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Introduction
Sports injuries are a significant challenge in the field of 
athlete healthcare, with anterior cruciate ligament tears 
being one of the most common and severe injuries. 
This type of injury frequently occurs in sports that 
involve sudden changes in speed and direction, such as 
football, basketball, and skiing. The timely and accurate 
diagnosis of anterior cruciate ligament (ACL) injuries is 
crucial for effective treatment and reducing long-term 
complications. Traditional diagnostic methods, such as 
clinical examinations and MR imaging, have limitations, 
including high costs, dependency on specialist expertise, 
and limited accessibility. In recent years, the emergence of 
artificial intelligence (AI) and deep learning technologies 
has introduced innovative solutions for diagnosing 
and classifying sports injuries. Deep learning models 
can analyze medical images and biomechanical data to 

identify and categorize ACL injuries with high accuracy. 
However, developing an automated hierarchical 
classification system for ACL injuries presents several 
challenges, such as data imbalance, variations in injury 
characteristics, and the complexity of hidden patterns 
in medical imaging data. To address these challenges, 
researchers have explored various approaches, including 
convolutional neural networks, transfer learning models, 
and the integration of multimodal data (such as MR 
images and clinical information). In this study, we propose 
a hierarchical deep learning-based classification model 
for ACL injury detection, aiming to improve diagnostic 
accuracy and reduce reliance on traditional methods. This 
approach has the potential to serve as an assistive tool for 
medical professionals and sports specialists, ultimately 
enhancing athlete healthcare and injury management.

The diagnosis and classification of anterior cruciate 
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Abstract
Introduction: Accurate and automated 
assessment of anterior cruciate 
ligament (ACL) injuries in MR images 
is essential for athlete healthcare 
and rapid diagnosis of knee injuries. 
However, challenges such as the small 
size of the ligament, variations in MR 
image quality, and complex anatomical structures complicate the classification process. 
Methods: In this study, we propose a hierarchical deep learning model for the detection and 
classification of ACL injuries. The model consists of two main phases: ACL segmentation and 
injury classification. In the first phase, we employ an encoder-decoder architecture with attention 
mechanisms to accurately identify the ACL region in MR images, while suppressing background 
noise. Skip connections are used to preserve spatial details and improve segmentation accuracy. 
In the second phase, the segmented ACL region is input into a hierarchical convolutional neural 
network (CNN) for classification. Dense blocks are incorporated to maximize feature reuse, while 
max-pooling and global average pooling (GAP) layers help to reduce overfitting and improve 
feature extraction.
Results: The proposed method was evaluated on a knee MRI dataset and compared with other state-of-
the-art approaches. Our model demonstrated high accuracy in both segmentation and classification 
tasks, owing to the integration of attention mechanisms and hierarchical feature extraction. 
Conclusion: This approach offers a robust solution for the automated assessment of ACL injuries, 
providing clinicians and sports medicine specialists with a reliable tool for more efficient and 
accurate diagnosis.
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ligament injuries have been extensively explored using 
deep learning techniques, particularly in conjunction with 
magnetic resonance imaging. Recent advancements in AI 
have led to the development of fully automated systems for 
ACL tear detection, segmentation, and severity staging. 
This section reviews significant contributions in this 
field, focusing on segmentation techniques, classification 
models, severity assessment, and multimodal learning 
approaches.

Numerous studies have employed deep learning-based 
methodologies to detect and classify ACL injuries from 
MRI scans. Bien et al1 introduced a fully automated 
system utilizing convolutional neural networks for ACL 
tear diagnosis, achieving accuracy levels comparable to 
those of experienced radiologists. Yao et al2 proposed an 
efficient deep learning approach that required minimal 
preprocessing, demonstrating superior performance 
over conventional methods. Thomas et al3 explored an 
improved deep convolutional neural network (CNN) 
model for distinguishing ACL tears from osteoarthritis, 
highlighting the importance of robust feature extraction. 
Further advancements in this domain include Liu et 
al,4 who developed an end-to-end deep learning model 
for ACL segmentation and severity staging, enabling 
precise injury localization. The U-Net architecture, 
initially proposed by Ronneberger et al,5 has been widely 
adopted for medical image segmentation, including 
ACL tear detection. Chen et al6 refined the U-Net model 
by integrating attention mechanisms, significantly 
enhancing segmentation accuracy.

