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Introduction

Breast cancer (BCA) remains the most commonly
diagnosed cancer globally and is a leading cause of
cancer-related mortality among women. According
to the most recent global data published by the World
Health Organization (WHO) in 2024, BCA caused
approximately 670,000 deaths worldwide in 2022 and was
the most prevalent cancer among women in 157 out of
185 countries.! In the United States, based on the latest
projections by the American Cancer Society for 2025, an
estimated 316,950 new cases of invasive breast cancer and
42,170related deathsare expected.? A comprehensive study
by Giaquinto et al. reported a 1% annual increase in BCA
incidence from 2012 to 2021, with a steeper rise among
women under 50, particularly within Asian American
and Pacific Islander populations.” These updated figures
emphasize the ongoing global burden of BCA and
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underscore the necessity for continues advancements in
prevention, early detection, and access to care. Despite
medical advancements, BCA is still frequently diagnosed
at advanced stages, particularly in developing countries
where adequate screening, diagnosis, and treatment
options are lacking. The survival rate is approximately
73% in developed countries compared to just 57% in
developing countries, which emphasizes the importance
of early screening.*’

Artificial intelligence (AI) is defined as the use of
techniques that enable computers to mimic human
behavior and develop intelligent machines capable
of performing tasks at or above the level of human
intelligence.® In the field of medicine, there are two
main branches of AL virtual and physical. The virtual
branch utilizes informatics approaches, employing
deep learning and information management to oversee
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health management systems, including electronic health
records. It also provides active guidance to physicians in
their treatment decisions. The physical branch primarily
involves robots that assist surgeons or elderly patients,
as well as targeted nanorobots that offer a unique drug
delivery system.” When it comes to drug design in
pharmaceutical companies, the most common obstacles
are time constraints and production costs.® Other
challenges include low efficacy, inaccurate target delivery,
and inappropriate dosing.’

Al, including deep learning (DL) and machine
learning (ML) algorithms, has become integral to the
drug development process. Machine learning is widely
used in medicine for developing automated clinical
decision systems, discovering unknown associations, and
generating novel hypotheses to drive research.” These
machinelearning approaches are classified into supervised
and unsupervised methods. Supervised methods are
employed for risk assessment in anticoagulant therapy,'!
arrhythmia detection in electrocardiograms,"” and the
detection of lung micronodules from chest X-rays."” In
contrast, unsupervised learning is used to identify hidden
patterns in data and is often applied for data exploration
and generating novel hypotheses. It can analyze treatment
effectiveness compared to placebos without human
involvement, thereby reducing ethical concerns about
drug side effects for participants. Moreover, deep learning
a branch of machine learning that utilizes artificial neural
networks with multiple layers, simulate the workings of
the human brain. This enables technology to generate
automated predictions based on training datasets with
remarkable accuracy and precision."

Machine learning and deep learning algorithms are
increasingly being applied across various stages of drug
discovery. These applications include peptide synthesis,
molecular design, virtual screening, molecular docking,
quantitative structure-activity relationship (QSAR)
analysis, drug repurposing, protein misfolding analysis,
protein-protein interaction studies, molecular pathway
identification, and pharmacology research.* The Al
technology has made significant contributions to the
diagnosis and treatment of various types of cancer,
including breast cancer. With advancements in cancer
screening, diagnosis, and treatment, it is evident that Al-
guided care can play a crucial role in clinical practice.'>'

Immunology of breast cancer

Immunology

Breast cancer, an early-stage malignancy, has seen
improved patient survival rates due to targeted therapies
thatcounteracttumorsdrivenbytyrosinekinaseactivation,
with FDA-approved HER2-targeted treatments playing a
pivotal role.” The importance of the interactions between
tumor cells and the immune system in influencing BCA
prognosis and treatment responses is becoming more

evident. BCA, a diverse disease, is categorized into three
primary subtypes based on hormone receptor (HR) status
(estrogen receptor [ER] and progesterone receptor [PR])
and the presence of human epidermal growth factor
receptor 2 (HER2): HR-positive/HER2-negative (luminal
type, accounting for over 70%), HER2-positive (15-20%),
and HR- and HER2-negative, also known as triple-
negative breast cancer (TNBC, approximately 15%).
Hormone therapy is appropriate for patients with ER- and
PR-positive hormone receptors, whereas targeted therapy
is ideal for those with HER2-positive status in clinical
practice.'”® Genomic-level approaches have improved
breast cancer treatment. Increased expression of human
epidermal growth factor receptor 2 (Her-2/neu) occurs in
15-30% of BCA cases, leading to a more aggressive tumor
phenotype and reduced survival. The use of monoclonal
antibodies (mAbs), such as pertuzumab and trastuzumab,
targeting Her-2/neu, effectively treats BCA and improves
prognosis (Fig. 1)."

Rimawi et al found that HER2 (ErbB2), a member of
tyrosine kinase receptors (HERI-4), plays a major role
in 20% of BCA development. Recent years have seen
the introduction of anti-HER2 monoclonal antibody
trastuzumab as a means to tackle these aggressive BCA
subtypes.”® Vaccine production can activate the host's
innate immune system to overcome resistance and tumor
recurrence. Consequently, scientists have been studying
anti-HER2 targeted therapies with complementary or
synergistic mechanisms to treat patients with HER2-
positive metastatic BCA.”» To improve treatment
outcomes, next-generation sequencing has allowed for
the analysis of cancer genomes and transcripts, resulting
in the establishment of several databases such as The
Cancer Genome Atlas (TCGA), the National Institutes
of Health (NIH), and the International Cancer Genome
Consortium (ICGC), which are widely used to expand
treatment options for BCA patients.”? These databases
encompass data on single-gene mutations, genomic
structural abnormalities, and mRNA and protein
expression levels, facilitating the identification of new
anticancer drugs. Yoshimaru et al highlighted three
molecular targets, such as MELK, TOPK, and BIG3, that
are highly overexpressed in various cancers, especially
in BCA. Their research showed that dominant-negative
peptides exhibit selective inhibitory effects. Furthermore,
leveraging this molecular mechanism to restore the
innate tumor-suppressive activity of PHB2 could offer a
treatment option for resistant BCA without reducing the
patient's lifespan.?? BCA consists of various histological
and molecular subtypes, each showing different levels
of immunogenicity and responsiveness to immune
therapies. This can limit immunologic-based treatment as
patients may not respond to a single immunotherapy.*

Immunotherapy in BCA treatment incorporates
different types of vaccines, including protein-based,
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Fig. 1. HER2/EGFR Signaling Pathway in Breast Cancer and anti-HER2 treatment. (A) The role of HER2 in BCA and differences between the normal
and abnormal BCA, so that the immunotherapy can stop cancer cells. (B) The intricate signaling cascade involving the Human Epidermal Growth Factor
Receptor 2 (HER2) is significantly influenced by the application of monoclonal antibodies, which possess the remarkable ability to not only suppress the
proliferation of cells that express HER2 but also to actively promote apoptotic cell death through a variety of mechanisms that can be classified as either
intracellular or extracellular; this is primarily achieved by the specific targeting of HER2-positive cellular entities, leading to the subsequent processes of
receptor internalization and degradation, ultimately contributing to the therapeutic efficacy observed in the treatment of certain malignancies characterized

by HER2 overexpression. Created with BioRender.com (Used with permission).

peptide-based, bacterial or viral-based, DNA/RNA-
based nucleic acid vaccines, and immune cell-based
vaccines. These approaches are classified as active
immunotherapies.” However, there are limitations in
the immunotherapeutic methods for BCA, such as the
efficient delivery of drugs to the cancer site. This challenge
can potentially be addressed by using nanostructures
designed to enhance antigen stability, promote antigen
presentation, and stimulate the immune response.”

