervision: Yannan Wang, Xiaojuan Zhang.
Validation: Yannan Wang, Xiaojuan Zhang, Hongqiang Zhang, 
Kuanyu Che.
Visualization: Yannan Wang, Xiaojuan Zhang, Hongqiang Zhang. 
Writing-original draft: Qi Wu, Kuanyu Che, Hongqiang Zhang.
Writing-review & editing: Qi Wu, Yannan Wang, Xiaojuan Zhang, 
Hongqiang Zhang, Kuanyu Che.

Competing Interests
Authors declare no conflict of interests.

Ethical Approval
Not applicable.

Funding
This work was supported by Application of MRI-based hippocampal 
structural and functional changes in the diagnosis of Alzheimer's 
disease: A research study(Gansu Provincial Natural Science Foundation 
22JR5RA1066)

References 
1. Viswan V, Shaffi N, Mahmud M, Subramanian K, Hajamohideen 

F. Explainable artificial intelligence in Alzheimer’s disease 
classification: a systematic review. Cognit Comput 2024; 16: 1-44. 
doi: 10.1007/s12559-023-10192-x.

2. Odusami M, Maskeliūnas R, Damaševičius R, Misra S. Machine 
learning with multimodal neuroimaging data to classify stages of 
Alzheimer's disease: a systematic review and meta-analysis. Cogn 
Neurodyn 2024; 18: 775-94. doi: 10.1007/s11571-023-09993-5.

3. Hcini G, Jdey I, Dhahri H. Investigating deep learning for 
early detection and decision-making in Alzheimer’s disease: a 
comprehensive review. Neural Process Lett 2024; 56: 153. doi: 
10.1007/s11063-024-11600-5.

4. Suganyadevi S, Pershiya AS, Balasamy K, Seethalakshmi V, Bala 
S, Arora K. Deep learning-based Alzheimer disease diagnosis: a 
comprehensive review. SN Comput Sci 2024; 5: 391. doi: 10.1007/
s42979-024-02743-2.

5. Arya AD, Verma SS, Chakarabarti P, Chakrabarti T, Elngar AA, 
Kamali AM, et al. A systematic review on machine learning and deep 
learning techniques in the effective diagnosis of Alzheimer's disease. 
Brain Inform 2023; 10: 17. doi: 10.1186/s40708-023-00195-7.

6. Garg N, Choudhry MS, Bodade RM. A review on Alzheimer's 
disease classification from normal controls and mild cognitive 
impairment using structural MR images. J Neurosci Methods 2023; 
384: 109745. doi: 10.1016/j.jneumeth.2022.109745.

7. Zhou Q, Wang J, Yu X, Wang S, Zhang Y. A survey of deep 
learning for Alzheimer’s disease. Mach Learn Knowl Extr 2023; 5: 
611-68. doi: 10.3390/make5020035.

8. Rao BS, Aparna M. A review on Alzheimer’s disease through 
analysis of MRI images using deep learning techniques. IEEE 
Access 2023; 11: 71542-56. doi: 10.1109/access.2023.3294981.

9. Illakiya T, Karthik R. Automatic detection of Alzheimer's disease 
using deep learning models and neuro-imaging: current trends 
and future perspectives. Neuroinformatics 2023; 21: 339-64. doi: 
10.1007/s12021-023-09625-7.

10. Zhao Y, Guo Q, Zhang Y, Zheng J, Yang Y, Du X, et al. Application 
of deep learning for prediction of Alzheimer's disease in PET/
MR imaging. Bioengineering (Basel) 2023; 10: 1120. doi: 10.3390/
bioengineering10101120.

11. Alatrany AS, Khan W, Hussain A, Kolivand H, Al-Jumeily D. An 
explainable machine learning approach for Alzheimer's disease 
classification. Sci Rep 2024; 14: 2637. doi: 10.1038/s41598-024-
51985-w.

12. Liu X, Tosun D, Weiner MW, Schuff N. Locally linear embedding 
(LLE) for MRI based Alzheimer's disease classification. Neuroimage 
2013; 83: 148-57. doi: 10.1016/j.neuroimage.2013.06.033.

13. Altaf T, Anwar SM, Gul N, Majeed MN, Majid M. Multi-class 
Alzheimer's disease classification using image and clinical features. 
Biomed Signal Process Control 2018; 43: 64-74. doi: 10.1016/j.
bspc.2018.02.019.

14. Alam S, Kwon GR. Alzheimer disease classification using KPCA, 
LDA, and multi-kernel learning SVM. Int J Imaging Syst Technol 
2017; 27: 133-43. doi: 10.1002/ima.22217.