Several other studies have introduced novel approaches 
to classification. Gong et al7 combined CNNs with recurrent 
neural networks (RNNs) to assess ACL injury severity 
from MRI scans. Wang et al8 investigated transformer-
based architectures for severity classification, yielding 
promising results in complex MRI datasets. Zhang et al9 

proposed a multi-scale feature fusion approach to enhance 
severity staging performance. Gupta et al10 incorporated 
clinical data with MR images using a hybrid CNN-LSTM 
model, achieving higher diagnostic accuracy. Additional 
techniques have been developed to optimize ACL 
injury detection and classification. He et al11 leveraged 
transfer learning from large-scale medical imaging 
datasets to improve classification robustness. Huang 
et al12 introduced a self-supervised learning approach 
to mitigate data scarcity issues in ACL injury detection. 
Kim et al13 compared CNN-based models with radiologist 
assessments, reporting a reduction in diagnostic errors. 
Patel et al14 emphasized the role of AI-assisted diagnosis in 
alleviating the workload of medical professionals.

Automated segmentation is a critical component of 
ACL injury assessment. Singh et al15 employed ensemble 
learning techniques to reduce model variance and 
enhance classification robustness. Xie et al16 applied 
semi-supervised learning to improve classification 

performance when labeled data availability was limited. 
Park et al17 integrated generative adversarial networks 
(GANs) to refine ACL segmentation, effectively reducing 
artifacts in low-quality MRI scans. Additionally, 
Zhao et al18 explored explainable AI techniques to 
generate interpretable severity assessments for clinical 
applications. Li et al19 introduced meta-learning strategies 
to adapt severity classification models to varying 
MRI protocols and patient demographics. Sun et al20 
developed a reinforcement learning-based segmentation 
framework, dynamically optimizing model parameters 
during training. Recent studies have investigated 
multimodal data fusion and transfer learning to enhance 
ACL injury diagnosis. Ahmed et al21 proposed a multi-
view CNN model that integrates MRI sequences from 
different planes to improve classification accuracy. 
Lee et al22 introduced an interpretable deep learning 
model for ACL tear diagnosis, providing clinicians with 
enhanced transparency in decision-making. Feng et 
al23 employed contrastive learning to improve feature 
representation in ACL classification, outperforming 
traditional handcrafted feature extraction techniques. 
Several studies have also explored domain adaptation 
methods. Zhang et al24 utilized capsule networks for ACL 
tear classification, demonstrating robust feature learning. 
Han et al25 implemented federated learning for ACL tear 
detection across multiple institutions, enabling privacy-
preserving model training while enhancing generalization 
performance. Xu et al26 investigated multi-scale CNN 
architectures, achieving improved performance on 
heterogeneous MRI datasets.

Deep learning-based methods have consistently 
outperformed traditional machine learning and manual 
assessment techniques. Li et al27 explored knowledge 
distillation techniques to optimize deep learning models 
for ACL tear classification. Wu et al28 investigated 
data augmentation strategies, including synthetic MRI 
generation, to improve segmentation accuracy in limited 
datasets. Shi et al29 applied graph neural networks for ACL 
injury prediction, leveraging spatial relationships within 
MRI features. Further improvements in model efficiency 
and clinical deployment have been explored. Gao et al30 
integrated radiology reports with MRI data to enhance 
classification accuracy. Lin et al31 examined cross-domain 
transfer learning, utilizing knowledge from related 
musculoskeletal imaging tasks. Cheng et al32 introduced 
a self-attention mechanism for effectively fusing multi-
sequence MRI data in ACL diagnosis. Li et al33 proposed 
a deep ensemble learning strategy to enhance ACL injury 
detection robustness. Sun et al34 developed an edge AI 
solution for real-time ACL tear detection on portable 
medical devices, facilitating on-site athlete assessment. 
Zhou et al35 applied Bayesian deep learning techniques to 
estimate uncertainty in ACL injury classification, providing 
clinicians with confidence measures for AI-assisted 
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diagnoses. An end-to-end deep learning model, DCLU-
Net, was proposed for the simultaneous segmentation and 
classification of ACL injuries. By incorporating radiomic 
features, the model achieved classification accuracies of 
90% for intact ACLs, 82% for partial tears, and 92% for 
complete ruptures. Additionally, the use of supervised 
learning techniques reduced the reliance on extensive 
manual annotations.36 In another recent study, a fully 
automated deep learning framework was introduced, 
comprising two models: ACL-DNet for segmentation 
and ACL-SNet for classification. The classification model 
achieved a sensitivity and specificity of 97%, along with 
an area under the receiver operating characteristic curve 
(AUC) of 0.99, outperforming experienced orthopedic 
specialists in diagnostic accuracy.37 Furthermore, a 
modified 3D ResNet architecture was employed for the 
detection and classification of ACL injuries. This model 
achieved a peak accuracy of 97.15% using custom data 
splits and demonstrated substantial improvements over 
conventional three-class classifiers, thereby enhancing 
diagnostic precision in sports medicine applications.38 
In summary, deep learning has significantly advanced 
ACL injury detection, segmentation, and severity 
staging. While CNN-based models remain predominant, 
emerging techniques such as transformers, contrastive 
learning, and multimodal fusion are enhancing diagnostic 
accuracy. Future research should focus on improving 
model generalizability, interpretability, and real-time 
clinical deployment to optimize athlete healthcare 
and injury prevention strategies. Given the challenges 
outlined in this paper, a method based on Hierarchical 
Classification of Anterior Cruciate Ligament Injuries 
Using Deep Learning for Athlete Healthcare is proposed. 
This approach aims to address the difficulties associated 
with small ligament size, varying MR image quality, and 
complex anatomical features, offering a more accurate 
and efficient way to detect and classify ACL injuries. 
The key innovations of this method include the use of an 
encoder-decoder model with an attention mechanism for 
precise segmentation of the ACL region, which allows the 
model to focus on relevant areas and filter out background 
noise. Additionally, the hierarchical deep learning 

