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Introduction
Breast cancer (BCA) remains the most commonly 
diagnosed cancer globally and is a leading cause of 
cancer-related mortality among women. According 
to the most recent global data published by the World 
Health Organization (WHO) in 2024, BCA caused 
approximately 670,000 deaths worldwide in 2022 and was 
the most prevalent cancer among women in 157 out of 
185 countries.1 In the United States, based on the latest 
projections by the American Cancer Society for 2025, an 
estimated 316,950 new cases of invasive breast cancer and 
42,170 related deaths are expected.2 A comprehensive study 
by Giaquinto et al. reported a 1% annual increase in BCA 
incidence from 2012 to 2021, with a steeper rise among 
women under 50, particularly within Asian American 
and Pacific Islander populations.3 These updated figures 
emphasize the ongoing global burden of BCA and 

underscore the necessity for continues advancements in 
prevention, early detection, and access to care. Despite 
medical advancements, BCA is still frequently diagnosed 
at advanced stages, particularly in developing countries 
where adequate screening, diagnosis, and treatment 
options are lacking. The survival rate is approximately 
73% in developed countries compared to just 57% in 
developing countries, which emphasizes the importance 
of early screening.4,5

Artificial intelligence (AI) is defined as the use of 
techniques that enable computers to mimic human 
behavior and develop intelligent machines capable 
of performing tasks at or above the level of human 
intelligence.6 In the field of medicine, there are two 
main branches of AI: virtual and physical. The virtual 
branch utilizes informatics approaches, employing 
deep learning and information management to oversee 

*Corresponding author: Cena Aram, Emails: Sinaaram00@gmail.com; Cenaaram00@khu.ac.ir 

 © 2025 The Author(s). This work is published by BioImpacts as an open access article distributed under the terms of the 
Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/). Non-commercial uses of 
the work are permitted, provided the original work is properly cited.

ccess
PPuubblliisshh  FFrreeee

PRESS

TUOMS
BioImpacts

B
PRESS

TUOMS

BioImpacts

B

Abstract
Breast cancer (BCA) remains the most prevalent 
cancer globally and the leading cause of cancer-
related mortality among women, with rising 
incidence rates driven by genetic, lifestyle, 
and environmental factors. Early detection 
through precise screening is essential to 
improve prognosis and survival; yet, challenges 
persist, especially in resource-limited areas. 
Recent advances in Artificial Intelligence 
(AI), particularly machine learning and deep 
learning algorithms, have illustrated significant 
potential to enhance breast cancer screening, 
diagnosis, and treatment personalization. This review highlights the multifaceted role of AI in 
BCA management, encompassing its applications in image-based screening modalities, genomic 
and immunologic profiling, and drug discovery. AI-driven approaches offer diagnostic accuracy, 
cost-effectiveness, time-saving, and individualized treatment regimens. Despite promising 
developments, further research is crucial to overcome current challenges and regulatory hurdles 
in clinical settings. This article highlights the positive aspects of AI technologies in advancing BCA 
care and the importance of continued interdisciplinary research to optimize their implementations 
in breast cancer workflows. 
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health management systems, including electronic health 
records. It also provides active guidance to physicians in 
their treatment decisions. The physical branch primarily 
involves robots that assist surgeons or elderly patients, 
as well as targeted nanorobots that offer a unique drug 
delivery system.7 When it comes to drug design in 
pharmaceutical companies, the most common obstacles 
are time constraints and production costs.8 Other 
challenges include low efficacy, inaccurate target delivery, 
and inappropriate dosing.9

AI, including deep learning (DL) and machine 
learning (ML) algorithms, has become integral to the 
drug development process. Machine learning is widely 
used in medicine for developing automated clinical 
decision systems, discovering unknown associations, and 
generating novel hypotheses to drive research.10 These 
machine learning approaches are classified into supervised 
and unsupervised methods. Supervised methods are 
employed for risk assessment in anticoagulant therapy,11 
arrhythmia detection in electrocardiograms,12 and the 
detection of lung micronodules from chest X-rays.13 In 
contrast, unsupervised learning is used to identify hidden 
patterns in data and is often applied for data exploration 
and generating novel hypotheses. It can analyze treatment 
effectiveness compared to placebos without human 
involvement, thereby reducing ethical concerns about 
drug side effects for participants. Moreover, deep learning 
a branch of machine learning that utilizes artificial neural 
networks with multiple layers, simulate the workings of 
the human brain. This enables technology to generate 
automated predictions based on training datasets with 
remarkable accuracy and precision.10

Machine learning and deep learning algorithms are 
increasingly being applied across various stages of drug 
discovery. These applications include peptide synthesis, 
molecular design, virtual screening, molecular docking, 
quantitative structure-activity relationship (QSAR) 
analysis, drug repurposing, protein misfolding analysis, 
protein-protein interaction studies, molecular pathway 
identification, and pharmacology research.14 The AI 
technology has made significant contributions to the 
diagnosis and treatment of various types of cancer, 
including breast cancer. With advancements in cancer 
screening, diagnosis, and treatment, it is evident that AI-
guided care can play a crucial role in clinical practice.15,16

Immunology of breast cancer
Immunology
Breast cancer, an early-stage malignancy, has seen 
improved patient survival rates due to targeted therapies 
that counteract tumors driven by tyrosine kinase activation, 
with FDA-approved HER2-targeted treatments playing a 
pivotal role.17 The importance of the interactions between 
tumor cells and the immune system in influencing BCA 
prognosis and treatment responses is becoming more 

evident. BCA, a diverse disease, is categorized into three 
primary subtypes based on hormone receptor (HR) status 
(estrogen receptor [ER] and progesterone receptor [PR]) 
and the presence of human epidermal growth factor 
receptor 2 (HER2): HR-positive/HER2-negative (luminal 
type, accounting for over 70%), HER2-positive (15–20%), 
and HR- and HER2-negative, also known as triple-
negative breast cancer (TNBC, approximately 15%). 
Hormone therapy is appropriate for patients with ER- and 
PR-positive hormone receptors, whereas targeted therapy 
is ideal for those with HER2-positive status in clinical 
practice.18 Genomic-level approaches have improved 
breast cancer treatment. Increased expression of human 
epidermal growth factor receptor 2 (Her-2/neu) occurs in 
15-30% of BCA cases, leading to a more aggressive tumor 
phenotype and reduced survival. The use of monoclonal 
antibodies (mAbs), such as pertuzumab and trastuzumab, 
targeting Her-2/neu, effectively treats BCA and improves 
prognosis (Fig. 1).19

Rimawi et al found that HER2 (ErbB2), a member of 
tyrosine kinase receptors (HER1-4), plays a major role 
in 20% of BCA development. Recent years have seen 
the introduction of anti-HER2 monoclonal antibody 
trastuzumab as a means to tackle these aggressive BCA 
subtypes.20 Vaccine production can activate the host's 
innate immune system to overcome resistance and tumor 
recurrence. Consequently, scientists have been studying 
anti-HER2 targeted therapies with complementary or 
synergistic mechanisms to treat patients with HER2-
positive metastatic BCA.21 To improve treatment 
outcomes, next-generation sequencing has allowed for 
the analysis of cancer genomes and transcripts, resulting 
in the establishment of several databases such as The 
Cancer Genome Atlas (TCGA), the National Institutes 
of Health (NIH), and the International Cancer Genome 
Consortium (ICGC), which are widely used to expand 
treatment options for BCA patients.22 These databases 
encompass data on single-gene mutations, genomic 
structural abnormalities, and mRNA and protein 
expression levels, facilitating the identification of new 
anticancer drugs. Yoshimaru et al highlighted three 
molecular targets, such as MELK, TOPK, and BIG3, that 
are highly overexpressed in various cancers, especially 
in BCA. Their research showed that dominant-negative 
peptides exhibit selective inhibitory effects. Furthermore, 
leveraging this molecular mechanism to restore the 
innate tumor-suppressive activity of PHB2 could offer a 
treatment option for resistant BCA without reducing the 
patient's lifespan.22 BCA consists of various histological 
and molecular subtypes, each showing different levels 
of immunogenicity and responsiveness to immune 
therapies. This can limit immunologic-based treatment as 
patients may not respond to a single immunotherapy.23

Immunotherapy in BCA treatment incorporates 
different types of vaccines, including protein-based, 
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peptide-based, bacterial or viral-based, DNA/RNA-
based nucleic acid vaccines, and immune cell-based 
vaccines. These approaches are classified as active 
immunotherapies.24 However, there are limitations in 
the immunotherapeutic methods for BCA, such as the 
efficient delivery of drugs to the cancer site. This challenge 
can potentially be addressed by using nanostructures 
designed to enhance antigen stability, promote antigen 
presentation, and stimulate the immune response.25