15. Diogo VS, Ferreira HA, Prata D. Early diagnosis of Alzheimer's 
disease using machine learning: a multi-diagnostic, generalizable 
approach. Alzheimers Res Ther 2022; 14: 107. doi: 10.1186/s13195-
022-01047-y.

16. Tripathi T, Kumar R. Speech-based detection of multi-class 
Alzheimer’s disease classification using machine learning. Int J 
Data Sci Anal 2024; 18: 83-96. doi: 10.1007/s41060-023-00475-9.

17. Al Shehri W. Alzheimer's disease diagnosis and classification using 
deep learning techniques. PeerJ Comput Sci 2022; 8: e1177. doi: 
10.7717/peerj-cs.1177.

What is the current knowledge?
• Current methods for AD diagnosis primarily rely on 

traditional imaging techniques and feature extraction 
methods, often utilizing single views or basic neural 
network architectures. 

What is new here?
• This study introduces a novel multimodal approach 

that combines ResNet and Transformer networks for 
feature extraction from multiple MRI views, enhancing 
diagnostic accuracy and model robustness through 
advanced transfer learning techniques.

Research Highlights

https://doi.org/10.1007/s12559-023-10192-x
https://doi.org/10.1007/s11571-023-09993-5
https://doi.org/10.1007/s11063-024-11600-5
https://doi.org/10.1007/s42979-024-02743-2
https://doi.org/10.1007/s42979-024-02743-2
https://doi.org/10.1186/s40708-023-00195-7
https://doi.org/10.1016/j.jneumeth.2022.109745
https://doi.org/10.3390/make5020035
https://doi.org/10.1109/access.2023.3294981
https://doi.org/10.1007/s12021-023-09625-7
https://doi.org/10.3390/bioengineering10101120
https://doi.org/10.3390/bioengineering10101120
https://doi.org/10.1038/s41598-024-51985-w
https://doi.org/10.1038/s41598-024-51985-w
https://doi.org/10.1016/j.neuroimage.2013.06.033
https://doi.org/10.1016/j.bspc.2018.02.019
https://doi.org/10.1016/j.bspc.2018.02.019
https://doi.org/10.1002/ima.22217
https://doi.org/10.1186/s13195-022-01047-y
https://doi.org/10.1186/s13195-022-01047-y
https://doi.org/10.1007/s41060-023-00475-9
https://doi.org/10.7717/peerj-cs.1177


Wu et al

   BioImpacts. 2025;15:30849 15

18. Qiu S, Joshi PS, Miller MI, Xue C, Zhou X, Karjadi C, et al. 
Development and validation of an interpretable deep learning 
framework for Alzheimer's disease classification. Brain 2020; 143: 
1920-33. doi: 10.1093/brain/awaa137.

19. Chen Y, Wang L, Ding B, Shi J, Wen T, Huang J, et al. Automated 
Alzheimer's disease classification using deep learning models with 
Soft-NMS and improved ResNet50 integration. J Radiat Res Appl 
Sci 2024; 17: 100782. doi: 10.1016/j.jrras.2023.100782.

20. Zhang J, Zheng B, Gao A, Feng X, Liang D, Long X. A 3D densely 
connected convolution neural network with connection-wise 
attention mechanism for Alzheimer's disease classification. Magn 
Reson Imaging 2021; 78: 119-26. doi: 10.1016/j.mri.2021.02.001.

21. Ebrahimi A, Luo S. Convolutional neural networks for Alzheimer's 
disease detection on MRI images. J Med Imaging (Bellingham) 
2021; 8: 024503. doi: 10.1117/1.Jmi.8.2.024503.

22. Samhan LF, Alfarra AH, Abu-Naser SS. Classification of 
Alzheimer's disease using convolutional neural networks. Int J 
Acad Inform Syst Res 2022; 6: 18-23.

23. Jain R, Jain N, Aggarwal A, Hemanth DJ. Convolutional neural 
network-based Alzheimer’s disease classification from magnetic 
resonance brain images. Cogn Syst Res 2019; 57: 147-59. doi: 
10.1016/j.cogsys.2018.12.015.

24. Salehi AW, Baglat P, Sharma BB, Gupta G, Upadhya A. A CNN 
model: earlier diagnosis and classification of Alzheimer disease 
using MRI. In: 2020 International Conference on Smart Electronics 
and Communication (ICOSEC). Trichy, India: IEEE; 2020. p. 156-
61. doi: 10.1109/icosec49089.2020.9215402.