architecture enhances the classification performance by 
leveraging dense blocks, maximizing feature reuse, and 
improving gradient flow. These innovations contribute to 
superior results in both segmentation and classification, 
outperforming several existing models

Following is the structure of the article. After the 
introduction, the paper provides a detailed explanation 
of the proposed method. Following that, the dataset used 
for the experiments is introduced, and the method is 
thoroughly evaluated from various aspects. Finally, the 
conclusion is presented.

Proposed Method
Accurate localization of the anterior cruciate ligament 
plays a crucial role in the automated detection and 
classification of ACL injuries in MR images. However, 
detecting small objects in medical imaging presents 
several challenges due to the complexity of anatomical 
structures and variations in image contrast. Traditional 
deep learning models often struggle to accurately identify 
small objects like the ACL, as critical features may be 
lost during the down-sampling process. To overcome 
this challenge, we propose an encoder-decoder-based 
model that leverages attention mechanisms to enhance 
feature extraction. This model effectively transfers spatial 
and contextual information through skip connections, 
improving segmentation accuracy while preserving fine 
structural details. Once the ACL is precisely localized, 
the next step is to classify its condition into three main 
categories: healthy, partial tear, and complete tear. This 
classification is of significant clinical importance, as 
different injury levels require distinct treatment strategies. 
To achieve this, we employ a deep convolutional neural 
network with dense blocks, which enables the extraction 
of discriminative features from MRI scans. The proposed 
model integrates a combination of convolutional layers, 
max-pooling, dense feature extraction, and global average 
pooling. This combination enhances classification 
accuracy and improves the model's ability to distinguish 
between different ACL conditions. Fig. 1 illustrates the 
overall stages of the proposed method. Next, each step 
will be explained in more detail.

Fig. 1. Main steps of the Hierarchical ACL tear model.
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Image preprocessing
In the proposed method, the data preprocessing phase 
involves resizing all MR images to a fixed dimension of 
256 × 256 pixels to ensure uniformity in input dimensions. 
This step enhances the performance of the neural network 
by allowing it to extract relevant features without being 
affected by variations in image size. In addition to resizing, 
other preprocessing techniques such as pixel intensity 
normalization are applied to homogenize brightness 
and contrast levels, and noise reduction is performed to 
eliminate irrelevant information. 

ACL localization
After preprocessing, the next phase is the localization of the 
anterior cruciate ligament. This step is crucial as it serves 
as the foundation for subsequent injury classification. 

The proposed method utilizes an encoder-decoder 
architecture enhanced with attention mechanisms to 
effectively detect and segment the ACL region. The 
encoder extracts hierarchical features from the input MR 
scan, while the attention mechanism ensures a focused 
feature representation by highlighting relevant regions. 
Finally, the decoder reconstructs the spatial details to 
generate an accurate segmentation mask. This phase is 
illustrated in Fig. 2.
Encoder module
The encoder module is responsible for extracting 
hierarchical feature representations from the input MR 
image. It consists of multiple convolutional layers followed 
by down-sampling operations, which progressively reduce 
the spatial dimensions while increasing the depth of the 
feature maps. This hierarchical extraction enables the 

Fig. 2. Anterior cruciate ligament (ACL) localization using an attention-based encoder-decoder architecture.
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model to capture both low-level and high-level anatomical 
structures. Given an input MR image I of size H × W, the 
first convolutional layer applies a set of k convolutional 
filters with kernel size (f , f) to extract initial features:

F1 = σ(W1 * I + b1)                                                                  (1)

Where * represents the convolution operation, W1 and 
b1 are the weights and bias of the first convolutional layer, 
σ is the activation function (ReLU), F1 is the resulting 
feature map. As the image progresses through deeper 
layers, high-level contextual information is extracted:

F1 = σ(W1 * Fl-1 + b1)                                                               (2)

Where l represents the layer index in the encoder. To 
reduce spatial dimensions, down-sampling is performed 
using max-pooling or stride convolution:

( )'
1,lF MaxPool F p=                                                            (3)

Where p is the pooling window size. These operations 
compress the image representation while preserving 
essential features, enabling the model to learn patterns 
critical for ACL localization.
Attention mechanism
One of the key challenges in ACL localization is the small 
size of the ligament relative to the entire knee structure. 
To address this, attention mechanisms are integrated into 
the model to selectively focus on the most relevant regions 
while suppressing irrelevant background information. 
These attention layers refine high-level features by 
weighting the most informative areas, ensuring that the 
ACL remains the focal point of the model’s learning 
process. Furthermore, the attended features are combined 
with the encoder outputs through residual connections, 
preserving spatial information and improving feature 
propagation. By dynamically adjusting feature weights 
based on learned importance, the model prioritizes the 
ACL region, leading to more precise localization. Given 
an input feature map F, attention weights are computed 
using a scaled dot-product attention mechanism: 

( )Attention Q,K,V  softmax
T

k

QK V
d

 
=   

                             (4)

Where:
•	 Q = WQF, K = WKF, V = WVF are the query, key, and 

value matrices, 
•	 dk dk is the scaling factor (dimensionality of the key),
•	 The softmax function ensures that attention weights 

sum to 1.
The attended feature map is then computed as:

( ) ( )attended  F 1 Attention Q,K,VF α α= + − ⋅                      (5)

Where α is a learnable parameter that balances original 
and attended features. To preserve spatial information, 
attended features are combined with encoder outputs via 
residual connections:

Fskip = Fencoder + Fattended                                                             (6)

Decoder module
The decoder module reconstructs spatial details of the 
ACL region from the encoded feature representations. 
Using up-sampling layers and convolutional operations, 
the decoder progressively restores the spatial resolution 
of the input image. Feature refinement is achieved by 
integrating high-resolution spatial information from the 
skip connections, ensuring that fine anatomical details are 
preserved. Skip connections play a vital role in mitigating 
information loss, as they enable direct information transfer 
between corresponding encoder and decoder layers. This 
allows the model to retain structural details necessary 
for accurate segmentation. The final layer of the decoder 
produces a binary segmentation mask, highlighting the 
predicted ACL region. This mask undergoes further 
refinement to ensure precise localization, which is 
essential for subsequent injury classification and severity 
assessment. Given an encoded feature map Fenc, the up-
sampling operation expands the spatial resolution:

( )upsampled  UpSample ,sencF F=                                             (7)

Where s is the scaling factor. This operation is followed 
by convolutional refinement:

( )dec upsampled *dec decF W F bσ= +                                             (8)

Skip connections play a crucial role in merging high-
resolution spatial features from the encoder with up-
sampled decoder features:

final dec skipF F F= +                                                               (9)

Finally, the segmentation output is obtained through a 
sigmoid activation function:

( )final*ACL o oM W F bσ= +                                                   (10)

Where MACL represents the binary mask highlighting 
the ACL region.

Classification head
After accurately localizing the anterior cruciate ligament 
through segmentation, the next critical step is classifying 
the injury type into three main categories: healthy, partial 
tear, and complete tear. A healthy ACL appears intact 
with no signs of damage, whereas a partial tear involves 
damage to some ligament fibers while maintaining partial 
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structural integrity. In contrast, a complete tear results in 
a fully ruptured ligament, causing a discontinuity in its 
structure. To achieve robust and precise classification, 
a deep Convolutional Neural Network is employed, 
integrating dense connectivity, feature down-sampling, 
and global average pooling. This architecture ensures 
effective feature extraction from the segmented ACL 
region, enabling fine-grained differentiation between 
injury types and facilitating accurate clinical diagnosis. 
The classification phase is shown in Fig. 3.
Feature extraction using convolutional layers
The classification process begins by extracting features 
from the localized ACL region obtained in the 
segmentation phase. This extracted ACL patch is fed into 
a deep CNN consisting of multiple Conv2D layers, each 
followed by batch normalization and a ReLU activation 
function. These layers progressively learn both low-level 
and high-level features that distinguish between healthy 
and injured ligaments. Given an input ACL patch IACL of 
size H × W, the first convolutional layer applies k filters of 
size (f, f) to extract basic features:

( )1 1( *  ) ACL lF BN W I bσ= +                                            (11)

Where * denotes the convolution operation, Wl and 
bl are the weight matrix and bias, BN represents batch 
normalization, which stabilizes training and speeds up 
convergence and σ is the ReLU activation function:

( ) (0, )x max xσ =                                                            (12)

As the image propagates through deeper convolutional 
layers, the feature extraction process continues:

( )1( *  ) l l l lF BN W F bσ −= +                                              (13)

Where Fl represents the feature map extracted at the l-th 
layer. To reduce computational complexity and improve 
feature robustness, max-pooling layers are employed 
at multiple stages in the network. Max-pooling helps 
retain the most prominent features while reducing spatial 
dimensions. The pooling operation is defined as:

( )' ,l lF MaxPool F p=                                                      (14)

Where p is the pooling window size (2 × 2). This 
operation helps, reduce overfitting by forcing the 
network to focus on important regions and provide 
translational invariance, making classification robust to 
small variations in the ACL's position. To improve feature 
extraction efficiency, dense blocks are integrated into the 
CNN architecture. In a dense block, each layer receives 
input from all preceding layers, ensuring maximum 
feature reuse and gradient flow:

( )( )1 2 1* , ,...,l l l l
d d c c c dF BN W F F F bσ − = +                   (15)

Where,  l
dF is the feature map at layer l within the dense 

block. The concatenation operation [ . ] ensures that each 
layer receives all previous feature maps as input. The 
integration of dense blocks provides several advantages. 

Fig. 3. ACL Injury classification using a CNN with dense blocks.
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First, it prevents information loss, ensuring that fine 
details related to ACL injuries are preserved throughout 
the network. Second, it enhances gradient flow, leading 
to improved training stability and faster convergence. 
Finally, dense connectivity reduces redundant feature 
extraction, making the network more parameter-efficient 
while maintaining high performance in distinguishing 
between healthy, partial tear, and complete tear cases. 
After extracting dense features, the network applies 
Global Average Pooling to convert feature maps into a 
compact representation:

1

1  
N

i
GAP d

i

F F
N =

= ∑                                                                    (16)

Where N is the total number of spatial locations 
in the feature map. Unlike fully connected layers, 
GAP minimizes overfitting while preserving spatial 
relationships. The final feature vector is passed through 
a softmax classifier, which assigns probabilities to each of 
the three ACL injury categories:

( )
i
y GAP

j
y GAP

W F

i W F

j

eP y
e

=
∑

                                                         (17)

Where P(yi) represents the probability of ACL being 
in class i (healthy, partial tear, or complete tear). The 
predicted class is determined as: 

arg max ( )i iy P y=                                                           (18)

Where ŷ  is the final classification result.

Loss function and optimization
Training a deep learning model for ACL injury 
classification requires an effective loss function and 
optimization strategy to ensure accurate convergence and 
prevent overfitting.
Categorical cross-entropy loss function
Since the classification task involves three mutually 
exclusive classes (Healthy, Partial Tear, Complete Tear), 
the categorical cross-entropy loss function is used to 
measure the divergence between the predicted probability 
distribution and the ground-truth labels. This loss 
function is defined as:

( )
1

 
C

i i
i

L y logP y
=

= −∑                                                           (19)

Where:
•	 C is the number of classes (Healthy, Partial Tear, 

Complete Tear).
•	 yi represents the ground-truth label for class i, which 

is one-hot encoded (i.e., if the true label is class j, then 

yi = 1 and all other yi = 0).
•	 P(yi) is the predicted probability that the model 

assigns to class i, obtained from the softmax activation 
function in the final layer:

( )
1

 
i

j

z

i C z

j

eP y
e

=

=
∑                                                                (20)

Where zi is the network’s output (logit) for class i, and 
the denominator ensures that the sum of probabilities 
across all classes is 1. The cross-entropy loss penalizes 
incorrect predictions more when the model assigns high 
confidence to the wrong class, which helps in better 
training.
Optimization with Adam optimizer
To efficiently minimize the loss function and improve 
model convergence, the Adam (adaptive moment 
estimation) optimizer is used. Adam dynamically adjusts 
the learning rate for each parameter during training by 
computing adaptive moment estimates. The parameter 
update rule for Adam is given as:

1  
t

t t
t

m
v

θ θ η+ = −
+∈                                                            (21)