Al into cancer immunotherapy

AI has emerged as a transformative force in modern
oncology, with particular promise in the field of
cancer immunotherapy. While immunotherapy has
revolutionized cancer treatment by leveraging the host’s
immune system to target and eliminate tumor cells, its
clinicalapplicationisoftenlimited bypatientheterogeneity,
variable responses, immune escape mechanisms, and

challenges in selecting optimal therapeutic strategies.
Integrating AI into immunotherapy workflows offers
solutions to many of these challenges through advanced
data analysis, predictive modeling, and real-time clinical
decision support. This section explores the multifaceted
applications of Al in cancer immunotherapy.*
Enhancing biomarker discovery

One ofthe critical areas where AT has significantly impacted
cancer immunotherapy is in biomarker discovery.
Traditional biomarker identification is labor-intensive
and often constrained by the limitations of human
interpretation and statistical tools. AI, particularly through
ML and DL algorithms, enables high-throughput analysis
of multi-omics data such as genomic, transcriptomic,
and proteomic datasets to uncover novel biomarkers
predictive of immunotherapy response. AI models have
demonstrated high accuracy in identifying clinically
relevant biomarkers such as PD-L1 expression, tumor
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mutational burden (TMB), and microsatellite instability
(MSTI), all of which are instrumental in stratifying patients
for immune checkpoint inhibitor (ICI) therapy.?” %
According to Olawade et al, supervised ML algorithms
such as random forest and support vector machines
(SVM), as well as DL methods like convolutional neural
networks (CNNs), have been effectively applied to
analyze complex biological data. These tools can detect
subtle patterns and correlations that might be overlooked
using traditional bioinformatics approaches. For instance,
AT has facilitated the identification of gene signatures
associated with favorable responses to PD-1 and CTLA-4
blockade therapy, thereby supporting the development of
personalized immunotherapy regimens.*
Predicting patient response and adverse events
Another major application of Alin cancer immunotherapy
liesinthe prediction of patientresponsesand theassessment
of potential adverse effects. Not all patients benefit from
immunotherapy, and some may experience immune-
related adverse events (irAEs), which can be severe and life-
threatening. Al-based predictive models integrate diverse
patient data including genomic alterations, immune
signatures, imaging data, and electronic health records
(EHRs) to forecast treatment responses and identify those
at higher risk of toxicity.* For example, gradient boosting
machines, logistic regression models, and multi-layer
perceptrons (MLPs) have been employed to predict the
effectiveness of ICIs in cancers such as melanoma, breast,
and non-small cell lung cancer.’® Al-driven analysis of pre-
treatment histopathological slides has also shown promise
in predicting PD-1 therapy responsiveness, offering a non-
invasive and scalable method to guide treatment decisions.
Moreover, Al tools can forecast the onset of irAEs using
baseline immunological and clinical parameters, thereby
enabling early intervention and improving patient safety.
Optimizing combination therapies
Immunotherapy is increasingly being used in combination
with chemotherapy, radiotherapy, or targeted therapies
to enhance efficacy and overcome resistance. However,
identifying the optimal combination regimen and
sequencing strategy is highly complex. AI can address
this challenge by analyzing real-world clinical data and
simulating treatment outcomes to identify synergistic
combinations tailored to individual patients.
Reinforcement learning models and Bayesian networks
have been applied to evaluate clinical trial data and real-
world evidence to predict the most effective combination
protocols.”® These Al systems can model how immune
responses change in the presence of different therapeutic
agents and help clinicians fine-tune dosages and schedules.
Olawade et al emphasize that AI not only accelerates
the discovery of effective treatment combinations but
also reduces reliance on traditional trial-and-error
approaches, thereby improving therapeutic outcomes and
patient quality of life.

Accelerating drug discovery and target identification

Drug development in immuno-oncology is a time-
consuming and expensive process. Al accelerates this
process by enabling the rapid identification of novel
therapeutic targets and potential drug candidates.
Through techniques like unsupervised ML (e.g., clustering
and principal component analysis) and DL models
including generative adversarial networks (GANs), Al
can analyze massive datasets to identify actionable targets
such as neoantigens tumor-specific mutated proteins that
are ideal candidates for vaccine development.***

Additionally, AI models have been successfully
deployed in virtual screening and molecular docking to
simulate drug-target interactions. This allows researchers
to predict the binding affinity and pharmacological
properties of new compounds with unprecedented
speed and accuracy. Graph neural networks (GNNs),
for example, have been used to model the 3D structure
of immune checkpoints and screen for novel inhibitors,
dramatically shortening the drug development timeline
and lowering associated costs.*

ML has brought transformative progress to molecular
docking studies, particularly within the realm of
immunotherapy drug discovery.”” These studies aim to
simulate and predict how small molecules, such as drugs,
interact with biological targets like proteins a process
essential for designing potent immunotherapeutic
compounds.”” Conventional docking techniques often
struggle with accurately modeling three-dimensional
molecular interactions due to their inherent complexity.
However, the integration of ML technologies, such as
deep learning architectures and reinforcement learning
frameworks, has markedly enhanced the precision
and robustness of these predictions.® By leveraging
large-scale datasets of protein-ligand interactions, ML
algorithms are now capable of generating highly accurate
binding conformations, even for challenging targets like
neoantigens and immune checkpoint molecules. This
technological advancement not only increases the fidelity
of molecular interaction predictions but also accelerates
the screening and identification of promising therapeutic
candidates. As a result, it significantly reduces the time
and financial resources required by conventional drug
development pipelines. For an in-depth discussion of
computational approaches including target identification,
molecular docking, and molecular dynamics simulations
readers are referred to our recent study, where we
evaluated commonly used tools, their algorithms, and
practical applications.®

Ultimately, the application of ML in molecular docking
is proving instrumental in the efficient design of next-
generation immunotherapies, including checkpoint
inhibitors and personalized cancer vaccines, thereby
reshaping the future of immunotherapy research and
development. ¥
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Real-time monitoring and adaptive therapy

Beyond diagnostics and drug development, AI is also
being integrated into patient monitoring systems to
enable real-time assessment of treatment response and
adaptive therapy. Using time-series analysis and DL
algorithms such as long short-term memory (LSTM)
networks, Al can interpret data from wearable biosensors,
imaging modalities, and EHRs to detect early signs of
treatment response or adverse reactions. This continuous
feedback allows clinicians to adjust treatment protocols
dynamically, personalizing therapy based on evolving
patient needs.**°

For instance, changes in physiological markers such
as heart rate, oxygen saturation, or inflammatory
cytokine levels can be flagged by AI systems as potential
indicators of immune-related toxicity, prompting timely
intervention. This not only improves clinical outcomes but
also enhances patient safety and adherence to treatment.”
Improving clinical trial design
Al is revolutionizing clinical trial design by improving
patient recruitment, stratification, and protocol
optimization. Traditional clinical trials often face challenges
in enrolling appropriate participants, particularly for
rare cancer subtypes or precision immunotherapies. Al
addresses this gap by analyzing clinical and molecular data
to match patients with suitable trials based on predicted
treatment responses.*

Natural language processing (NLP) and ML algorithms
can process unstructured EHR data to identify eligibility
criteria and generate trial cohorts more efficiently.”
Al-driven simulation models also enable adaptive trial
designs, allowing real-time modification of protocols
based on interim results. This not only improves the
probability of trial success but also reduces time and
resource expenditures in the development pipeline.**
Role of Al in studying tumor-immune interactions
Al has emerged as a transformative tool in oncology,
particularly in deciphering the complex interactions
between tumors and the immune system. In BCA, Al-
driven approaches are enhancing our understanding
of the tumor immune microenvironment (TIME),
predicting responses to immunotherapy, and guiding the
development of personalized treatment strategies.*

One significant application of AI is in analyzing
histopathological images to assess immune cell
infiltration within tumors. For instance, researchers at
Karolinska Institute utilized AT models to evaluate tumor-
infiltrating lymphocytes (TILs) in triple-negative breast
cancer (TNBC), demonstrating that AI can effectively
predict patient prognosis by quantifying immune cell
presence. Similarly, deep learning algorithms have been
employed to predict tumor and immune phenotypes
from histopathology slides, achieving high accuracy in
classifying gene expression pathways and offering insights
into the spatial distribution of immune cells.*

Beyond image analysis, AI is instrumental in
interpreting multi-omics data to unravel the complexities
of tumor-immune interactions. Explainable AI (XAI)
models have been applied to RNA sequencing data from
BCA patients to identify critical immune components
associated with improved survival. For example, a study
revealed that higher fractions of CD4+T cells and B
cells within the tumor microenvironment correlate with
better 5-year survival rates in both TNBC and non-TNBC
patients.”’

Furthermore, Al facilitates the prediction of
immunotherapy efficacy by integrating diverse datasets,
including genomic, transcriptomic, and proteomic
information. By modeling the intricate dynamics of the
TIME, Al algorithms can identify biomarkers indicative of
positive responses to treatments like immune checkpoint
inhibitors, thereby aiding in patient stratification and
personalized therapy planning. In summary, Al serves asa
powerful ally in cancer immunotherapy research, offering
advanced analytical capabilities to decode tumor-immune
interactions. Its applications in image analysis, multi-
omics integration, and predictive modeling are paving the
way for more precise and effective immunotherapeutic
interventions in breast cancer.