25. Long X, Chen L, Jiang C, Zhang L. Prediction and classification of 
Alzheimer disease based on quantification of MRI deformation. 
PLoS One 2017; 12: e0173372. doi: 10.1371/journal.pone.0173372.

26. Mehmood A, Maqsood M, Bashir M, Shuyuan Y. A deep 
Siamese convolution neural network for multi-class classification 
of Alzheimer disease. Brain Sci 2020; 10. doi: 10.3390/
brainsci10020084.

27. Aderghal K, Khvostikov A, Krylov A, Benois-Pineau J, Afdel K, 
Catheline G. Classification of Alzheimer disease on imaging 
modalities with deep CNNs using cross-modal transfer learning. 
In: 2018 IEEE 31st International Symposium on Computer-Based 
Medical Systems (CBMS). Karlstad, Sweden: IEEE; 2018. p. 345-50. 
doi: 10.1109/cbms.2018.00067.

28. Acharya H, Mehta R, Singh DK. Alzheimer disease 
classification using transfer learning. In: 2021 5th International 
Conference on Computing Methodologies and Communication 
(ICCMC). Erode, India: IEEE; 2021. p. 1503-8. doi: 10.1109/
iccmc51019.2021.9418294.

29. Tanveer M, Rashid AH, Ganaie MA, Reza M, Razzak I, Hua KL. 
Classification of Alzheimer's disease using ensemble of deep 
neural networks trained through transfer learning. IEEE J Biomed 
Health Inform 2022; 26: 1453-63. doi: 10.1109/jbhi.2021.3083274.

30. Lella E, Pazienza A, Lofu D, Anglani R, Vitulano F. An ensemble 
learning approach based on diffusion tensor imaging measures for 
Alzheimer’s disease classification. Electronics 2021; 10: 249. doi: 
10.3390/electronics10030249.

31. Rajesh Khanna M. Multi-level classification of Alzheimer disease 
using DCNN and ensemble deep learning techniques. Signal Image 
Video Process 2023; 17: 3603-11. doi: 10.1007/s11760-023-02586-z.

32. Chatterjee S, Byun YC. Voting ensemble approach for enhancing 
Alzheimer's disease classification. Sensors (Basel) 2022; 22: 7661. 
doi: 10.3390/s22197661.

33. Alp S, Akan T, Bhuiyan MS, Disbrow EA, Conrad SA, Vanchiere 
JA, et al. Joint transformer architecture in brain 3D MRI 
classification: its application in Alzheimer's disease classification. 
Sci Rep 2024; 14: 8996. doi: 10.1038/s41598-024-59578-3.

34. Zhang L, Wang L, Zhu D. Jointly analyzing Alzheimer's disease 
related structure-function using deep cross-model attention 
network. In: 2020 IEEE 17th International Symposium on 
Biomedical Imaging (ISBI). Iowa City, IA: IEEE; 2020. p. 563-7. 
doi: 10.1109/isbi45749.2020.9098638.

35. Xing X, Liang G, Zhang Y, Khanal S, Lin AL, Jacobs N. Advit: 
vision transformer on multi-modality pet images for Alzheimer 
disease diagnosis. In: 2022 IEEE 19th International Symposium on 
Biomedical Imaging (ISBI). Kolkata, India: IEEE; 2022. p. 1-4. doi: 
10.1109/isbi52829.2022.9761584.

36. Liu L, Liu S, Zhang L, To XV, Nasrallah F, Chandra SS. Cascaded 
multi-modal mixing transformers for Alzheimer's disease 
classification with incomplete data. Neuroimage 2023; 277: 
120267. doi: 10.1016/j.neuroimage.2023.120267.

37. Li C, Cui Y, Luo N, Liu Y, Bourgeat P, Fripp J, et al. Trans-ResNet: 
integrating transformers and CNNs for Alzheimer’s disease 
classification. In: 2022 IEEE 19th International Symposium on 
Biomedical Imaging (ISBI). Kolkata, India: IEEE; 2022. p. 1-5. doi: 
10.1109/isbi52829.2022.9761549.

38. Hu Z, Li Y, Wang Z, Zhang S, Hou W. Conv-Swinformer: 
integration of CNN and shift window attention for Alzheimer's 
disease classification. Comput Biol Med 2023; 164: 107304. doi: 
10.1016/j.compbiomed.2023.107304.

39. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Available 
from: http://adni.loni.usc.edu.