Where θt represents the weight parameters at time step 
t, which are updated in each training iteration. η is the 
learning rate, controlling the step size of weight updates. 
mt is the first moment estimate (moving average of 
gradients), calculated as:

( )11 11t t tm m gβ β−= + −                                                  (22)

Where gt is the gradient of the loss with respect to the 
weights at time step t, and β1 is a decay factor. (β1 = 0.9). 
vt is the second moment estimate (moving average of 
squared gradients), given by:

( ) 2
2 1 21t t tv v gβ β−= + −                                                  (23)

Where β2 is another decay factor (β2 = 0.999). ϵ is a 
small constant added to avoid division by zero (ϵ = 10-8).  
Adam combines the benefits of momentum-based 
updates (using mt) and RMSProp (adaptive scaling with 
vt), leading to faster convergence, better stability, and 
improved generalization in deep networks. To prevent 
overfitting and improve generalization, L2 regularization 
(also known as weight decay) is applied, modifying the 
loss function as:

2
  reg i

i

L L λ θ= + ∑                                                            (24)

Where λ is a regularization coefficient that controls 
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the penalty on large weights. This encourages the model 
to keep weight values small, improving generalization 
on unseen MRI scans. Additionally, dropout layers are 
introduced during training, randomly setting some 
neuron activations to zero, which forces the network to 
learn more robust and distributed representations.

Results
Dataset
The dataset used in this study consists of 917 sagittal 
plane DICOM MRI scans of the knee, obtained from 
the Clinical Hospital Center of Rijeka archiving and 
communication system. The images are 12-bit grayscale 
and are accompanied by their corresponding ACL 
diagnosis labels. All scans were acquired using a Siemens 
Avanto 1.5T MRI scanner (manufactured in Muenchen, 
Germany) between 2007 and 2010. The imaging protocol 
included proton density-weighted fat suppression, 
ensuring high contrast for ligament visualization. The 
dataset is categorized into three classes: healthy (0 label), 
partial tear (1 label), and complete tear (2 label). The dataset 
comprises 690 healthy samples, 172 partial tear cases and 
55 complete ruptures, stored in pickle format for efficient 
processing. Additionally, metadata, including diagnostic 
details, is provided in CSV format for reference.39 Given 
the class imbalance in the dataset, where the number of 
healthy samples significantly exceeds the partial tear 
and complete tear cases, data augmentation techniques 
are employed to balance the dataset. Augmentation 
strategies such as rotation, flipping, contrast adjustment, 
and elastic deformations are applied to increase the 
number of samples in the underrepresented classes. After 
augmentation, the total number of training samples per 
class was balanced to approximately 720 images for each 
category (Healthy, Partial Tear, Complete Tear). This 
ensures a more balanced distribution, preventing bias 
toward the majority class and enhancing the model’s 
ability to generalize across different ACL injury severities. 
Fig. 4 illustrates an example of the augmented data.

Evaluation metrics
To assess the performance of the proposed ACL 
localization and classification model, standard evaluation 
metrics are employed. Given the class distribution in 
the dataset, the following metrics are used to ensure a 
comprehensive evaluation:

Accuracy: Measures the overall percentage of correctly 
classified samples. It is defined as:

 
TP TNAccuracy

TP TN FP FN
+

=
+ + +                                 (25)

Where TP and TN represent true positives and true 
negatives, while FP and FN denote false positives and false 
negatives, respectively.

Precision: Evaluates the proportion of correctly predicted 
positive instances among all positive predictions. It is 
calculated as:

TPPrecision
TP FP

=
+

                                                      (26)

Precision is crucial in medical diagnosis, as a high 
precision value ensures fewer false positives, reducing 
unnecessary medical interventions.

Sensitivity: Measures the ability of the model to identify 
actual positive cases (injured ACLs). It is given by:

TPSensitivity
TP FN

=
+                                                     (27)

High recall ensures that the model does not miss a 
significant number of ACL injuries.

Specificity: Measures the proportion of actual negative 
cases (healthy ACLs) correctly identified by the model:

TNSpecificity
TN FP

=
+                                                      (28)

This metric is crucial in medical imaging, ensuring that 
healthy individuals are not misclassified as injured.

F1-Score: Provides a balanced measure of precision and 
recall:

1 2  Precision RecallF Score
Precision Recall

×
− = ×

+                               (29)

This metric is especially useful in datasets with class 
imbalance, such as the current dataset where healthy cases 
significantly outnumber injured ones.

AUC-ROC: Measures the model's ability to distinguish 
between classes. A higher AUC value indicates better 
discrimination between healthy, partial tear, and complete 
tear cases.