AI into cancer immunotherapy
AI has emerged as a transformative force in modern 
oncology, with particular promise in the field of 
cancer immunotherapy. While immunotherapy has 
revolutionized cancer treatment by leveraging the host’s 
immune system to target and eliminate tumor cells, its 
clinical application is often limited by patient heterogeneity, 
variable responses, immune escape mechanisms, and 

challenges in selecting optimal therapeutic strategies. 
Integrating AI into immunotherapy workflows offers 
solutions to many of these challenges through advanced 
data analysis, predictive modeling, and real-time clinical 
decision support. This section explores the multifaceted 
applications of AI in cancer immunotherapy.26

Enhancing biomarker discovery
One of the critical areas where AI has significantly impacted 
cancer immunotherapy is in biomarker discovery. 
Traditional biomarker identification is labor-intensive 
and often constrained by the limitations of human 
interpretation and statistical tools. AI, particularly through 
ML and DL algorithms, enables high-throughput analysis 
of multi-omics data such as genomic, transcriptomic, 
and proteomic datasets to uncover novel biomarkers 
predictive of immunotherapy response. AI models have 
demonstrated high accuracy in identifying clinically 
relevant biomarkers such as PD-L1 expression, tumor 

Fig. 1. HER2/EGFR Signaling Pathway in Breast Cancer and anti-HER2 treatment. (A) The role of HER2 in BCA and differences between the normal 
and abnormal BCA, so that the immunotherapy can stop cancer cells. (B) The intricate signaling cascade involving the Human Epidermal Growth Factor 
Receptor 2 (HER2) is significantly influenced by the application of monoclonal antibodies, which possess the remarkable ability to not only suppress the 
proliferation of cells that express HER2 but also to actively promote apoptotic cell death through a variety of mechanisms that can be classified as either 
intracellular or extracellular; this is primarily achieved by the specific targeting of HER2-positive cellular entities, leading to the subsequent processes of 
receptor internalization and degradation, ultimately contributing to the therapeutic efficacy observed in the treatment of certain malignancies characterized 
by HER2 overexpression. Created with BioRender.com (Used with permission).
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mutational burden (TMB), and microsatellite instability 
(MSI), all of which are instrumental in stratifying patients 
for immune checkpoint inhibitor (ICI) therapy.27-29

According to Olawade et al, supervised ML algorithms 
such as random forest and support vector machines 
(SVM), as well as DL methods like convolutional neural 
networks (CNNs), have been effectively applied to 
analyze complex biological data. These tools can detect 
subtle patterns and correlations that might be overlooked 
using traditional bioinformatics approaches. For instance, 
AI has facilitated the identification of gene signatures 
associated with favorable responses to PD-1 and CTLA-4 
blockade therapy, thereby supporting the development of 
personalized immunotherapy regimens.30

Predicting patient response and adverse events
Another major application of AI in cancer immunotherapy 
lies in the prediction of patient responses and the assessment 
of potential adverse effects. Not all patients benefit from 
immunotherapy, and some may experience immune-
related adverse events (irAEs), which can be severe and life-
threatening. AI-based predictive models integrate diverse 
patient data including genomic alterations, immune 
signatures, imaging data, and electronic health records 
(EHRs) to forecast treatment responses and identify those 
at higher risk of toxicity.31 For example, gradient boosting 
machines, logistic regression models, and multi-layer 
perceptrons (MLPs) have been employed to predict the 
effectiveness of ICIs in cancers such as melanoma, breast, 
and non-small cell lung cancer.32 AI-driven analysis of pre-
treatment histopathological slides has also shown promise 
in predicting PD-1 therapy responsiveness, offering a non-
invasive and scalable method to guide treatment decisions. 
Moreover, AI tools can forecast the onset of irAEs using 
baseline immunological and clinical parameters, thereby 
enabling early intervention and improving patient safety.
Optimizing combination therapies
Immunotherapy is increasingly being used in combination 
with chemotherapy, radiotherapy, or targeted therapies 
to enhance efficacy and overcome resistance. However, 
identifying the optimal combination regimen and 
sequencing strategy is highly complex. AI can address 
this challenge by analyzing real-world clinical data and 
simulating treatment outcomes to identify synergistic 
combinations tailored to individual patients.

Reinforcement learning models and Bayesian networks 
have been applied to evaluate clinical trial data and real-
world evidence to predict the most effective combination 
protocols.33 These AI systems can model how immune 
responses change in the presence of different therapeutic 
agents and help clinicians fine-tune dosages and schedules. 
Olawade et al emphasize that AI not only accelerates 
the discovery of effective treatment combinations but 
also reduces reliance on traditional trial-and-error 
approaches, thereby improving therapeutic outcomes and 
patient quality of life.

Accelerating drug discovery and target identification
Drug development in immuno-oncology is a time-
consuming and expensive process. AI accelerates this 
process by enabling the rapid identification of novel 
therapeutic targets and potential drug candidates. 
Through techniques like unsupervised ML (e.g., clustering 
and principal component analysis) and DL models 
including generative adversarial networks (GANs), AI 
can analyze massive datasets to identify actionable targets 
such as neoantigens tumor-specific mutated proteins that 
are ideal candidates for vaccine development.34,35

Additionally, AI models have been successfully 
deployed in virtual screening and molecular docking to 
simulate drug–target interactions. This allows researchers 
to predict the binding affinity and pharmacological 
properties of new compounds with unprecedented 
speed and accuracy. Graph neural networks (GNNs), 
for example, have been used to model the 3D structure 
of immune checkpoints and screen for novel inhibitors, 
dramatically shortening the drug development timeline 
and lowering associated costs.36

ML has brought transformative progress to molecular 
docking studies, particularly within the realm of 
immunotherapy drug discovery.37 These studies aim to 
simulate and predict how small molecules, such as drugs, 
interact with biological targets like proteins a process 
essential for designing potent immunotherapeutic 
compounds.37 Conventional docking techniques often 
struggle with accurately modeling three-dimensional 
molecular interactions due to their inherent complexity. 
However, the integration of ML technologies, such as 
deep learning architectures and reinforcement learning 
frameworks, has markedly enhanced the precision 
and robustness of these predictions.33 By leveraging 
large-scale datasets of protein–ligand interactions, ML 
algorithms are now capable of generating highly accurate 
binding conformations, even for challenging targets like 
neoantigens and immune checkpoint molecules. This 
technological advancement not only increases the fidelity 
of molecular interaction predictions but also accelerates 
the screening and identification of promising therapeutic 
candidates. As a result, it significantly reduces the time 
and financial resources required by conventional drug 
development pipelines. For an in-depth discussion of 
computational approaches including target identification, 
molecular docking, and molecular dynamics simulations 
readers are referred to our recent study, where we 
evaluated commonly used tools, their algorithms, and 
practical applications.38

Ultimately, the application of ML in molecular docking 
is proving instrumental in the efficient design of next-
generation immunotherapies, including checkpoint 
inhibitors and personalized cancer vaccines, thereby 
reshaping the future of immunotherapy research and 
development. 37
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Real-time monitoring and adaptive therapy
Beyond diagnostics and drug development, AI is also 
being integrated into patient monitoring systems to 
enable real-time assessment of treatment response and 
adaptive therapy. Using time-series analysis and DL 
algorithms such as long short-term memory (LSTM) 
networks, AI can interpret data from wearable biosensors, 
imaging modalities, and EHRs to detect early signs of 
treatment response or adverse reactions. This continuous 
feedback allows clinicians to adjust treatment protocols 
dynamically, personalizing therapy based on evolving 
patient needs.39,40

For instance, changes in physiological markers such 
as heart rate, oxygen saturation, or inflammatory 
cytokine levels can be flagged by AI systems as potential 
indicators of immune-related toxicity, prompting timely 
intervention. This not only improves clinical outcomes but 
also enhances patient safety and adherence to treatment.41

Improving clinical trial design
AI is revolutionizing clinical trial design by improving 
patient recruitment, stratification, and protocol 
optimization. Traditional clinical trials often face challenges 
in enrolling appropriate participants, particularly for 
rare cancer subtypes or precision immunotherapies. AI 
addresses this gap by analyzing clinical and molecular data 
to match patients with suitable trials based on predicted 
treatment responses.42