Breast cancer screening

As BCA, along with lung and colorectal cancers, are
the most common cancers worldwide,”® BCA screening
guidelines have been developed to improve decision-
making for physicians and increase awareness of its
importance globally.*** Screening for BCA is highly
effective in detecting early-stage disease, improving
patient survival rates, enhancing women's healthcare, and
enabling timely diagnosis and treatment. The American
Cancer Society recommends annual screenings for
women aged 45-54 and biennial screenings for those aged
55 and older.” Diagnostic approaches for BCA include
clinical examination, mammography, ultrasound, core-
needle biopsy, and molecular genetic analysis.> The
treatment plan is based on the tumor profile, biomarker
assessment, and potential risk factors associated with
tumor recurrence. The standard mortality rate (SMR)
index algorithm, known as PSI, is utilized to assess BCA
prognosis and predict treatment benefits.”® The cancer
screening via Al application showed in Table 1.

Sonography

Screening modalities for BCA include automatic breast
ultrasound, contrast-enhanced ultrasound, three-
dimensional ultrasound, and computer-aided detection
of breast ultrasound.” Ultrasonography is widely used,
particularly for women with dense breasts, due to
its accessibility and convenience and a high negative
predictive value of 99.5% in classifying benign solid
lesions. The Breast Imaging Report and Data System (BI-
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Table 1. Overview of Al applications in breast cancer screening and clinical care

Category Al Application  Details Benefits Limitations/Challenges References
Automated analysis of
. mammograms, MRIs, and Improves diagnostic accuracy, Issues with data quality,
Early Al-driven . K e sa.56
. . . . ultrasounds to identify subtle reduces human error, and model generalization, and
Detection imaging analysis S ) ) . .
patterns for early-stage breast enables earlier diagnosis. ethical considerations.
cancer detection.
CNNs distinguish high-risk
. A & & . Facilitates personalized Limited interpretability and
Risk assessment individuals from low-risk groups ) . R . . 5
. . L screening and prevention reliance on high-quality
models by analyzing genetic and clinical .
strategies. datasets.
data.
Identifies imaging-genomic . . .
; ) Enables non-invasive Requires large datasets
. . . correlations (e.g., BRCA mutations) . . ; 259
Diagnosis Deep learning o . . diagnostics and biomarker- and robust computational g
and facilitates radio-genomic . .
X . . based therapies. infrastructure.
analysis for biomarker discovery.
Natural Extracts key details from clinical . .
Streamlines data organization Accuracy depends on data 6062
language notes and reports to support ) ;
. . K and reduces workload. input quality.
processing diagnosis and treatment.
Matches new patient cases Particularly useful in complex . . .
Case-based . . P X y . P Limited database size can 63,60
. with historical cases to support cases with inconclusive )
reasoning . . . . . . affect accuracy.
diagnostic decisions. traditional diagnostics.
Tracks patient progress, monitors  Enhances diagnostic accuracy, . . I
. . P prog . . . & . v Limited scalability in resource- o
Treatment Arianna solution adherence, and provides patient satisfaction, and cost- ) .
. . constrained settings.
reminders for follow-ups. effectiveness.
Encodes DNA methylation .
DNA v . Requires robust data
Recurrence ) patterns to model recurrence risk - - ) . 6668
. methylation ) R . ) Enhances prediction accuracy. annotation and high-quality
Prediction . using machine learning algorithms
analysis datasets.
(e.g., SVMs, neural networks).
R Assesses genes' contributions to - . . . .
Gene weight g X X K Identifies novel biomarkers Computationally intensive and 6071
) recurrence risk using techniques B . )
analysis . for tailored interventions. resource-dependent.
like SHAP values.
I . . Lacks integration with
Calculates lifetime risk using mammo rga hic density data
Risk Models  Gail model patient history (e.g., age, family Simple and widely used. erap ¥ 7

Tyrer-Cuzick
model

BCSC model as a key risk factor along with
demographic and clinical data.
Al Analysis mammograms for texture

Mammographic
Phenotyping

history, reproductive history).

Incorporates genetic, hormonal,
and familial factors for risk
prediction.

Integrates mammographic density

patterns, density variations, and
subtle features.

Provides more accurate risk
predictions, especially for

individuals with family history.

Enhances accuracy by
leveraging imaging data.

Supports individualized risk
assessment and prevention
strategies.

and underestimates risk in
some cases.

Data complexity can hinder
widespread use. Additionally,
it was first developed in non-
Hispanic White women

Requires mammographic data
integration.

Requires advanced DL models
and high-quality imaging
datasets.

72-74

75,76

77

RADS) established by the American College of Radiology
(ACR), standardizes reporting across mammography,
ultrasonography, and MRI, reducing variability and
enabling seamless integration with digital mammography
and CAD systems.””® Given the higher cost of
mammography, sonography is often employed as a first
line screening tool, especially in developing countries as it
is available and better tolerated by patients.*

Mammography

Mammography remains the preferred method for
early breast cancer detection due to its accuracy, wide
availability, and cost-effectiveness in saving years of life.®

Most national guidelines recommend mammographic
screening for women aged 40 and older.**® Studies show
mammography reduces BCA mortality by about 40% in
average-risk women aged 40-74.%% Annual screening for
women aged 40-49 is also supported to reduce mortality,
with particularly strong evidence for women aged 50 and
above.® Screening decreases the incidence of advanced
cancer and is currently the only proven test to lower
BCA death rates.®* Guidelines typically advise annual
or biennial mammography for average-risk women aged
40-74. High risk individuals may benefit from earlier and
more frequent screening, including annual MRL*' There
might be some challenges in screening patients with
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mammograms including a false positive result- recalls
for additional testing that ultimately reveal cancer- and
overdiagnosis, where detected cancers would not have
caused clinical symptoms.”? Reported overdiagnosis rates
vary widely from (0%-57%), raising concerns about their
accuracy.”? False-negative occur in about 20% of cases
especially in lobular carcinomas and dense breast tissue.”
AT algorithms can automatically analyze mammograms,
reducing radiologists’ workload and improving detection
rates by highlighting suspicious areas.””*® A 2023 study
demonstrated that a deep learning model improved BCA
risk prediction in Asian women compared to traditional
models.”

Advanced deep learning techniques enhance
mammogram analysis through Dual Models and U-Net
segmentation. Dual Models, combine one model that
detects macro-level features such as breast density
with another focusing on micro-level features such as
microcalcifications for comprehensive analysis.'” The
U-Net, is a CNN architecture designed for biomedical
image segmentation.'®! It captures spatial and contextual
details to accurately outline suspicious regions, aiding
precise localization and diagnosis.'>'*

Thermography

Infrared thermography (IRT) has emerged as a promising
adjunctive modality for BCA screening. Unlike traditional
imaging techniques such as mammography, which rely on
structural visualization, IRT detects subtle temperature
differences on the surface of the skin that may reflect
underlying pathological processes. These thermal
patterns are influenced by changes in vascularization,
metabolism, and inflammation, which are often present
in malignant tissue even before a structural abnormality
becomes apparent. IRT is completely non-invasive,
radiation-free, and painless, making it particularly
appealing for use in younger women or individuals with
dense breast tissue, where mammographic sensitivity may
be limited. Recent studies have explored the integration
of thermographic imaging with AI to enhance diagnostic
accuracy.'®'® For instance, a study by Jalloul et al
evaluated multiple deep learning and machine learning
algorithms using thermographic datasets, and reported
that the combination of ResNet152 and SVM achieved
an impressive classification accuracy of over 97%, along
with high sensitivity and specificity.' Similarly, Chi et
al proposed a lightweight, high-accuracy framework by
integrating pre-trained CNNs with statistical feature
selection methods, such as the chi-square filter, followed
by SVM-based classification. Their model not only
reached a peak accuracy of 99.62% on benchmark datasets
but also maintained low computational complexity,
making it a practical choice for real-time, computer-
aided diagnosis.'"” These findings highlight the potential
of Al-powered thermography in distinguishing between

healthy, benign, and malignant breast tissue.