Fig. 4. Example of augmented MRI scans for class balancing.
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Experimental results
In this section, the performance of the proposed method 
is evaluated based on standard evaluation metrics for 
machine learning models. The metrics include overall 
accuracy, precision, recall, specificity, and F1-score for 
each of the classes: Healthy, Partial, and Complete. This 
analysis helps assess the model's accuracy in classifying 
different classes and identifies its strengths and 
weaknesses. Fig. 5a shows the Confusion Matrix, which 
illustrates the distribution of the model’s predictions 
compared to the true labels. For evaluation purposes, a 
subset of 300 samples (comprising 140 healthy, 80 partial 
tears, and 80 complete tears) was randomly selected 
from the dataset. This number was chosen to maintain 

a relatively balanced class distribution in the evaluation 
phase and to reduce bias, allowing for a more accurate 
assessment of the model's performance across all classes. 
This matrix allows us to analyze the accuracy of the model’s 
predictions and the types and frequencies of its errors. As 
can be seen, the proposed model has correctly classified 
the majority of samples, with minimal misclassification 
in each class. A detailed examination of this matrix helps 
identify in which classes the model makes the most errors 
and whether specific types of data pose challenges for the 
model. Fig. 5b presents the bar plot of evaluation metrics, 
which enables direct comparison of evaluation metrics 
across the different classes. It is evident that the precision 
and recall values are high for all three classes, indicating 

(a)

(b)
Fig. 5. (a) Confusion matrix for evaluating model performance in classifying the three classes: healthy, partial and complete (b) bar chart of evaluation 
metrics for each class.



Yan and Xiao

BioImpacts. 2025;15:3106010

the model’s ability to reduce type I and type II errors. 
The high F1-score also suggests a balanced performance 
between precision and recall, confirming the model’s 
consistent ability. 

Given that the proposed method involves a considerable 
number of hyperparameters that significantly affect the 
model’s performance, it is essential to clearly specify 
their values. Table 1 presents the hyperparameter settings 
used in our approach. These values were determined 
based on extensive experiments and empirical tuning to 
achieve optimal performance. All reported results and 
analyses in this study are based on these hyperparameter 
configurations.

To evaluate the effectiveness of the proposed 
hierarchical architecture, its performance was compared 
to a flat CNN model without the segmentation stage. As 
shown in Table 2, the proposed method outperformed the 
flat CNN in all evaluation metrics, including accuracy, 
sensitivity, precision, specificity, and the AUC.

Given the imbalanced nature of the dataset in this study, 
the use of two metrics, receiver operating characteristic 
(ROC) curve and precision-recall (PR) curve, was 
crucial for a more accurate evaluation of the model's 
performance. In classification problems with imbalanced 
data, especially when the number of samples for one or 
more classes is significantly smaller than the others, 
traditional metrics like accuracy may lead to misleading 
performance evaluations. For instance, a high accuracy 
rate may result from simply predicting the majority 
class, without adequately addressing the minority class. 
Therefore, metrics such as AUC for the ROC curve and 
average precision (AP) for the PR curve were employed to 
assess the model's ability to distinguish between classes, 

particularly for the minority classes. In this study, the ROC 
curves were computed for each of the classes (Healthy, 
Partial, Complete), and the Area Under the Curve was 
evaluated separately for each. The results obtained from 
the AUC show the model's ability to distinguish between 
the different classes. Specifically, the AUC for the Healthy 
class was 0.98, for Partial it was 0.94, and for Complete it 
was 0.93. These results indicate that the model performed 
exceptionally well in distinguishing the Healthy class 
with the highest AUC, while maintaining acceptable 
performance for the Partial and Complete classes. 
Notably, while the AUC for the minority classes (Partial 
and Complete) is lower, it still reflects good classification 
performance, considering the inherent class imbalance. 
On the other hand, the PR curves were also plotted for 
each class, and Average Precision was computed for each. 
The obtained values of AP were 0.96 for the Healthy class, 
0.89 for the Partial class, and 0.85 for the Complete class. 
These values demonstrate that the model, particularly in 
identifying positive samples of the Healthy class, exhibited 
strong performance. However, the performance for the 
Partial and Complete classes, which have fewer samples, 
showed a slight decrease. This is especially important in 
imbalanced data settings, as the AP metric can reveal the 
model's shortcomings in identifying the minority classes. 
Specifically, while the model achieves high precision in 
detecting healthy ACLs, its precision slightly decreases for 
the smaller classes, especially in recognizing partial and 
complete ACL tears. Ultimately, the results from these 
two analyses emphasize the importance of using ROC 
and PR metrics for evaluating classification models with 
imbalanced datasets. These metrics, in particular, help 
assess the model’s ability to accurately identify minority 
classes. The results of these analyses are shown in Fig. 
6a and 6b, where the ROC and Precision-Recall curves 
for each class are fully displayed. These plots provide 
additional insights into the model’s performance, offering 
a clearer understanding of its ability to recognize minority 
classes in imbalanced data scenarios.