40. Sokolova M, Lapalme G. A systematic analysis of performance 
measures for classification tasks. Inf Process Manag 2009; 45: 427-
37. doi: 10.1016/j.ipm.2009.03.002.

41. Davis J, Goadrich M. The relationship between precision-recall and 
ROC curves. In: Proceedings of the 23rd International Conference 
on Machine Learning. New York, NY: Association for Computing 
Machinery; 2006. p. 233-40. doi: 10.1145/1143844.1143874.

42. Yu WY, Sun TH, Hsu KC, Wang CC, Chien SY, Tsai CH, et 
al. Comparative analysis of machine learning algorithms for 
Alzheimer's disease classification using EEG signals and genetic 
information. Comput Biol Med 2024; 176: 108621. doi: 10.1016/j.
compbiomed.2024.108621.

43. Abrol A, Bhattarai M, Fedorov A, Du Y, Plis S, Calhoun V. Deep 
residual learning for neuroimaging: an application to predict 
progression to Alzheimer's disease. J Neurosci Methods 2020; 339: 
108701. doi: 10.1016/j.jneumeth.2020.108701.

44. Lin W, Gao Q, Yuan J, Chen Z, Feng C, Chen W, et al. Predicting 
Alzheimer's disease conversion from mild cognitive impairment 
using an extreme learning machine-based grading method with 
multimodal data. Front Aging Neurosci 2020; 12: 77. doi: 10.3389/
fnagi.2020.00077.

45. Bae J, Stocks J, Heywood A, Jung Y, Jenkins L, Hill V, et al. 
Transfer learning for predicting conversion from mild cognitive 
impairment to dementia of Alzheimer's type based on a three-
dimensional convolutional neural network. Neurobiol Aging 2021; 
99: 53-64. doi: 10.1016/j.neurobiolaging.2020.12.005.

46. Pan X, Phan TL, Adel M, Fossati C, Gaidon T, Wojak J, et al. 
Multi-view separable pyramid network for AD prediction at MCI 
stage by 18F-FDG brain PET imaging. IEEE Trans Med Imaging 
2021; 40: 81-92. doi: 10.1109/tmi.2020.3022591.

47. Odusami M, Maskeliūnas R, Damaševičius R, Krilavičius T. 
Analysis of features of Alzheimer's disease: detection of early stage 
from functional brain changes in magnetic resonance images using 
a finetuned ResNet18 network. Diagnostics (Basel) 2021; 11: 1071. 
doi: 10.3390/diagnostics11061071.

48. Naz S, Ashraf A, Zaib A. Transfer learning using freeze features for 
Alzheimer neurological disorder detection using ADNI dataset. 
Multimed Syst 2022; 28: 85-94. doi: 10.1007/s00530-021-00797-3.

https://doi.org/10.1093/brain/awaa137
https://doi.org/10.1016/j.jrras.2023.100782
https://doi.org/10.1016/j.mri.2021.02.001
https://doi.org/10.1117/1.Jmi.8.2.024503
https://doi.org/10.1016/j.cogsys.2018.12.015
https://doi.org/10.1109/icosec49089.2020.9215402
https://doi.org/10.1371/journal.pone.0173372
https://doi.org/10.3390/brainsci10020084
https://doi.org/10.3390/brainsci10020084
https://doi.org/10.1109/cbms.2018.00067
https://doi.org/10.1109/iccmc51019.2021.9418294
https://doi.org/10.1109/iccmc51019.2021.9418294
https://doi.org/10.1109/jbhi.2021.3083274
https://doi.org/10.3390/electronics10030249
https://doi.org/10.1007/s11760-023-02586-z
https://doi.org/10.3390/s22197661
https://doi.org/10.1038/s41598-024-59578-3
https://doi.org/10.1109/isbi45749.2020.9098638
https://doi.org/10.1109/isbi52829.2022.9761584
https://doi.org/10.1016/j.neuroimage.2023.120267
https://doi.org/10.1109/isbi52829.2022.9761549
https://doi.org/10.1016/j.compbiomed.2023.107304
http://adni.loni.usc.edu
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1016/j.compbiomed.2024.108621
https://doi.org/10.1016/j.compbiomed.2024.108621
https://doi.org/10.1016/j.jneumeth.2020.108701
https://doi.org/10.3389/fnagi.2020.00077
https://doi.org/10.3389/fnagi.2020.00077
https://doi.org/10.1016/j.neurobiolaging.2020.12.005
https://doi.org/10.1109/tmi.2020.3022591
https://doi.org/10.3390/diagnostics11061071
https://doi.org/10.1007/s00530-021-00797-3