Natural language processing (NLP) and ML algorithms 
can process unstructured EHR data to identify eligibility 
criteria and generate trial cohorts more efficiently.43 
AI-driven simulation models also enable adaptive trial 
designs, allowing real-time modification of protocols 
based on interim results. This not only improves the 
probability of trial success but also reduces time and 
resource expenditures in the development pipeline.44

Role of AI in studying tumor–immune interactions
AI has emerged as a transformative tool in oncology, 
particularly in deciphering the complex interactions 
between tumors and the immune system. In BCA, AI-
driven approaches are enhancing our understanding 
of the tumor immune microenvironment (TIME), 
predicting responses to immunotherapy, and guiding the 
development of personalized treatment strategies.45

One significant application of AI is in analyzing 
histopathological images to assess immune cell 
infiltration within tumors. For instance, researchers at 
Karolinska Institute utilized AI models to evaluate tumor-
infiltrating lymphocytes (TILs) in triple-negative breast 
cancer (TNBC), demonstrating that AI can effectively 
predict patient prognosis by quantifying immune cell 
presence. Similarly, deep learning algorithms have been 
employed to predict tumor and immune phenotypes 
from histopathology slides, achieving high accuracy in 
classifying gene expression pathways and offering insights 
into the spatial distribution of immune cells.46

Beyond image analysis, AI is instrumental in 
interpreting multi-omics data to unravel the complexities 
of tumor–immune interactions. Explainable AI (XAI) 
models have been applied to RNA sequencing data from 
BCA patients to identify critical immune components 
associated with improved survival. For example, a study 
revealed that higher fractions of CD4 + T cells and B 
cells within the tumor microenvironment correlate with 
better 5-year survival rates in both TNBC and non-TNBC 
patients.47

Furthermore, AI facilitates the prediction of 
immunotherapy efficacy by integrating diverse datasets, 
including genomic, transcriptomic, and proteomic 
information. By modeling the intricate dynamics of the 
TIME, AI algorithms can identify biomarkers indicative of 
positive responses to treatments like immune checkpoint 
inhibitors, thereby aiding in patient stratification and 
personalized therapy planning. In summary, AI serves as a 
powerful ally in cancer immunotherapy research, offering 
advanced analytical capabilities to decode tumor–immune 
interactions. Its applications in image analysis, multi-
omics integration, and predictive modeling are paving the 
way for more precise and effective immunotherapeutic 
interventions in breast cancer.

Breast cancer screening 
As BCA, along with lung and colorectal cancers, are 
the most common cancers worldwide,48 BCA screening 
guidelines have been developed to improve decision-
making for physicians and increase awareness of its 
importance globally.49,50 Screening for BCA is highly 
effective in detecting early-stage disease, improving 
patient survival rates, enhancing women's healthcare, and 
enabling timely diagnosis and treatment. The American 
Cancer Society recommends annual screenings for 
women aged 45-54 and biennial screenings for those aged 
55 and older.51 Diagnostic approaches for BCA include 
clinical examination, mammography, ultrasound, core-
needle biopsy, and molecular genetic analysis.52 The 
treatment plan is based on the tumor profile, biomarker 
assessment, and potential risk factors associated with 
tumor recurrence. The standard mortality rate (SMR) 
index algorithm, known as PSI, is utilized to assess BCA 
prognosis and predict treatment benefits.53 The cancer 
screening via AI application showed in Table 1.

Sonography
Screening modalities for BCA include automatic breast 
ultrasound, contrast-enhanced ultrasound, three-
dimensional ultrasound, and computer-aided detection 
of breast ultrasound.78 Ultrasonography is widely used, 
particularly for women with dense breasts, due to 
its accessibility and convenience and a high negative 
predictive value of 99.5% in classifying benign solid 
lesions. The Breast Imaging Report and Data System (BI-
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RADS) established by the American College of Radiology 
(ACR), standardizes reporting across mammography, 
ultrasonography, and MRI, reducing variability and 
enabling seamless integration with digital mammography 
and CAD systems.79-81 Given the higher cost of 
mammography, sonography is often employed as a first 
line screening tool, especially in developing countries as it 
is available and better tolerated by patients.82

Mammography 
Mammography remains the preferred method for 
early breast cancer detection due to its accuracy, wide 
availability, and cost-effectiveness in saving years of life.83 

Most national guidelines recommend mammographic 
screening for women aged 40 and older.49,84,85 Studies show 
mammography reduces BCA mortality by about 40% in 
average-risk women aged 40-74.86,87 Annual screening for 
women aged 40-49 is also supported to reduce mortality, 
with particularly strong evidence for women aged 50 and 
above.88 Screening decreases the incidence of advanced 
cancer and is currently the only proven test to lower 
BCA death rates.89,90 Guidelines typically advise annual 
or biennial mammography for average-risk women aged 
40-74. High risk individuals may benefit from earlier and 
more frequent screening, including annual MRI.91 There 
might be some challenges in screening patients with 

Table 1. Overview of AI applications in breast cancer screening and clinical care

Category AI Application Details Benefits Limitations/Challenges References

Early 
Detection

AI-driven 
imaging analysis

Automated analysis of 
mammograms, MRIs, and 
ultrasounds to identify subtle 
patterns for early-stage breast 
cancer detection.

Improves diagnostic accuracy, 
reduces human error, and 
enables earlier diagnosis.

Issues with data quality, 
model generalization, and 
ethical considerations.

54-56

Risk assessment 
models

CNNs distinguish high-risk 
individuals from low-risk groups 
by analyzing genetic and clinical 
data.

Facilitates personalized 
screening and prevention 
strategies.

Limited interpretability and 
reliance on high-quality 
datasets.

57

Diagnosis Deep learning

Identifies imaging-genomic 
correlations (e.g., BRCA mutations) 
and facilitates radio-genomic 
analysis for biomarker discovery.

Enables non-invasive 
diagnostics and biomarker-
based therapies.

Requires large datasets 
and robust computational 
infrastructure.

58,59

Natural 
language 
processing

Extracts key details from clinical 
notes and reports to support 
diagnosis and treatment.

Streamlines data organization 
and reduces workload.

Accuracy depends on data 
input quality.

60-62

Case-based 
reasoning

Matches new patient cases 
with historical cases to support 
diagnostic decisions.

Particularly useful in complex 
cases with inconclusive 
traditional diagnostics.

Limited database size can 
affect accuracy.

63,64

Treatment Arianna solution
Tracks patient progress, monitors 
adherence, and provides 
reminders for follow-ups.

Enhances diagnostic accuracy, 
patient satisfaction, and cost-
effectiveness.

Limited scalability in resource-
constrained settings.

65

Recurrence 
Prediction

DNA 
methylation 
analysis

Encodes DNA methylation 
patterns to model recurrence risk 
using machine learning algorithms 
(e.g., SVMs, neural networks).

Enhances prediction accuracy.
Requires robust data 
annotation and high-quality 
datasets.

66-68

Gene weight 
analysis

Assesses genes' contributions to 
recurrence risk using techniques 
like SHAP values.

Identifies novel biomarkers 
for tailored interventions.

Computationally intensive and 
resource-dependent.

69-71

Risk Models Gail model
Calculates lifetime risk using 
patient history (e.g., age, family 
history, reproductive history). 

Simple and widely used.

Lacks integration with 
mammographic density data 
and underestimates risk in 
some cases.

72

Tyrer-Cuzick 
model

Incorporates genetic, hormonal, 
and familial factors for risk 
prediction.

Provides more accurate risk 
predictions, especially for 
individuals with family history.

Data complexity can hinder 
widespread use. Additionally, 
it was first developed in non-
Hispanic White women

72-74

BCSC model
Integrates mammographic density 
as a key risk factor along with 
demographic and clinical data.

Enhances accuracy by 
leveraging imaging data.

Requires mammographic data 
integration.

75,76

AI 
Mammographic 
Phenotyping

Analysis mammograms for texture 
patterns, density variations, and 
subtle features.

Supports individualized risk 
assessment and prevention 
strategies.

Requires advanced DL models 
and high-quality imaging 
datasets.