Notably, clinical validation of Al-assisted thermography
has also begun to emerge. A multicenter prospective
study by Singh et al evaluated Thermalytix, an automated
thermographic screening algorithm, in 258 symptomatic
women. When compared to standard diagnostic
modalities, Thermalytix showed non-inferior sensitivity
(82.5%) and significantly higher specificity (80.5%)
relative to mammography (45.9%) under BI-RADS 3
criteria. Interestingly, the method maintained strong
diagnostic performance across age groups, achieving an
AUC of 0.845 overall. These findings support the clinical
utility of Al-enhanced thermography as a supplemental
tool for early BCA detection, particularly in settings
where conventional imaging may be inaccessible or
suboptimal.!® In a recent systematic review and meta-
analysis, the researchers evaluated 22 clinical studies
published since 2001 that investigated the diagnostic
performance of digital infrared thermography for
BCA. The meta-analysis reported a pooled sensitivity
of 88.5% and specificity of 71.8%, indicating that while
thermography is generally effective in identifying
malignant cases, its ability to rule out non-cancerous
findings has been more variable. Importantly, the review
highlighted substantial heterogeneity across studies,
attributed to differences in imaging protocols, patient
selection, device quality, and interpretive criteria. Despite
these limitations, the authors concluded that recent
studies show performance levels approaching those of
standard diagnostic tools, particularly in populations
with dense breast tissue or limited access to conventional
screening.'”

Despite its promise, thermography still faces
limitations, including variability in imaging protocols,
environmental dependencies, and the need for
standardized interpretation frameworks. Nonetheless,
when used alongside conventional methods, it may serve
as a valuable tool in early detection strategies, particularly
in resource-limited settings or for individuals seeking
radiation-free alternatives.!’

Magnetic resonance imaging (MRI)

Among breast cancer screening methods, MRI is highly
sensitive (over 90%) in detecting breast masses and is
notable for its high negative predictive value."""'" It is
especially valuable for women with BRCA1 and BRCA2
mutations and those with a life-time risk of 20-25% or
higher, as determined by factors such as family history, prior
radiation therapy, or genetic predisposition."'®* Current
guidelines recommend annual MRI screening alongside
annual mammography for those high-risk groups, as this
combination increases detection sensitivity, particularly
in women aged 40-49 and even more so in the 50-69 age
group.'?"'# MRI is also clinically useful for local staging
before breast cancer surgery and for evaluating patients
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with chronic kidney disorders, since the use of gadolinium
contrast can impair renal function and may lead to
nephrogenic systemic fibrosis.!'>!?*12 Recent advances in
AT have enabled the use of radiomics, where quantitative
features extracted from MRI scans can help predict the
likelihood of breast cancer of recurrence.'” Radiomics
can assist clinicians in distinguishing between low-
grade and high-grade cancers prior to surgery, providing
valuable insights into tumor characteristics and supporting
preoperative assessment of cancer aggressiveness, thereby
guiding treatment decisions (Fig. 2).'*

Digital breast tomosynthesis (DBT)
DBT is a technique that uses multiple low-dose

Patient 1

Patient 2

mammographic images of the compressed breast,
which are then reconstructed into synthesized 2D
projection images."”*?* DBT creates a three-dimensional
reconstruction of the breast, providing clearer and more
detailed images compared to traditional 2D mammography,
which helps in identifying abnormalities that may be
missed in standard mammograms due to tissue overlap.
It is proven that the combination of DBT with digital
mammography can increase the screening and diagnosis
rate, with a sensitivity of 33%-53% and a specificity of
30%-40 %.°°"* DBT has several advantages, including
reducing tissue overlap, detecting more findings in dense
breast tissue, decreasing false negatives, and improving
mass characterization.””"** One study found a significant

Patient 3 Patient 4

Individual

information

59-year-old female

31-year-old female

64-year-old female

54-year-old female

Clinical subtype HR+HER2- HR+HER2+ HR-HER2+ TNBC
L RS = 10.53 RS = 90.64 RS =1.77 RS =7.82

Randiomic risk | Randiomic high risk of | Randiomic high risk of Randiomic high risk of Randiomic high risk of
level recurrence recurrence recurrence recurrence

Clinical outcome

Recurrence at 42 months
Death at 70 months

Recurrence at 11 months
Death at 23 months

Recurrence at 15 months
Death at 24 months

Recurrence at 19 months
Death at 26 months

Patient 5

Patient 6

Patient 7

Patient 8

Individual
information

48-year-old female

58-year-old female

49-year-old female

64-year-old female

Clinical Subtype

HR+HER2-

HR+HER2+

HR-HER2+

TNBC

Randiomic risk
level

RS = 0.01
Randiomic low risk of
recurrence

RS =0.09
Randiomic low risk of
recurrence

RS = 0.05
Randiomic low risk of
recurrence

RS =0.01
Randiomic low risk of
recurrence

Clinical outcome

Recurrence at 74 months
Alive at 74 months

Recurrence at 96 months
Alive at 96 months

Recurrence at 92 months
Alive at 92 months

Recurrence at 86 months
Alive at 86 months

Fig. 2. Classification of breast cancer patients based on radiomic features and clinical variables. This figure illustrates the classification of breast cancer
patients into high-risk and low-risk categories using a radiomic risk model. The model integrates radiomic features from Dynamic Contrast-Enhanced
MRI (DCE-MRI), such as texture, shape, and intensity, alongside clinical variables including HER2 status, hormone receptor (HR) status, and tumor size.
Patients in the high-risk group show irregular tumor shapes and high heterogeneity, while those in the low-risk group exhibit more homogeneous features.
The model enables improved prediction of tumor recurrence, highlighting the potential for personalized treatment strategies.'? Reprinted from You et al,'®”
under the terms of the Creative Commons Attribution-Noncommercial-No Derivatives 4.0 International License.
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increase in cancer detection in patients who underwent other patient data, including the genetic information and
screening with DBT after three years of follow-up.” clinical history, to provide a comprehensive assessment of
Deep Learning models on large datasets of DBT images BCA risk and perform a personalized treatment decision.'*
would recognize patterns to indicate BCA. Models such as

CNNss are particularly effective in analyzing the complex Al in breast cancer screening

structures in DBT images. Using Al to extract relevant Late-stage diagnosis remains a major obstacle to improving
features from DBT images, such as the shape, texture, and survival rates, especially in developing countries with
density oflesions can help in distinguishing between benign limited access to screeningand diagnostic resources, despite
and malignant tissues. Al algorithms can analyze the 3D advancements in medical research and technology. This
images generated by DBT to detect tumors with greater article delves into the role of Al technologies in addressing
accuracy than traditional 2D mammography. This leads crucial challenges in the healthcare and pharmaceutical
to improved detection rates and fewer false positives.'* industries.!*"¥ By automating imaging analysis and
AT can also enhance the visualization of DBT images by employing predictive algorithms, Al has the potential to
focusing on the suspicious lesions and providing clearer transform BCA detection, leading to timely diagnosis and
views of dense breast tissue, which is often challenging treatment and ultimately enhancing patient outcomes and
to interpret with conventional imaging techniques."”” In survival rates. Fig. 3 presents a comprehensive flowchart

addition, it is noted that Al can integrate DBT images with illustrating the functions of Al in BCA.

Input data Genomic Data Analysis Radiemics and Imaging Analysis
o 7
ry - . - ' U .
Genomic Analysis Database Search Thermography X-ray Ultrasound Computed
+ Genomic data + The Cancer Genome Tomography
+ Next-generation Atlas (TCGA)
sequencing (NGS) + Catalogue of Somatic Radiographic features associated with HRD-positive tumors, such as
« Bioinformatics tools Mutations in Gancer tumor heterogenity, texture patterns, and angiogenesis
{COSMIC)
Al/ML Bioinformatics Workflow Convolutional Neural Network (CNN) .
- s ~TRUCK
- VAN
L =

d [t

I - POOLING POOLING s cD “BieveLE
CONVOLUTION CONVOLUTION | e V[CONNECHED
: +RELU + RELU FLATTEN SOFTMAX
Next Generation  Automated AI/ML based analysis is
Sequencing faster and reSOUrCeful FEATURE LEARNING CLASSIFICATION
Statistical analysis Biomarker identification Biological interpretation Pathway analysis
Voleano plot -
Improve predictive = | ° i “Em
accuracy and = = o
biomarker . £ s — .
s < =
discovery %, z L == @
. e < e
: U 5 10 15 20 25 30 35 40 T: l
Volume {ml) R @
I
HRD-positive
tumor
l' Breast Cancer: + BRCA1 « CHEK2 » RAD50
1. Tumor Heterogeny + BRCA2 « FANCA » RAD51
2. Microcalcifications O LuLL 0 LZUTdE o B
: c + BARD1 s MRE11A  « RAD5IC
3. Necrosis and Hemorrhage + BRIP1 « NBS1 + RAD52
4. Enhancement Patterns * CHEK1 « PALB2 * RAD54L