77
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mammograms including a false positive result- recalls 
for additional testing that ultimately reveal cancer- and 
overdiagnosis, where detected cancers would not have 
caused clinical symptoms.92 Reported overdiagnosis rates 
vary widely from (0%-57%), raising concerns about their 
accuracy.93-95 False-negative occur in about 20% of cases 
especially in lobular carcinomas and dense breast tissue.96 
AI algorithms can automatically analyze mammograms, 
reducing radiologists’ workload and improving detection 
rates by highlighting suspicious areas.97,98 A 2023 study 
demonstrated that a deep learning model improved BCA 
risk prediction in Asian women compared to traditional 
models.99

Advanced deep learning techniques enhance 
mammogram analysis through Dual Models and U-Net 
segmentation. Dual Models, combine one model that 
detects macro-level features such as breast density 
with another focusing on micro-level features such as 
microcalcifications for comprehensive analysis.100 The 
U-Net, is a CNN architecture designed for biomedical 
image segmentation.101 It captures spatial and contextual 
details to accurately outline suspicious regions, aiding 
precise localization and diagnosis.102,103

Thermography
Infrared thermography (IRT) has emerged as a promising 
adjunctive modality for BCA screening. Unlike traditional 
imaging techniques such as mammography, which rely on 
structural visualization, IRT detects subtle temperature 
differences on the surface of the skin that may reflect 
underlying pathological processes. These thermal 
patterns are influenced by changes in vascularization, 
metabolism, and inflammation, which are often present 
in malignant tissue even before a structural abnormality 
becomes apparent. IRT is completely non-invasive, 
radiation-free, and painless, making it particularly 
appealing for use in younger women or individuals with 
dense breast tissue, where mammographic sensitivity may 
be limited. Recent studies have explored the integration 
of thermographic imaging with AI to enhance diagnostic 
accuracy.104,105 For instance, a study by Jalloul et al 
evaluated multiple deep learning and machine learning 
algorithms using thermographic datasets, and reported 
that the combination of ResNet152 and SVM achieved 
an impressive classification accuracy of over 97%, along 
with high sensitivity and specificity.106 Similarly, Chi et 
al proposed a lightweight, high-accuracy framework by 
integrating pre-trained CNNs with statistical feature 
selection methods, such as the chi-square filter, followed 
by SVM-based classification. Their model not only 
reached a peak accuracy of 99.62% on benchmark datasets 
but also maintained low computational complexity, 
making it a practical choice for real-time, computer-
aided diagnosis.107 These findings highlight the potential 
of AI-powered thermography in distinguishing between 

healthy, benign, and malignant breast tissue. 
Notably, clinical validation of AI-assisted thermography 

has also begun to emerge. A multicenter prospective 
study by Singh et al evaluated Thermalytix, an automated 
thermographic screening algorithm, in 258 symptomatic 
women. When compared to standard diagnostic 
modalities, Thermalytix showed non-inferior sensitivity 
(82.5%) and significantly higher specificity (80.5%) 
relative to mammography (45.9%) under BI-RADS 3 
criteria. Interestingly, the method maintained strong 
diagnostic performance across age groups, achieving an 
AUC of 0.845 overall. These findings support the clinical 
utility of AI-enhanced thermography as a supplemental 
tool for early BCA detection, particularly in settings 
where conventional imaging may be inaccessible or 
suboptimal.108 In a recent systematic review and meta-
analysis, the researchers evaluated 22 clinical studies 
published since 2001 that investigated the diagnostic 
performance of digital infrared thermography for 
BCA. The meta-analysis reported a pooled sensitivity 
of 88.5% and specificity of 71.8%, indicating that while 
thermography is generally effective in identifying 
malignant cases, its ability to rule out non-cancerous 
findings has been more variable. Importantly, the review 
highlighted substantial heterogeneity across studies, 
attributed to differences in imaging protocols, patient 
selection, device quality, and interpretive criteria. Despite 
these limitations, the authors concluded that recent 
studies show performance levels approaching those of 
standard diagnostic tools, particularly in populations 
with dense breast tissue or limited access to conventional 
screening.109

Despite its promise, thermography still faces 
limitations, including variability in imaging protocols, 
environmental dependencies, and the need for 
standardized interpretation frameworks. Nonetheless, 
when used alongside conventional methods, it may serve 
as a valuable tool in early detection strategies, particularly 
in resource-limited settings or for individuals seeking 
radiation-free alternatives.110

Magnetic resonance imaging (MRI)
Among breast cancer screening methods, MRI is highly 
sensitive (over 90%) in detecting breast masses and is 
notable for its high negative predictive value.111-115 It is 
especially valuable for women with BRCA1 and BRCA2 
mutations and those with a life-time risk of 20-25% or 
higher, as determined by factors such as family history, prior 
radiation therapy, or genetic predisposition.116-120 Current 
guidelines recommend annual MRI screening alongside 
annual mammography for those high-risk groups, as this 
combination increases detection sensitivity, particularly 
in women aged 40-49 and even more so in the 50-69 age 
group.121,122 MRI is also clinically useful for local staging 
before breast cancer surgery and for evaluating patients 
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with chronic kidney disorders, since the use of gadolinium 
contrast can impair renal function and may lead to 
nephrogenic systemic fibrosis.115,123,124 Recent advances in 
AI have enabled the use of radiomics, where quantitative 
features extracted from MRI scans can help predict the 
likelihood of breast cancer of recurrence.125 Radiomics 
can assist clinicians in distinguishing between low-
grade and high-grade cancers prior to surgery, providing 
valuable insights into tumor characteristics and supporting 
preoperative assessment of cancer aggressiveness, thereby 
guiding treatment decisions (Fig. 2).126

 
Digital breast tomosynthesis (DBT) 
DBT is a technique that uses multiple low-dose 

mammographic images of the compressed breast, 
which are then reconstructed into synthesized 2D 
projection images.128,129 DBT creates a three-dimensional 
reconstruction of the breast, providing clearer and more 
detailed images compared to traditional 2D mammography, 
which helps in identifying abnormalities that may be 
missed in standard mammograms due to tissue overlap. 
It is proven that the combination of DBT with digital 
mammography can increase the screening and diagnosis 
rate, with a sensitivity of 33%-53% and a specificity of 
30%-40 %.130-134 DBT has several advantages, including 
reducing tissue overlap, detecting more findings in dense 
breast tissue, decreasing false negatives, and improving 
mass characterization.135,136 One study found a significant 

Fig. 2. Classification of breast cancer patients based on radiomic features and clinical variables. This figure illustrates the classification of breast cancer 
patients into high-risk and low-risk categories using a radiomic risk model. The model integrates radiomic features from Dynamic Contrast-Enhanced 
MRI (DCE-MRI), such as texture, shape, and intensity, alongside clinical variables including HER2 status, hormone receptor (HR) status, and tumor size. 
Patients in the high-risk group show irregular tumor shapes and high heterogeneity, while those in the low-risk group exhibit more homogeneous features. 
The model enables improved prediction of tumor recurrence, highlighting the potential for personalized treatment strategies.127 Reprinted from You et al,127 
under the terms of the Creative Commons Attribution-Noncommercial-No Derivatives 4.0 International License.
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increase in cancer detection in patients who underwent 
screening with DBT after three years of follow-up.137 
Deep Learning models on large datasets of DBT images 
would recognize patterns to indicate BCA. Models such as 
CNNs are particularly effective in analyzing the complex 
structures in DBT images. Using AI to extract relevant 
features from DBT images, such as the shape, texture, and 
density of lesions can help in distinguishing between benign 
and malignant tissues. AI algorithms can analyze the 3D 
images generated by DBT to detect tumors with greater 
accuracy than traditional 2D mammography. This leads 
to improved detection rates and fewer false positives.138 
AI can also enhance the visualization of DBT images by 
focusing on the suspicious lesions and providing clearer 
views of dense breast tissue, which is often challenging 
to interpret with conventional imaging techniques.139 In 
addition, it is noted that AI can integrate DBT images with 

other patient data, including the genetic information and 
clinical history, to provide a comprehensive assessment of 
BCA risk and perform a personalized treatment decision.140

AI in breast cancer screening 
Late-stage diagnosis remains a major obstacle to improving 
survival rates, especially in developing countries with 
limited access to screening and diagnostic resources, despite 
advancements in medical research and technology. This 
article delves into the role of AI technologies in addressing 
crucial challenges in the healthcare and pharmaceutical 
industries.141-143 By automating imaging analysis and 
employing predictive algorithms, AI has the potential to 
transform BCA detection, leading to timely diagnosis and 
treatment and ultimately enhancing patient outcomes and 
survival rates. Fig. 3 presents a comprehensive flowchart 
illustrating the functions of AI in BCA.

Fig. 3. The intricate flowchart detailing the procedures for diagnosing and treating breast cancer, which is continuously enhanced by the advancements 
in AI, plays a crucial role in facilitating the identification of novel therapeutic targets, innovative drug candidates, potential biomarkers, and other related 
aspects in the field. Created with BioRender.com (Used with permission).
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AI-driven solutions for early detection, diagnosis, and 
treatment
Early detection and accurate diagnosis of BCA are 
paramount in improving patient outcomes and survival 
rates. When identified at an early stage, BCA is more likely to 
be treated successfully, with a broader range of therapeutic 
options and a lower likelihood of metastasis. The capacity 
of AI to incorporate and refine its understanding from 
data over time imbues it with significant potential as a 
tool for personalized medicine.98 Specifically, AI-driven 
systems can support radiologists in the interpretation of 
mammograms, mitigating human error and augmenting 
diagnostic precision. These systems can determine slight 
patterns that might evade human observation, ultimately 
facilitating earlier and more accurate detection of BCA. 
Moreover, AI is instrumental in developing predictive 
models that assess an individual’s risk of developing BCA 
based on their genetic profile, lifestyle, and other factors. 
These models can guide personalized screening strategies 
and preventive measures, ultimately improving patient 
outcomes.144 AI also plays a critical role in the treatment of 
BCA (Table 2). It helps to devise personalized treatment 
plans by analyzing data from previous cases to predict how 
a patient might respond to different treatment plans. This 
ensures that patients receive the most effective treatments 
with the least side effects, enhancing their quality of life 
and their prognosis. Table 3 will summarize recent AI-
based models specifically designed for predicting breast 
cancer prognosis (e.g., recurrence risk, survival rates) and 
optimizing personalized treatment strategies.

1. ML: A subset of AI that enables computers to learn 
from data and improve their performance over time 
without being explicitly programmed. ML algorithms 
can classify images, detect tumors, and predict patient 
outcomes based on historical data.

1.1. SVMs: SVMs are among ML techniques for 
classification tasks that find the optimal hyperplane for 
different classes in the feature space. SVMs have been 
used to classify BCA subtypes and predict consequences 
based on histopathological features.166

2. Deep learning algorithms: A more advanced subset 
of ML that uses neural networks with many layers (hence 
"deep") to analyze data. AI algorithms, particularly deep 
learning models, can analyze mammograms, MRIs, and 
ultrasound images with high precision. These models are 
trained on large datasets to identify subtle patterns and 
abnormalities that may be indicative of early-stage BCA.

2.1. DL in radio-genomics: Radio-genomics integrates 
radiological imaging with genomic data to improve the 
diagnosis and treatment plan. Deep learning models 
can analyze radiological images to extract features that 
correlate with specific genetic mutations. For example, 
specific imaging characteristics may contribute to 
mutations in BRCA1 and BRCA2.167 The impact of radio-
genomics in predictive modeling and biomarker discovery 

can lead to the development of non-invasive diagnostic 
tests and targeted therapies.168,169

2.2. DL in risk assessment: The advantages of CNNs 
are studied and compared with traditional radiographic 
texture analysis (RTA) in distinguishing between high-
risk and low-risk subjects. The consequences demonstrate 
that CNNs performed similarly to RTA in distinguishing 
BRCA1/2 carriers and low-risk women, while noticeably 
better in distinguishing unilateral cancer patients and 
low-risk women.170 Although the opportunities of DL 
outweigh the limitations, there are some challenges 
worth mentioning, including data quality, model 
interpretability, generalization, and ethical considerations 
that are necessary to integrate deep learning into clinical 
practice successfully.

3. Computer-aided detection (CAD): A type of deep 
learning model specifically designed for analyzing visual 
data. CNNs are highly effective in detecting features in 
images, such as tumors in mammograms, by automatically 
learning to identify patterns and structures associated 
with BCA. These systems can reduce the likelihood of 
human error and increase diagnostic accuracy. Some 
positive aspects of CNN include: 

3.1. Tumor detection: CNNs can be trained to detect 
tumors in mammograms and other breast imaging 
modalities with high sensitivity and specificity. They can 
identify subtle patterns that may be missed by radiologists, 
leading to earlier and more accurate diagnoses.144

3.2. Image segmentation: CNNs can segment medical 
images to delineate the boundaries of tumors and other 
structures within the breast. This is crucial for accurate 
measurement and assessment of tumor size and local 
spread.102

3.3. Risk prediction: By analyzing imaging data alongside 
other clinical information, deep learning models can 
predict a patient's risk of developing BCA, aiding in 
personalized screening and prevention strategies.171

4. NLP: A branch of AI that focuses on the interaction 
between computers and human language. In the context 
of BCA detection, NLP can be used to analyze clinical 
notes and reports to extract relevant information for 
diagnosis and treatment planning.

5. Case-based reasoning (CBR): CBR is a method used 
by AI systems to solve new problems by drawing on the 
experiences of past cases. This approach involves four key 
steps: first, retrieving relevant past cases; second, reusing 
the knowledge gained from those cases to solve the 
current problem; third, revising the solution based on any 
new information; and finally, retaining the knowledge 
gained for future use.172

5.1. Diagnostic support: CBR systems provide diagnostic 
support by comparing new patient cases with a database 
of historical cases. Radiologists and oncologists can 
utilize these systems to identify patterns and similarities 
with past cases, helping to confirm or refine diagnoses. 
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Table 2. Evaluation of AI-based models for breast cancer risk, prognosis, diagnosis, and treatment

Study Objective Data source/
population

AI model/
methodology Performance metrics Strengths, limitations, 

and application notes References

Lo Gullo et 
al, 2024

Develop a model to 
predict TNBC using 
radiomic features of 
contralateral breast 
fibroglandular tissues.

541 patients 
(250 
training, 291 
validation).

SVM (polynomial 
kernel, order 2); 
CERR platform; 132 
radiomic features 
extracted.

F1 score: 0.66
AUC: 0.71
Sensitivity: 0.54 (0.47-0.60)
Specificity: 0.74 (0.65-0.84)
PPV: 0.84 (0.78-0.90) 
NPV: 0.39 (0.31-0.47)

Strengths: Uses 
contralateral breast, 
an innovative feature. 
Limitations: Low 
sensitivity and NPV; 
limited clinical utility as 
a stand-alone predictor.

145

Mo et al, 
2024

Develop a radiomics 
model using 
photoacoustic/
ultrasound imaging to 
differentiate between 
Luminal and non-Luminal 
breast cancer, and 
identify the optimal 
peritumoral region for 
better classification.

322 patients 
(262 training, 
60 validation).

LASSO model; 
feature extraction 
from intra- and 
peri-tumoral 
regions; RF 
classifier.

Combined intra-tumoral 
and peri-tumoral model at 
a 4 mm region:
Accuracy: 0.90
AUC: 0.90 (0.78-1.00)
Sensitivity: 0.94
Specificity: 0.75

Strengths: High 
accuracy with 
peritumoral imaging 
integration. Limitations: 
Needs high-quality 
multimodal imaging; 
less validated 
externally.

146

Yang et al, 
2024

Develop an AI-driven 
framework for cancer 
biomarker discovery (Ki-
67 gene) using radiomics 
and multi-omics data 
integration.

233 patients 
(70% 
training, 30% 
validation).

CNN for image 
feature extraction, 
GNNs for multi-
omics integration, 
LASSO for feature 
selection and 
dimensionality 
reduction, 
XAI for model 
interpretability, 
cross-validation 
for performance 
evaluation.

Combined radiomics model 
for Ki-67 (20% cut-off):
F1 score: 0.84
Accuracy: 0.82
AUC: 0.86 (0.76-0.94)
Sensitivity: 0.92
Specificity: 0.73

Strengths: Integrates 
omics + imaging 
with explainability. 
Limitations: High 
computational 
demands; needs multi-
modal data.

147

Zhang et 
al, 2024

Combine machine 
learning models (RF, 
SVM, CNN) with 
Raman spectroscopy 
to distinguish between 
normal and cancerous 
breast tissue, aiming 
to create a rapid, non-
invasive diagnostic tool 
for breast cancer.

20 mice, 959 
tumor spectra, 
1075 normal 
tissue spectra. 

RF, SVM (RBF 
kernel), CNN; data 
pre-processing 
(background 
removal, 
smoothing, 
normalization); 
CNN with 50 
epochs, binary 
cross-entropy loss, 
SGD optimizer.

CNN:
Accuracy: 0.98
Sensitivity: 0.96
Specificity: 0.99

Strengths: Rapid, non-
invasive diagnostic 
potential. Limitations: 
Preclinical; only tested 
in mice, requires 
translation to human 
data.

148

Zuo et al, 
2023

Evaluate and compare 
the performance of 
various machine learning 
models for predicting 
breast cancer recurrence 
risk and identify the best 
model for prediction.

342 patients 
(70% 
training, 30% 
validation).

Eleven models 
were used:
AdaBoost 
showed the best 
performance.