Fig. 3. The intricate flowchart detailing the procedures for diagnosing and treating breast cancer, which is continuously enhanced by the advancements
in Al, plays a crucial role in facilitating the identification of novel therapeutic targets, innovative drug candidates, potential biomarkers, and other related
aspects in the field. Created with BioRender.com (Used with permission).
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Al-driven solutions for early detection, diagnosis, and
treatment

Early detection and accurate diagnosis of BCA are
paramount in improving patient outcomes and survival
rates. Whenidentifiedatan early stage, BCA ismorelikelyto
be treated successfully, with a broader range of therapeutic
options and a lower likelihood of metastasis. The capacity
of Al to incorporate and refine its understanding from
data over time imbues it with significant potential as a
tool for personalized medicine.”® Specifically, Al-driven
systems can support radiologists in the interpretation of
mammograms, mitigating human error and augmenting
diagnostic precision. These systems can determine slight
patterns that might evade human observation, ultimately
facilitating earlier and more accurate detection of BCA.
Moreover, Al is instrumental in developing predictive
models that assess an individual’s risk of developing BCA
based on their genetic profile, lifestyle, and other factors.
These models can guide personalized screening strategies
and preventive measures, ultimately improving patient
outcomes.'** Al also plays a critical role in the treatment of
BCA (Table 2). It helps to devise personalized treatment
plans by analyzing data from previous cases to predict how
a patient might respond to different treatment plans. This
ensures that patients receive the most effective treatments
with the least side effects, enhancing their quality of life
and their prognosis. Table 3 will summarize recent Al-
based models specifically designed for predicting breast
cancer prognosis (e.g., recurrence risk, survival rates) and
optimizing personalized treatment strategies.

1. ML: A subset of Al that enables computers to learn
from data and improve their performance over time
without being explicitly programmed. ML algorithms
can classify images, detect tumors, and predict patient
outcomes based on historical data.

1.1. SVMs: SVMs are among ML techniques for
classification tasks that find the optimal hyperplane for
different classes in the feature space. SVMs have been
used to classify BCA subtypes and predict consequences
based on histopathological features.'*®

2. Deep learning algorithms: A more advanced subset
of ML that uses neural networks with many layers (hence
"deep") to analyze data. Al algorithms, particularly deep
learning models, can analyze mammograms, MRIs, and
ultrasound images with high precision. These models are
trained on large datasets to identify subtle patterns and
abnormalities that may be indicative of early-stage BCA.

2.1. DL in radio-genomics: Radio-genomics integrates
radiological imaging with genomic data to improve the
diagnosis and treatment plan. Deep learning models
can analyze radiological images to extract features that
correlate with specific genetic mutations. For example,
specific imaging characteristics may contribute to
mutations in BRCA1 and BRCA2.'” The impact of radio-
genomics in predictive modeling and biomarker discovery

can lead to the development of non-invasive diagnostic
tests and targeted therapies.!®*'%

2.2. DL in risk assessment: The advantages of CNNs
are studied and compared with traditional radiographic
texture analysis (RTA) in distinguishing between high-
risk and low-risk subjects. The consequences demonstrate
that CNNs performed similarly to RTA in distinguishing
BRCA1/2 carriers and low-risk women, while noticeably
better in distinguishing unilateral cancer patients and
low-risk women."”® Although the opportunities of DL
outweigh the limitations, there are some challenges
worth mentioning, including data quality, model
interpretability, generalization, and ethical considerations
that are necessary to integrate deep learning into clinical
practice successfully.

3. Computer-aided detection (CAD): A type of deep
learning model specifically designed for analyzing visual
data. CNNs are highly effective in detecting features in
images, such as tumors in mammograms, by automatically
learning to identify patterns and structures associated
with BCA. These systems can reduce the likelihood of
human error and increase diagnostic accuracy. Some
positive aspects of CNN include:

3.1. Tumor detection: CNNs can be trained to detect
tumors in mammograms and other breast imaging
modalities with high sensitivity and specificity. They can
identify subtle patterns that may be missed by radiologists,
leading to earlier and more accurate diagnoses.'*

3.2. Image segmentation: CNNs can segment medical
images to delineate the boundaries of tumors and other
structures within the breast. This is crucial for accurate
measurement and assessment of tumor size and local
spread.'®

3.3. Risk prediction: By analyzing imaging data alongside
other clinical information, deep learning models can
predict a patient's risk of developing BCA, aiding in
personalized screening and prevention strategies.'”!

4. NLP: A branch of AT that focuses on the interaction
between computers and human language. In the context
of BCA detection, NLP can be used to analyze clinical
notes and reports to extract relevant information for
diagnosis and treatment planning.

5. Case-based reasoning (CBR): CBR is a method used
by AI systems to solve new problems by drawing on the
experiences of past cases. This approach involves four key
steps: first, retrieving relevant past cases; second, reusing
the knowledge gained from those cases to solve the
current problem; third, revising the solution based on any
new information; and finally, retaining the knowledge
gained for future use.'”?

5.1. Diagnostic support: CBR systems provide diagnostic
support by comparing new patient cases with a database
of historical cases. Radiologists and oncologists can
utilize these systems to identify patterns and similarities
with past cases, helping to confirm or refine diagnoses.
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Table 2. Evaluation of Al-based models for breast cancer risk, prognosis, diagnosis, and treatment

Data source/ Al model/ Strengths, limitations,

Study Objective . Performance metrics - References
population methodology and application notes
St ths: U
. F1 score: 0.66 rengths: Uses
Develop a model to . SVM (polynomial contralateral breast,
. . 541 patients AUC: 0.71 X .
predict TNBC using kernel, order 2); o an innovative feature.
Lo Gullo et S (250 Sensitivity: 0.54 (0.47-0.60) . .~ 1as
radiomic features of . CERR platform; 132 e Limitations: Low
al, 2024 training, 291 L Specificity: 0.74 (0.65-0.84) L
contralateral breast L radiomic features sensitivity and NPV;
fibroglandular tissues validation). extracted PPV: 0.84 (0.78-0.90) limited clinical utility as
g : : NPV: 0.39 (0.31-0.47) vy
a stand-alone predictor.
Develop a radiomics
model usmg. Combined intra-tumoral Strengths: ngh
photoacoustic/ LASSO model; . accuracy with
R . ) and peri-tumoral model at . . .
ultrasound imaging to : feature extraction . peritumoral imaging
X . 322 patients . a4 mm region: . . Lo
Moetal, differentiate between L from intra- and integration. Limitations: 126
2024 Luminal and non-Luminal (262 training, eri-tumoral Accuracy: 0.90 Needs high-qualit
60 validation). P&" AUC: 0.90 (0.78-1.00) s high-quality
breast cancer, and regions; RF . multimodal imaging;
. . . e Sensitivity: 0.94 )
identify the optimal classifier. e less validated
. ) Specificity: 0.75
peritumoral region for externally.
better classification.
CNN for image
feature extraction,
GNNs for multi-
. omics integration,  Combined radiomics model Strengths: Integrates
Develop an Al-driven . . . .
. LASSO for feature  for Ki-67 (20% cut-off): omics + imaging
framework for cancer 233 patients . X Lo
R . ) selection and F1 score: 0.84 with explainability.
Yangetal, biomarker discovery (Ki- (70% . : . Lo . 147
2024 67 gene) using radiomics  training, 30% dimensionality Accuracy: 0.82 Limitations: High
and multi-omics data validatic'm) reduction, AUC: 0.86 (0.76-0.94) computational
inteeration ’ XAl for model Sensitivity: 0.92 demands; needs multi-
g ’ interpretability, Specificity: 0.73 modal data.
cross-validation
for performance
evaluation.
RF, SVM (RBF
Combine machine (
. kernel), CNN; data
learning models (RF, . .
. pre-processing Strengths: Rapid, non-
SVM, CNN) with (background invasive diagnostic
Raman spectroscopy 20 mice, 959 g CNN: . .g s
N removal, potential. Limitations:
Zhang et to distinguish between tumor spectra, smoothin Accuracy: 0.98 preclinical: only tested 18
al, 2024 normal and cancerous 1075 normal R g{ Sensitivity: 0.96 . . Lo v
breast tissue, aimin tissue spectra normalization); Specificity: 0.99 N mice, requires
aIming P " CNN with 50 P e translation to human
to create a rapid, non- .
. . R . epochs, binary data.
invasive diagnostic tool
cross-entropy loss,
for breast cancer. L
SGD optimizer.
Evaluat d AdaBoost:
valuate and compare daBoos Strengths: Very high
the performance of . Eleven models F1 score: 0.92 S
. . . 342 patients predictive performance.
various machine learning were used: AUC: 0.99 L
Zuo et al, L (70% o Limitations: Moderate
models for predicting o AdaBoost Sensitivity: 0.95 . 149
2023 training, 30% o sample size; model
breast cancer recurrence s showed the best Specificity: 0.98 X e
R R ) validation). interpretability is
risk and identify the best performance. PPV: 0.90 limited in AdaBoost
model for prediction. NPV: 0.99 '
Six machine