AdaBoost:
F1 score: 0.92
AUC: 0.99
Sensitivity: 0.95
Specificity: 0.98
PPV: 0.90 
NPV: 0.99

Strengths: Very high 
predictive performance. 
Limitations: Moderate 
sample size; model 
interpretability is 
limited in AdaBoost.

149

Zhong et 
al, 2023

Develop accurate 
machine learning models 
to predict the diagnosis 
and prognosis of bone 
metastasis in breast 
cancer patients, helping 
clinicians with decision-
making.

Surveillance, 
Epidemiology, 
and End 
Results (SEER) 
database; 
283,373 
patients 
(198,364 
training, 
85,009 
validation). 

Six machine 
learning models 
were used, with 
XGB performing 
best. Feature 
selection was done 
via logistic and 
Cox regression, 
and models were 
optimized using 
five-fold CV, 
grid search, and 
SHAP for feature 
importance.

XGB:
F1 score: 0.95
AUC: 0.94
Accuracy: 0.94
Precision: 0.98
Recall: 0.94

Strengths: Large SEER 
dataset; interpretable 
with SHAP. Limitations: 
Based on retrospective 
registry; lacks imaging 
data.

150
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Study Objective Data source/
population

AI model/
methodology Performance metrics Strengths, limitations, 

and application notes References

C. Manikis 
et al, 2023

Develop machine 
learning models to 
predict poor mental 
health or quality of 
life decline in breast 
cancer patients, 
enabling personalized 
psychological 
interventions.

706 patients 
(80% 
training, 20% 
validation)

The study used 
12 models, 
primarily BRF, 
with nested cross-
validation and 
feature selection 
on clinical, 
psychological, and 
lifestyle data.

BRF: model A (mental 
health) and B (quality of 
life), respectively.
F1 score: 0.60, 0.57
AUC: 0.81, 0.78
Accuracy: 0.80, 0.78
Sensitivity: 0.82, 0.79
Specificity: 0.79, 0.77

Strengths: Targets 
underrepresented 
outcomes (QoL). 
Limitations: Moderate 
performance; subject 
to subjective bias in 
inputs.

151

Rabiei et 
al, 2022

Predict breast cancer 
using machine 
learning models with 
mammographic, 
demographic, and 
laboratory data.

5178 records 
(25% breast 
cancer 
patients).

RF, GBT, MLP; 
SMOTE, k-fold 
validation, 
hyperparameter 
tuning; trained 
with demographic, 
mammography, 
laboratory 
features. 

RF:
Accuracy: 0.80
AUC: 0.56
Sensitivity: 0.95
Specificity: 0.80

Strengths: Combines 
clinical and imaging 
data. Limitations: 
AUC is low despite 
high sensitivity—false 
positives likely.

152

Mortazavi 
et al, 2022

Develop machine 
learning models 
predicting breast cancer 
risk based on exposure to 
ionizing and non-ionizing 
radiation (blue light, 
screen time).

603 women 
(309 breast 
cancer cases, 
294 controls).

RF, SVM, and 
MLPNN, with 
10-fold cross-
validation and 
hyperparameter 
tuning.

RF (best performance):
Accuracy: 0.99
Sensitivity: 0.99
Specificity: 0.98

Strengths: Explores 
novel risk factors (light 
exposure). Limitations: 
High performance may 
be due to overfitting in 
small sample.

153

Zhang et 
al, 2022

Develop a machine 
learning model that uses 
ultrasound features of 
breast cancer lesions 
to predict sentinel 
lymph node metastasis, 
improving preoperative 
diagnostic accuracy.

952 patients 
(902 training, 
50 validation)

The study used 10 
machine learning 
models (SVM, 
XGBoost, RF, 
MLP, CNN etc.,), 
with XGBoost 
performing the 
best. SHAP was 
applied for model 
interpretation 
and feature 
importance.

XGBoost:
F1 score: 0.83
Accuracy: 0.85
AUC: 0.92
Sensitivity: 0.87
Specificity: 0.86

Strengths: High 
diagnostic accuracy 
using ultrasound 
features. Limitations: 
External validation on 
small cohort (n = 50).

154

Zhang et 
al, 2021

Classify breast cancer 
subtypes (HR + /HER2-, 
HER2 + , TN) using deep 
learning (CNN, CLSTM) on 
DCE-MRI, with transfer 
learning for improved 
performance across 
different datasets.

244 patients 
(99 training, 
145 
validation); 
molecular 
subtypes: 
HR + /HER2-, 
HER2 + , TN.

CNN, CLSTM 
models; 10-fold 
cross-validation, 
Adam optimizer; 
tumour 
segmentation 
with FCM; transfer 
learning for fine-
tuning.

CNN: HR + /HER2- vs. 
others, TN vs. non-TN, 
HER2 + vs. HER2-
Accuracy: 0.81, 0.76, 0.80
AUC: 0.86, 0.84, 0.90
Sensitivity: 0.79, 0.71, 0.73
Specificity: 0.82, 0.79, 0.83
CLSTM: HR + /HER2- vs. 
others, TN vs. non-TN, 
HER2 + vs. HER2-
Accuracy: 0.90, 0.89, 0.92
AUC: 0.92, 0.89, 0.93
Sensitivity: 0.89, 0.82, 0.90
Specificity: 0.91, 0.92, 0.93

Strengths: Strong 
performance using 
deep learning and 
transfer learning. 
Limitations: Complex 
architecture; limited 
generalizability to other 
imaging modalities.

155

Naji et al, 
2021

Apply machine learning 
algorithms to predict 
and diagnose breast 
cancer, evaluating the 
performance of different 
models to identify the 
most accurate and 
effective algorithm for 
cancer detection.

Breast Cancer 
Wisconsin 
Diagnostic 
dataset; 569 
instances (357 
benign, 212 
malignant).

SVM, RF, K-NN, 
decision tree, and 
logistic regression.

SVM (best performance):
F-measure: 0.96 (benign), 
0.98 (malignant)
AUC: 0.966

Strengths: Excellent 
performance on classic 
dataset. Limitations: 
Dataset is old, small, 
and not clinically 
representative.

156

Table 2. Continued.
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This process is particularly useful in complex cases where 
traditional diagnostic methods may be inconclusive.173

5.2. Treatment plan: CBR can assist in treatment 
planning by suggesting therapeutic approaches based 
on similar past cases. For instance, if a newly diagnosed 
patient shows a specific type of BCA, the system can 
retrieve cases with similar features and recommend 
treatment regimens that were effective in those cases 
enabling personalized treatment plans tailored to the 
patient's unique characteristics.174

5.3. Prognosis prediction: By analysing the outcomes 
of similar past cases, CBR systems can help predict the 
prognosis for new patients, for example estimating 
survival rates, potential complications, and the likelihood 
of recurrence. Such predictions are invaluable for setting 
realistic expectations and planning follow-up care.175

6. Stand-alone AI: Stand-alone AI systems for cancer 

detection utilize advanced machine learning techniques, 
including deep learning, to analyse medical images for 
the identification of patterns and anomalies that might 
indicate the presence of cancer, including the detection 
of calcifications, masses, and architectural distortions 
that are typical indicators of BCA. 98 Moreover, as the AI 
systems improve, the Machine learning algorithms can 
adapt to novel patterns and investigations, enhancing 
their diagnostic capabilities over time. 176

7. Transformers in breast cancer information 
extraction: Transformers, particularly models such 
as BERT (bidirectional encoder representations from 
transformers), GPT (generative pre-trained transformer), 
and their derivatives, have shown noticeable proficiency 
in understanding human language. These models 
are especially accomplished in extracting relevant 
information from unstructured clinical text to manage 

Study Objective Data source/
population

AI model/
methodology Performance metrics Strengths, limitations, 

and application notes References

Jalloul et 
al, 2024

Compare deep learning 
and machine learning 
models for early breast 
cancer detection using 
infrared thermography, 
highlighting the superior 
performance of CNN-
based architectures 
in thermal image 
classification.

Used DRM-IR 
and Mendeley 
thermography 
datasets 
containing 
annotated 
infrared 
breast images 
from diverse 
diagnostic 
categories.

SVM, naive bayes, 
decision trees, 
K-NN, DNNs 

ResNet152 + SVM (best 
performance):
Accuracy: 0.97
AUC: 0.99
Precision: 0.98
Recall (Sensitivity): 0.94
F1-score: 0.96
Specificity: 0.97

Strengths: Excellent 
performance metrics; 
integration of deep 
learning and classical 
ML; multi-dataset 
training improves 
generalizability. 
Limitations: Potential 
overfitting; no clinical 
validation reported.

106

Chi T et al, 
2024

To design a lightweight, 
high-performance 
thermography-based 
model for early breast 
cancer detection 
using optimized CNN 
features and efficient 
classification.

56 patients 
(47 training, 
9 testing); 
image labels: 
380 normal, 
740 abnormal 
(cancerous); 
classes: 
normal vs. 
abnormal.

SVM, RF, K-NN, 
Adaboost, XGBoost

ResNet34 + SVM (best 
performance):
Accuracy: 0.99
AUC: 0.99
Precision: 0.99
Recall (Sensitivity): 0.99
F1-score: 0.99

Strengths: Lightweight 
architecture; very high 
accuracy; suitable 
for low-power or 
embedded systems. 
Limitations: Small 
sample size; minimal 
external validation; 
possible overfitting on 
limited data.

107

Singh et al, 
2021

To evaluate the 
diagnostic performance 
and non-inferiority 
of Thermalytix, an 
AI-based automated 
thermographic screening 
tool, compared with 
standard breast cancer 
screening modalities 
(mammography and/
or ultrasound) in 
symptomatic women 
suspected of having 
breast cancer.

Pre-trained 
model, clinical 
testing only 
(258 total; 
age-stratified 
analysis: < 45 
years and ≥ 45 
years)

Screenin tool 
(Thermalytix)

 ≥ 45 years
AUC: 0.88
Sensitivity: 0.81
Specificity: 0.87
 < 45 years
AUC: 0.85
Sensitivity: 0.87
Specificity:0.81

Strengths: Real-world 
clinical validation; 
performance analyzed 
across age groups. 
Limitations: No F1-score 
or precision reported; 
focused only on 
symptomatic women.

108

Abbreviations: TNBC, triple-negative breast cancer; SVM, support vector machine; AUC, area under the curve; PPV, positive predictive value; NPV, 
negative predictive value; LASSO, least absolute shrinkage and selection operator; CNN, convolutional neural network; GNN, graph neural network; 
XAI, explainable artificial intelligence; RF, random forest; RBF, radial basis function; SGD, stochastic gradient descent; XGB, extreme gradient boosting; 
SHAP, SHapley Additive exPlanation; GBT, gradient boosted trees; MLP, multilayer perceptron; SMOTE, synthetic minority oversampling technique; 
CLSTM, convolutional long short-term memory; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; FCM, fuzzy C-means clustering; 
K-NN, K-nearest neighbours.

Table 2. Continued.
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and analyse BCA data.177-179 The advantages compared 
to the traditional methods are noteworthy including 
automated coding of clinical data,180 information retrieval 
and data mining,181 which can extract specific details such 
as genetic mutations, tumor characteristics, and treatment 
responses for research and personalized medicine.

8. AI solutions in breast cancer care pathways; the 
Arianna solution: The Arianna solution is an advanced AI-
driven platform designed to improve BCA care. Arianna 
tracks patient progress, monitors treatment adherence, 
and provides reminders for follow-up appointments. 
The usage of AI is to improve diagnostic accuracy, 
enhanced patient satisfaction, and cost effectiveness. As 

AI technology continues to advance, the role of Arianna 
Solution in BCA care is set to expand, offering even 
greater benefits in the future 182

9. Autoencoded DNA methylation data for recurrence 
prediction: After encoding DNA methylation data, 
various supervised learning methods can be employed to 
forecast recurrence. These models are trained on datasets 
with known outcomes (recurrence or non-recurrence) to 
identify the correlation between methylation patterns and 
recurrence risk. This approach leverages the predictive 
capabilities of SVMs, random forests, and neural networks 
to make accurate predictions 183

10. Gene-Weight Significance for Recurrence Prediction: 

Table 3. Comparative analysis of AI models in breast cancer research157-165

Model Type Strengths Weaknesses Best use cases Performance 
metrics

Vision 
Transformer 
(ViT)

Transformer-
based

High accuracy; effective in multi-
class classification; captures 
global context

Requires large datasets; 
computationally intensive

Histopathology image 
classification; complex 
pattern recognition

Accuracy: 93%–
98.17% 

ResNet-50 CNN Robust feature extraction; good 
generalization; efficient training

May underperform in multi-
class tasks compared to 
newer models

Image classification; 
feature extraction

Accuracy: 84.5%–
90%; Sensitivity: 
93% 

Xception CNN
High sensitivity; effective 
in binary and multi-class 
classification

Slightly lower accuracy than 
ViT

Histopathology 
classification; carcinoma 
detection

Accuracy: 88%; 
Sensitivity: 95% 

DenseNet-121 CNN
Efficient feature reuse; good 
performance in classification 
tasks

Potential overfitting; high 
memory usage

Image classification; 
feature extraction Accuracy: ~96% 

EfficientNet CNN High accuracy with fewer 
parameters; scalable May require careful tuning

Image classification; 
resource-constrained 
environments

Not specified in 
provided sources

MobileNet CNN Lightweight; suitable for mobile 
and embedded applications

Lower accuracy compared to 
larger models

On-device image 
classification

Not specified in 
provided sources

SqueezeNet CNN Small model size; fast inference Lower accuracy compared to 
larger models

Resource-limited 
scenarios

Not specified in 
provided sources

Support Vector 
Machine (SVM)

Traditional 
ML

High accuracy; effective in high-
dimensional spaces

Sensitive to parameter 
selection; less effective with 
large datasets

Binary classification; small 
to medium datasets

Accuracy: 
95.83%–97.66% 

Random Forest 
(RF)

Ensemble 
Learning

Robust to overfitting; handles 
high-dimensional data

Less interpretable; may 
require large number of trees

Feature selection; 
classification tasks

Accuracy: 
95.24%–95.32% 

k-Nearest 
Neighbors (k-
NN)

Instance-
based 
Learning

Simple implementation; 
effective with well-separated 
classes

Computationally intensive 
with large datasets; sensitive 
to noise

Classification with small 
datasets Accuracy: 97.62% 

Logistic 
Regression (LR)

Traditional 
ML

Interpretable; performs well 
with linearly separable data

Limited to linear 
relationships; less effective 
with complex patterns

Risk prediction; binary 
classification

Accuracy: 83%–
97% 

Artificial Neural 
Network (ANN)

Neural 
Network

Captures complex patterns; 
adaptable to various tasks

Requires large datasets; 
prone to overfitting Prediction; classification Accuracy: 71%–

97.07% 

Decision Tree 
(DT)

Tree-based 
Model

Easy to interpret; handles both 
numerical and categorical data

Prone to overfitting; less 
stable with small changes 
in data

Initial modeling; feature 
importance analysis

Accuracy: 
93.15%–94.15% 

Gradient 
Boosting (e.g., 
XGBoost)

Ensemble 
Learning

High accuracy; handles missing 
data well

Computationally intensive; 
complex tuning Classification; prediction Accuracy: 95.91% 

Multilayer 
Perceptron 
(MLP)

Neural 
Network

Captures nonlinear 
relationships; flexible 
architecture

Requires significant 
training time; sensitive to 
hyperparameters

Classification; regression 
tasks

Accuracy: 
~99.04% 
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In machine learning models, particularly those utilizing 
neural networks, the significance or weight of individual 
genes can be analyzed to comprehend their contribution 
to the model's predictions. Techniques like SHapley 
Additive exPlanations (SHAP) values can be employed to 
assign a relevance score to each gene based on its influence 
on the model's output.184 Additionally, by analyzing the 
weights of genes, researchers can identify the genes that 
are associated with cancer recurrence, providing valuable 
biological insights and potentially highlighting new 
biomarkers for recurrence risk 185

Breast cancer risk assessment 
BCA risk assessment typically involves combining multiple 
risk factors, including genetic, lifestyle, and reproductive 
factors. Commonly used models include the Gail model, the 
Tyrer-Cuzick model, and the Breast Cancer Surveillance 
Consortium (BCSC) model, which collectively provide a 
comprehensive framework for assessing BCA risk.