learning models
were used, with
XGB performing

Surveillance,

Epidemiol
Develop accurate pidemiology,

d End
machine learning models anden best. Feature XGB: Strengths: Large SEER
X . R Results (SEER) R K
to predict the diagnosis database: selection was done F1 score: 0.95 dataset; interpretable
Zhong et and prognosis of bone 283,373 ! via logistic and AUC: 0.94 with SHAP. Limitations: 150
al, 2023 metastasis in breast ati’ents Cox regression, Accuracy: 0.94 Based on retrospective
cancer patients, helping P and models were Precision: 0.98 registry; lacks imaging
[ . L (198,364 - )
clinicians with decision- L optimized using Recall: 0.94 data.
) training, 5
making. five-fold CV,
85,009 )
validation) grid search, and
’ SHAP for feature
importance.
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Table 2. Continued.

Dat Al model Strengths, limitations,
Study Objective ata sotijrce/ LR Performance metrics reng s |r‘n| . References
population methodology and application notes
Deve!op machine The study used BRF: model A (mental
learning models to 12 models, . Strengths: Targets
. L health) and B (quality of
predict poor mental . primarily BRF, . . underrepresented
. 706 patients R life), respectively.
... health or quality of with nested cross- outcomes (Qol).
€. Manikis life decline in breast (80% validation and F1 score: 0.60, 0.57 Limitations: Moderate 151
etal, 2023 . training, 20% . AUC: 0.81,0.78 ' .
cancer patients, s feature selection performance; subject
. . validation) L Accuracy: 0.80, 0.78 - L
enabling personalized on clinical, L to subjective bias in
sychological sychological, and sensitivity: 0.82, 0.79 inputs
psycholog psychological, Specificity: 0.79, 0.77 puts.
interventions. lifestyle data.
RF, GBT, MLP;
SMOTE, k-fold
Predict breast cancer o © Strengths: Combines
X . validation, RF: . . .
using machine 5178 records clinical and imaging
- . . hyperparameter Accuracy: 0.80 L
Rabiei et learning models with (25% breast ) ) data. Limitations:
A tuning; trained AUC: 0.56 : ) 152
al, 2022 mammographic, cancer R . L AUC is low despite
; ) with demographic, Sensitivity: 0.95 . .
demographic, and patients). e high sensitivity—false
mammography, Specificity: 0.80 " .
laboratory data. positives likely.
laboratory
features.
Develop machine
learning models RF, SVM, and Strengths: Explores
. g 603 women MLPNN, with RF (best performance): novel risk factors (light
. predicting breast cancer L
Mortazavi R (309 breast 10-fold cross- Accuracy: 0.99 exposure). Limitations: 153
risk based on exposure to o L .
etal, 2022 o cancer cases,  validation and Sensitivity: 0.99 High performance may
ionizing and non-ionizing o ST
L X 294 controls). hyperparameter Specificity: 0.98 be due to overfitting in
radiation (blue light, .
. tuning. small sample.
screen time).
The study used 10
machine learning
Develop a machine models (SVM,
learning model that uses XGBoost, RF, XGBoost: Strengths: High
ultrasound features of . MLP, CNN etc.,), F1 score: 0.83 diagnostic accuracy
. 952 patients R .
Zhang et breast cancer lesions L with XGBoost Accuracy: 0.85 using ultrasound 154
R . (902 training, . .
al, 2022 to predict sentinel 50 validation) performing the AUC: 0.92 features. Limitations:
lymph node metastasis, best. SHAP was Sensitivity: 0.87 External validation on
improving preoperative applied for model  Specificity: 0.86 small cohort (n =50).
diagnostic accuracy. interpretation
and feature
importance.
CNN: HR + /HER2- vs.
others, TN vs. non-TN,
HER2 +vs. HER2-
CNN, CLSTM
Classify breast cancer 244 patients mod;:IS' 10-fold Accuracy: 0.81,0.76,0.80  Strengths: Strong
subtypes (HR + /HER2-, (99 training, cross—vélidation AUC: 0.86, 0.84, 0.90 performance using
HER2 +, TN) using deep 145 Adam o timizer,' Sensitivity: 0.79,0.71, 0.73 deep learning and
Zhang et learning (CNN, CLSTM) on validation); tumourp ! Specificity: 0.82, 0.79, 0.83 transfer learning. 155
al, 2021 DCE-MRI, with transfer molecular . CLSTM: HR + /HER2- vs. Limitations: Complex
) ) segmentation . -
learning for improved subtypes: with ECM: transfer others, TN vs. non-TN, architecture; limited
performance across HR + /HER2-, learnin f;)r fine HER2 +vs. HER2- generalizability to other
different datasets. HER2 +, TN. tunin e Accuracy: 0.90, 0.89,0.92  imaging modalities.
& AUC: 0.92, 0.89, 0.93
Sensitivity: 0.89, 0.82, 0.90
Specificity: 0.91, 0.92, 0.93
Apply machine learning
Igorithms t dict B t C
@ gorl. ms to predic r.eas .ancer Strengths: Excellent
and diagnose breast Wisconsin .
X X . SVM (best performance): performance on classic
. cancer, evaluating the Diagnostic SVM, RF, K-NN, R S
Naji et al, erformance of different dataset; 569  decision tree, and F-measure: 0.96 (benign), ~ dataset. Limitations: 156
2021 P ’ ! 0.98 (malignant) Dataset is old, small,

models to identify the
most accurate and
effective algorithm for
cancer detection.

instances (357
benign, 212
malignant).

logistic regression.

AUC: 0.966

and not clinically
representative.
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Table 2. Continued.

Dat r Al model trengths, limitation
Study Objective ata sm.l ce/ odel/ Performance metrics S ?’ ) ations, References
population methodology and application notes
DRM-IR
Compare deep learning ;J:szendeIe Strengths: Excellent
and machine learning v ResNet152 + SVM (best performance metrics;
thermography . .
models for early breast datasets performance): integration of deep
cancer detection using o . Accuracy: 0.97 learning and classical
. containing SVM, naive bayes, .
Jalloul et infrared thermography, L AUC: 0.99 ML; multi-dataset 106
e L. . annotated decision trees, - [
al, 2024 highlighting the superior | Precision: 0.98 training improves
infrared K-NN, DNNs . L
performance of CNN- X Recall (Sensitivity): 0.94 generalizability.
. breast images A .
based architectures . Fl-score: 0.96 Limitations: Potential
. . from diverse . . L
in thermal image . . Specificity: 0.97 overfitting; no clinical
I diagnostic T
classification. . validation reported.
categories.
56 patients Strengths: Lightweight
To desi lightweight 47 traini hitecture; high
9 esign a lightweight,  ( r?mmg, ResNet34 + SVM (best architec uref very hig
high-performance 9 testing); accuracy; suitable
. performance):
thermography-based image labels: Accuracy: 0.99 for low-power or
ChiTetal, modelfor early breast 380 normal, SVM, RF, K-NN, AUC: 0 gg ’ embedded systems. 107
2024 cancer detection 740 abnormal Adaboost, XGBoost - Limitations: Small
. Lo Precision: 0.99 . L
using optimized CNN (cancerous); e sample size; minimal
o Recall (Sensitivity): 0.99 .
features and efficient classes: external validation;
I F1-score: 0.99 . -
classification. normal vs. possible overfitting on
abnormal. limited data.
To evaluate the
diagnostic performance
and non-inferiority
of Thermalytix, an Pre-trained > 45 years Strengths: Real-world
Al-based automated model, clinical AUC: 0.88 clinical validation;

thermographic screening  testing only

Singh et al, tool, compared with (258 total; Screenin tool
2021 standard breast cancer age-stratified  (Thermalytix)
screening modalities analysis: < 45
(mammography and/ years and > 45
or ultrasound) in years)

symptomatic women
suspected of having
breast cancer.

Sensitivity: 0.81
Specificity: 0.87
<45 years
AUC: 0.85
Sensitivity: 0.87
Specificity:0.81

performance analyzed
across age groups.
Limitations: No F1-score
or precision reported;
focused only on
symptomatic women.

108

Abbreviations: TNBC, triple-negative breast cancer; SVM, support vector machine; AUC, area under the curve; PPV, positive predictive value; NPV,
negative predictive value; LASSO, least absolute shrinkage and selection operator; CNN, convolutional neural network; GNN, graph neural network;
XAl, explainable artificial intelligence; RF, random forest; RBF, radial basis function; SGD, stochastic gradient descent; XGB, extreme gradient boosting;
SHAP, SHapley Additive exPlanation; GBT, gradient boosted trees; MLP, multilayer perceptron; SMOTE, synthetic minority oversampling technique;
CLSTM, convolutional long short-term memory; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; FCM, fuzzy C-means clustering;

K-NN, K-nearest neighbours.

This process is particularly useful in complex cases where
traditional diagnostic methods may be inconclusive.'”

5.2. Treatment plan: CBR can assist in treatment
planning by suggesting therapeutic approaches based
on similar past cases. For instance, if a newly diagnosed
patient shows a specific type of BCA, the system can
retrieve cases with similar features and recommend
treatment regimens that were effective in those cases
enabling personalized treatment plans tailored to the
patient's unique characteristics.'

5.3. Prognosis prediction: By analysing the outcomes
of similar past cases, CBR systems can help predict the
prognosis for new patients, for example estimating
survival rates, potential complications, and the likelihood
of recurrence. Such predictions are invaluable for setting
realistic expectations and planning follow-up care.'”

6. Stand-alone AI: Stand-alone Al systems for cancer

detection utilize advanced machine learning techniques,
including deep learning, to analyse medical images for
the identification of patterns and anomalies that might
indicate the presence of cancer, including the detection
of calcifications, masses, and architectural distortions
that are typical indicators of BCA. *® Moreover, as the Al
systems improve, the Machine learning algorithms can
adapt to novel patterns and investigations, enhancing
their diagnostic capabilities over time. '7¢

7. Transformers in breast cancer information
extraction: Transformers, particularly models such
as BERT (bidirectional encoder representations from
transformers), GPT (generative pre-trained transformer),
and their derivatives, have shown noticeable proficiency
in understanding human language. These models
are especially accomplished in extracting relevant
information from unstructured clinical text to manage
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Table 3. Comparative analysis of Al models in breast cancer researchs7-16%

Performance
Model Type Strengths Weaknesses Best use cases .
metrics
Vision High accuracy; effective in multi- X Histopathology image
Transformer- & . v X Requires large datasets; p . gy g Accuracy: 93%—
Transformer class classification; captures . ) K classification; complex
. based computationally intensive . 98.17%
(ViT) global context pattern recognition
. May underperform in multi- e Accuracy: 84.5%—
Robust feature extraction; good Image classification; o
ResNet-50 CNN - . o class tasks compared to . 90%; Sensitivity:
generalization; efficient training feature extraction
newer models 93%
High sensitivity; effective . Histopatholo
. . g. v X Slightly lower accuracy than p . &Y . Accuracy: 88%;
Xception CNN in binary and multi-class X classification; carcinoma L
e L. ViT . Sensitivity: 95%
classification detection
Efficient feature reuse; good Potential overfitting; high Image classification;
DenseNet-121 CNN performance in classification €; Nl & . ! Accuracy: ~96%
memory usage feature extraction
tasks
X i Image classification; -
= High accuracy with fewer . . & X Not specified in
EfficientNet CNN May require careful tuning resource-constrained K
parameters; scalable . provided sources
environments
. Lightweight; suitable for mobile  Lower accuracy compared to  On-device image Not specified in
MobileNet CNN L I .
and embedded applications larger models classification provided sources
. . Lower accuracy compared to  Resource-limited Not specified in
SqueezeNet CNN Small model size; fast inference 4 P . .p
larger models scenarios provided sources
. . L Sensitive to parameter . e s
Support Vector  Traditional High accuracy; effective in high- selection: Iefs offective with Binary classification; small Accuracy:
Machine (SVM) ML dimensional spaces ! to medium datasets 95.83%-97.66%
large datasets
Random Forest  Ensemble Robust to overfitting; handles Less interpretable; may Feature selection; Accuracy:
(RF) Learning high-dimensional data require large number of trees classification tasks 95.24%-95.32%
k-Nearest Instance- Simple implementation; Computationally intensive I .
. - . . . Classification with small
Neighbors (k- based effective with well-separated with large datasets; sensitive datasets Accuracy: 97.62%
NN) Learning classes to noise
. . Limited to linear . . )
Logistic Traditional Interpretable; performs well . . . Risk prediction; binary Accuracy: 83%—
. S relationships; less effective -
Regression (LR) ML with linearly separable data R classification 97%
with complex patterns
Artificial Neural  Neural Captures complex patterns; Requires large datasets; - I Accuracy: 71%—
. A Prediction; classification
Network (ANN)  Network adaptable to various tasks prone to overfitting 97.07%
- . Prone to overfitting; less " .
Decision Tree Tree-based Easy to interpret; handles both stable with small changes Initial modeling; feature  Accuracy:
(DT) Model numerical and categorical data in data g importance analysis 93.15%-94.15%
Gradient
. Ensemble High accuracy; handles missin Computationally intensive; I i
Boosting (e.g., R & ¥ € P . v Classification; prediction ~ Accuracy: 95.91%
Learning data well complex tuning
XGBoost)
Multilayer Captures nonlinear Requires significant I .
v Neural P X . R q . & . Classification; regression  Accuracy:
Perceptron relationships; flexible training time; sensitive to
Network ) tasks ~99.04%
(MLP) architecture hyperparameters

and analyse BCA data."””'” The advantages compared
to the traditional methods are noteworthy including
automated coding of clinical data,'® information retrieval
and data mining,"" which can extract specific details such
as genetic mutations, tumor characteristics, and treatment
responses for research and personalized medicine.

8. AI solutions in breast cancer care pathways; the
Arianna solution: The Arianna solution is an advanced Al-
driven platform designed to improve BCA care. Arianna
tracks patient progress, monitors treatment adherence,
and provides reminders for follow-up appointments.
The usage of Al is to improve diagnostic accuracy,
enhanced patient satisfaction, and cost effectiveness. As

AT technology continues to advance, the role of Arianna
Solution in BCA care is set to expand, offering even
greater benefits in the future '*2

9. Autoencoded DNA methylation data for recurrence
prediction: After encoding DNA methylation data,
various supervised learning methods can be employed to
forecast recurrence. These models are trained on datasets
with known outcomes (recurrence or non-recurrence) to
identify the correlation between methylation patterns and
recurrence risk. This approach leverages the predictive
capabilities of SVMs, random forests, and neural networks
to make accurate predictions '*

10. Gene-Weight Significance for Recurrence Prediction:
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In machine learning models, particularly those utilizing
neural networks, the significance or weight of individual
genes can be analyzed to comprehend their contribution
to the model's predictions. Techniques like SHapley
Additive exPlanations (SHAP) values can be employed to
assign a relevance score to each gene based on its influence
on the model's output.”® Additionally, by analyzing the
weights of genes, researchers can identify the genes that
are associated with cancer recurrence, providing valuable
biological insights and potentially highlighting new
biomarkers for recurrence risk '*

Breast cancer risk assessment

BCA risk assessment typically involves combining multiple
risk factors, including genetic, lifestyle, and reproductive
factors. Commonly used models include the Gail model, the
Tyrer-Cuzick model, and the Breast Cancer Surveillance
Consortium (BCSC) model, which collectively provide a
comprehensive framework for assessing BCA risk.