Gail model
The Gail model estimates a woman's risk of developing 
BCA based on factors such as age, family history, 
reproductive history, and history of breast biopsies. 
Some limitations include the underestimation of risk in 
women with a strong family history of BCA and the lack 
of integration with mammographic density data.186

Tyrer-Cuzick model
The Tyrer-Cuzick model or the IBIS model, performs a 
more comprehensive set of risk factors, including detailed 
familial history, genetic factors, and hormonal factors. This 
model provides more accurate risk predictions, especially 
for women with a positive family history of BCA.187

BCSC Model
The BCSC model incorporates mammographic density as a 
significant risk factor, along with age, race, family history, 
and breast procedure history. Mammographic density 
is a significant independent risk factor for BCA, and its 
inclusion enhances the accuracy of risk prediction. 188

AI in mammographic phenotyping of breast cancer risk
AI algorithms analyze the texture patterns in mammographic 
images to identify features associated with high BCA risk, 
for example variations in tissue density, microcalcifications, 
and distortions.171 Furthermore, AI techniques determine 
volumetric breast density, providing a more accurate 
measure of breast tissue. In addition, CNNs show high 
accuracy in identifying mammographic phenotypes that 
correlate with BCA risk, learning to detect subtle patterns 
that may not be visible to the human eye.98 This holistic 
approach maintains early detection and prevention 
strategies, ultimately improving patient outcomes due to 
the individualized risk assessment.189

Ethical consideration in AI application in medicine
The widespread use of AI in the medical field necessitates 
considering measures to evaluate such technological 
developments to protect human rights. Our decisive 
responsibility is to ensure researchers that the advantages 
of AI tools outweigh their drawbacks. In the medical 
setting, the importance of powerful algorithms to 
safeguard people’s lives cannot be overstated.190 These 
ethical measures must ensure both patients and physicians 
the accuracy and safety of the diagnostic approaches and 
treatment plans recommended by AI. Patient should have 
the right to decide independently whether an AI algorithm 
involved in their medical care. Moreover, the specific gaps 
that are filled by AI must be clarified to patients, as this 
information can significantly influence their decision-
making. In high-risk areas of healthcare such as BCA, the 
capabilities of AI systems have to be explained to patients 
to ensure the positive impacts of AI on this crucial issue. 
Although achieving explainability in some complex cases 
of machine learning and deep learning can be challenging, 
it is beneficial for the patients to be aware of the potential 
for improved outcomes when combining AI models with 
traditional methods. Finally, it is worth noting that the 
widespread utilization of AI models in the medical setting 
requires many scientists and researchers to address any 
conflict of interest in future endeavors.191

The implementation of Al in clinical wards faces 
difficulties that impact its practical susceptibility. To handle 
real-world issues, important challenges include regulatory 
hurdles, training sessions for healthcare professionals, and 
infrastructure facilities. Given the direct impact of AI on 
patient care, the European Commission has emphasized 
important regulatory requirements such as ensuring 
accuracy, clearly outlining intended uses, and validating 
training information. While these regulations may slow 
the adaptation of AI in clinical settings, they ultimately 
lead to a more standardized and qualified implementation 
of AI. Training healthcare professionals in integrative AI 
aims to improve their understandings of deep learning 
algorithms among physicians. It is essential to equip them 
with technical skills related to AI applications, data-driven 
learning, validation and liability, which must be passed 
on to future scientists. Structured educational strategies 
are needed to help professionals build trust in AI tools. 
Additionally, hospitals and clinics require infrastructure 
to support AI including data security measures in clinical 
domains and monitoring AI’s role in patient treatment 
plans. A lack of collaborative efforts, regulatory policies, and 
clear strategies contribute to the limited implementation of 
AI in hospitals. Multidisciplinary plans for standardized 
AI tools can help bridge the gap between AI’s potential 
benefits and its practical use by clinical staff.192,193 

Limitations and future horizons
To maximize the benefits of AI in BCA screening, some 
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future recommendations should be adopted:
•	 Standardization and interoperability: Developing 

standardized protocols for AI algorithms and 
ensuring interoperability with existing healthcare 
systems is crucial. This will facilitate the seamless 
integration of AI tools into clinical workflows and 
enhance data sharing across institutions.194,195

•	 Continuous learning and adaptation: AI algorithms 
should be designed to continually learn and adapt 
from new data. The incorporation of feedback 
loops that enable AI systems to update their models 
based on real-world performance will enhance their 
accuracy and robustness over time.144

•	 Ethical considerations and bias mitigation: It is 
crucial to address ethical concerns related to data 
privacy, informed consent, and algorithmic bias. The 
development of guidelines and best practices for the 
ethical deployment of AI will play a significant role in 
ensuring that these technologies are used responsibly 
and equitably.196

•	 Collaboration and multidisciplinary research: 
Practical collaboration between AI developers, 
radiologists, oncologists, and other healthcare 
professionals is crucial for improving AI in BCA 
screening. Multidisciplinary research projects can 
stimulate innovation and accelerate the creation of 
effective AI solutions.197

•	 Education: Providing efficient training for healthcare 
professionals on the use of AI equipment is 
essential, which includes understanding how AI 
algorithms work, interpreting AI-generated results, 
and integrating AI insights into clinical decision-
making.198

•	 Regulatory guidelines: To guarantee the safe and 
efficient use of AI-based screening tools, regulatory 
bodies must establish clear guidelines and frameworks. 
This can be achieved by collaborating with industry 
stakeholders to set standards for AI development, 
evaluation, and post-market monitoring.199

Challenges of AI in breast cancer
AI has emerged as a transformative tool in breast cancer 
care, offering advancements in detection, diagnosis, and 
treatment planning. However, its integration into clinical 
practice presents several multifaceted challenges that must 
be addressed to ensure effective and equitable utilization. A 
primary concern is the scarcity of high-quality, annotated 
datasets necessary for training robust AI models. The 
process of annotating medical images is labor-intensive 
and requires expert input, leading to limited availability 
of comprehensive datasets. This limitation hampers 
the generalizability of AI algorithms across diverse 
populations and clinical settings.200,201 Moreover, the 
heterogeneity of data sources poses significant obstacles. 
Variations in imaging equipment, acquisition protocols, 

and patient demographics can introduce inconsistencies 
that affect AI performance. Standardizing data across 
institutions is challenging but essential for developing 
universally applicable AI solutions.200 The "black box" 
nature of many AI systems raises issues of interpretability 
and trust among clinicians. Without transparent reasoning 
pathways or explainable outputs, physicians may hesitate 
to rely on AI-generated recommendations, particularly in 
high-stakes scenarios like cancer diagnosis or treatment 
selection. This lack of explainability also complicates the 
validation and regulatory approval processes, as medical 
devices and diagnostic tools must meet rigorous standards 
for safety, efficacy, and accountability.202 Integrating AI 
into existing clinical workflows is another significant 
challenge. Healthcare systems vary widely in terms of 
infrastructure, electronic health record systems, and 
clinical practices. Adapting AI tools to fit seamlessly into 
these diverse environments requires substantial effort and 
resources.203,204

Ethical and legal considerations also present formidable 
challenges. Concerns about data privacy, informed 
consent, and the potential misuse of patient information 
are amplified in AI applications that rely heavily on 
sensitive medical data. Furthermore, questions about 
liability in cases of AI error whether due to flawed 
algorithms or inaccurate data inputs, remain largely 
unresolved, creating uncertainty for both clinicians and 
developers. The financial implications of implementing 
AI technologies cannot be overlooked. Developing, 
deploying, and maintaining AI systems require significant 
investment in hardware, software, and personnel 
training.205-207 These costs can be prohibitive, particularly 
for resource-limited healthcare settings, potentially 
exacerbating existing disparities in BCA care.200 

Lastly, the rapid pace of AI development often 
outstrips the speed at which regulatory frameworks 
evolve, leading to a mismatch between innovation and 
oversight. Ensuring that AI tools are not only effective 
but also safe, equitable, and ethically designed requires 
sustained collaboration among clinicians, data scientists, 
regulatory bodies, and policymakers. In conclusion, while 
AI offers transformative potential in the field of BCA care, 
addressing these multifaceted challenges is essential to 
ensure its responsible, equitable, and effective integration 
into routine clinical practice.

Conclusion
The integration of AI in BCA holds immense promise for 
revolutionizing disease screening, diagnosis, biomarker 
evaluation, and personalized treatment strategies. 
Techniques such as machine learning, deep learning, 
and radiomics have shown potential in enhancing the 
detection and classification of breast lesions, reducing the 
risk of false positive and false negative reports. Studies 
indicate that AI can significantly decrease the workload 



Firuzpour et al

   BioImpacts. 2025;15:30984 17

for radiologists while maintaining or even improving 
the sensitivity and specificity of cancer detection in 
early stages. Additionally, AI has proven useful in gene 
expression assessment in patients with a positive familial 
history, reducing the incidence of missed cancers. By 
addressing potential challenges and embracing AI in BCA 
care, we can greatly improve patient outcomes, reduce 
health disparities, and usher in a new era of precision 
medicine. The integration of AI in BCA care has the 
potential to redefine our approach to screening, diagnosis, 
and treatment, ultimately leading to higher survival rates 
for patients.
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