Gail model

The Gail model estimates a woman's risk of developing
BCA based on factors such as age, family history,
reproductive history, and history of breast biopsies.
Some limitations include the underestimation of risk in
women with a strong family history of BCA and the lack
of integration with mammographic density data.'®

Tyrer-Cuzick model

The Tyrer-Cuzick model or the IBIS model, performs a
more comprehensive set of risk factors, including detailed
familial history, genetic factors, and hormonal factors. This
model provides more accurate risk predictions, especially
for women with a positive family history of BCA."¥’

BCSC Model

The BCSC model incorporates mammographic density as a
significant risk factor, along with age, race, family history,
and breast procedure history. Mammographic density
is a significant independent risk factor for BCA, and its
inclusion enhances the accuracy of risk prediction. '

Al in mammographic phenotyping of breast cancer risk
Alalgorithmsanalyze the texture patternsin mammographic
images to identify features associated with high BCA risk,
for example variations in tissue density, microcalcifications,
and distortions."”" Furthermore, Al techniques determine
volumetric breast density, providing a more accurate
measure of breast tissue. In addition, CNNs show high
accuracy in identifying mammographic phenotypes that
correlate with BCA risk, learning to detect subtle patterns
that may not be visible to the human eye.”® This holistic
approach maintains early detection and prevention
strategies, ultimately improving patient outcomes due to
the individualized risk assessment.'®”

Ethical consideration in AI application in medicine
The widespread use of Al in the medical field necessitates
considering measures to evaluate such technological
developments to protect human rights. Our decisive
responsibility is to ensure researchers that the advantages
of Al tools outweigh their drawbacks. In the medical
setting, the importance of powerful algorithms to
safeguard people’s lives cannot be overstated.'® These
ethical measures must ensure both patients and physicians
the accuracy and safety of the diagnostic approaches and
treatment plans recommended by Al Patient should have
the right to decide independently whether an Al algorithm
involved in their medical care. Moreover, the specific gaps
that are filled by AI must be clarified to patients, as this
information can significantly influence their decision-
making. In high-risk areas of healthcare such as BCA, the
capabilities of AI systems have to be explained to patients
to ensure the positive impacts of Al on this crucial issue.
Although achieving explainability in some complex cases
of machine learning and deep learning can be challenging,
it is beneficial for the patients to be aware of the potential
for improved outcomes when combining Al models with
traditional methods. Finally, it is worth noting that the
widespread utilization of AI models in the medical setting
requires many scientists and researchers to address any
conflict of interest in future endeavors."*

The implementation of Al in clinical wards faces
difficulties that impact its practical susceptibility. To handle
real-world issues, important challenges include regulatory
hurdles, training sessions for healthcare professionals, and
infrastructure facilities. Given the direct impact of Al on
patient care, the European Commission has emphasized
important regulatory requirements such as ensuring
accuracy, clearly outlining intended uses, and validating
training information. While these regulations may slow
the adaptation of Al in clinical settings, they ultimately
lead to a more standardized and qualified implementation
of Al Training healthcare professionals in integrative Al
aims to improve their understandings of deep learning
algorithms among physicians. It is essential to equip them
with technical skills related to AI applications, data-driven
learning, validation and liability, which must be passed
on to future scientists. Structured educational strategies
are needed to help professionals build trust in Al tools.
Additionally, hospitals and clinics require infrastructure
to support Al including data security measures in clinical
domains and monitoring AI’s role in patient treatment
plans. A lack of collaborative efforts, regulatory policies, and
clear strategies contribute to the limited implementation of
Al in hospitals. Multidisciplinary plans for standardized
Al tools can help bridge the gap between AT’s potential
benefits and its practical use by clinical staff.'*>!%

Limitations and future horizons
To maximize the benefits of Al in BCA screening, some
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future recommendations should be adopted:

» Standardization and interoperability: Developing
standardized protocols for AI algorithms and
ensuring interoperability with existing healthcare
systems is crucial. This will facilitate the seamless
integration of Al tools into clinical workflows and
enhance data sharing across institutions.'**'**

*  Continuous learning and adaptation: Al algorithms
should be designed to continually learn and adapt
from new data. The incorporation of feedback
loops that enable AI systems to update their models
based on real-world performance will enhance their
accuracy and robustness over time."*

e Ethical considerations and bias mitigation: It is
crucial to address ethical concerns related to data
privacy, informed consent, and algorithmic bias. The
development of guidelines and best practices for the
ethical deployment of Al will play a significant role in
ensuring that these technologies are used responsibly
and equitably.'*

* Collaboration and multidisciplinary research:
Practical collaboration between AI developers,
radiologists, oncologists, and other healthcare
professionals is crucial for improving AI in BCA
screening. Multidisciplinary research projects can
stimulate innovation and accelerate the creation of
effective Al solutions."”

*  Education: Providing efficient training for healthcare
professionals on the use of Al equipment is
essential, which includes understanding how Al
algorithms work, interpreting Al-generated results,
and integrating Al insights into clinical decision-
making.'%

*  Regulatory guidelines: To guarantee the safe and
efficient use of Al-based screening tools, regulatory
bodies mustestablish clear guidelinesand frameworks.
This can be achieved by collaborating with industry
stakeholders to set standards for AI development,
evaluation, and post-market monitoring.'”

Challenges of Al in breast cancer

AT has emerged as a transformative tool in breast cancer
care, offering advancements in detection, diagnosis, and
treatment planning. However, its integration into clinical
practice presents several multifaceted challenges that must
be addressed to ensure effective and equitable utilization. A
primary concern is the scarcity of high-quality, annotated
datasets necessary for training robust AI models. The
process of annotating medical images is labor-intensive
and requires expert input, leading to limited availability
of comprehensive datasets. This limitation hampers
the generalizability of AI algorithms across diverse
populations and clinical settings.”**' Moreover, the
heterogeneity of data sources poses significant obstacles.
Variations in imaging equipment, acquisition protocols,

and patient demographics can introduce inconsistencies
that affect Al performance. Standardizing data across
institutions is challenging but essential for developing
universally applicable AI solutions.*® The "black box"
nature of many Al systems raises issues of interpretability
and trustamong clinicians. Without transparent reasoning
pathways or explainable outputs, physicians may hesitate
to rely on Al-generated recommendations, particularly in
high-stakes scenarios like cancer diagnosis or treatment
selection. This lack of explainability also complicates the
validation and regulatory approval processes, as medical
devices and diagnostic tools must meet rigorous standards
for safety, efficacy, and accountability.?” Integrating Al
into existing clinical workflows is another significant
challenge. Healthcare systems vary widely in terms of
infrastructure, electronic health record systems, and
clinical practices. Adapting Al tools to fit seamlessly into
these diverse environments requires substantial effort and
resources.***

Ethical and legal considerations also present formidable
challenges. Concerns about data privacy, informed
consent, and the potential misuse of patient information
are amplified in Al applications that rely heavily on
sensitive medical data. Furthermore, questions about
liability in cases of AI error whether due to flawed
algorithms or inaccurate data inputs, remain largely
unresolved, creating uncertainty for both clinicians and
developers. The financial implications of implementing
Al technologies cannot be overlooked. Developing,
deploying, and maintaining AI systems require significant
investment in hardware, software, and personnel
training.”>” These costs can be prohibitive, particularly
for resource-limited healthcare settings, potentially
exacerbating existing disparities in BCA care.?®

Lastly, the rapid pace of AI development often
outstrips the speed at which regulatory frameworks
evolve, leading to a mismatch between innovation and
oversight. Ensuring that Al tools are not only effective
but also safe, equitable, and ethically designed requires
sustained collaboration among clinicians, data scientists,
regulatory bodies, and policymakers. In conclusion, while
Al offers transformative potential in the field of BCA care,
addressing these multifaceted challenges is essential to
ensure its responsible, equitable, and effective integration
into routine clinical practice.

Conclusion

The integration of Al in BCA holds immense promise for
revolutionizing disease screening, diagnosis, biomarker
evaluation, and personalized treatment strategies.
Techniques such as machine learning, deep learning,
and radiomics have shown potential in enhancing the
detection and classification of breast lesions, reducing the
risk of false positive and false negative reports. Studies
indicate that Al can significantly decrease the workload
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Review Highlights

o Emphasizing ATs role in improving the accuracy of
breast cancer screening and diagnosis.

o Review the contribution of Al-driven data analysis and
precision oncology for more personalized breast cancer
care.

o Demonstrate the Al potential to address limitations in

drug delivery and immunotherapy in breast cancer.

for radiologists while maintaining or even improving
the sensitivity and specificity of cancer detection in
early stages. Additionally, Al has proven useful in gene
expression assessment in patients with a positive familial
history, reducing the incidence of missed cancers. By
addressing potential challenges and embracing Al in BCA
care, we can greatly improve patient outcomes, reduce
health disparities, and usher in a new era of precision
medicine. The integration of AI in BCA care has the
potential to redefine our approach to screening, diagnosis,
and treatment, ultimately leading to higher survival rates
for patients.
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