Training prosses 
To evaluate the training process and the accuracy of the 
proposed model, two key graphs were analyzed: the loss 
curve and the accuracy curve. In Fig. 7a, the cross-entropy 
loss reduction over 50 training epochs is depicted. This 
graph includes two curves representing the training loss 
and test loss. As shown, the loss value steadily decreases in 
both datasets, indicating a gradual and optimal learning 
process of the proposed model. Additionally, towards the 
final epochs, the gap between the two curves narrows, 

Table 1. Hyperparameter settings for the proposed ACL classification model

Hyperparameter Value

Image size 256 × 256

Loss Categorical cross-entropy

Number of dense blocks 3

Dropout rate 0.3

Optimizer Adam

Learning rate 0.001

ε (Adam parameter) 1e-8

β₂ (Adam parameter) 0.999

β₁ (Adam parameter) 0.9

L2 Regularization (λ) 0.0001

Number of epochs 50

Batch size 32

Table 2. Comparison between flat CNN and the proposed hierarchical method based on evaluation metrics

Method Accuracy (%) Sensitivity (%) Precision (%) Specificity (%) AUC

Flat CNN (without segmentation) 88.1 85.2 86.5 89.3 0.89

Proposed Hierarchical Method 96.3 96.3 96.0 97.1 0.97
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suggesting a reduced risk of overfitting and demonstrating 
that the model generalizes well to unseen data. In Fig. 
7b, the accuracy curve illustrates the performance of the 
model throughout the training process. The graph shows 
that the accuracy steadily increases for both the training 
and test datasets, ultimately reaching over 85%. This 
upward trend confirms that the model has successfully 
learned to differentiate between various ACL injury 
categories. Moreover, the convergence of the two curves 
in the later training stages indicates that the model does 
not suffer from significant mismatches between training 
and test performance, further reinforcing its reliability on 
real-world data. Overall, the continuous loss reduction 
and increasing accuracy confirm the model's effectiveness 
in learning complex ACL injury features. The narrowing 
gap between training and test curves indicates that the 
model generalizes well without overfitting. Additionally, 
achieving over 95.7 accuracy on the test set highlights 
the model's high capability in automatic ACL injury 

classification from MR images. These results suggest that 
the proposed approach can serve as a precise and efficient 
diagnostic tool to assist clinicians in evaluating ACL 
injuries.

In this study, statistical significance of the results 
from the proposed method was evaluated using 5-fold 
cross-validation. This approach was applied to examine 
the stability and accuracy of the model across different 
datasets and to assess its generalization ability to new, 
unseen data. Using this technique, the model was trained 
and evaluated five times on different subsets of the data. 
The results from this experiment are shown in Fig. 8. The 
plot presents the average values of various evaluation 
metrics, including precision, sensitivity, specificity, F1-
score, and accuracy, for the three classes: Healthy, Partial, 
and Complete, along with the variance of each of these 
metrics. Specifically, for the Healthy class, the precision is 
0.978, sensitivity is 0.964, specificity is 0.981, F1-score is 
0.971, and accuracy is 0.977. For the Partial class, precision 

Fig. 6. (a) ROC curves for each class (Healthy, Partial, Complete) with AUC values. (b) Precision-recall curves for each class (Healthy, Partial, Complete) 
with average precision (AP) values.
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is 0.974, sensitivity is 0.950, specificity is 0.990, F1-score 
is 0.962, and accuracy is 0.973. For the Complete class, 
precision is 0.928, sensitivity is 0.975, specificity is 0.972, 
F1-score is 0.951, and accuracy is 0.939. The variance of 
these metrics for all three classes ranges between 0.001 and 
0.009, indicating stable results. The use of 5-fold cross-
validation means that the model was trained and evaluated 
five times on different portions of the data, which allows 
for a more comprehensive and accurate assessment. The 
low variance in the metric values suggests that the model 
demonstrates consistent performance and that the results 
are not due to random fluctuations. In other words, the 
model exhibits high stability, and these results are both 
reliable and statistically significant. This analysis indicates 
that the proposed model demonstrates meaningful and 

stable performance across all metrics, reinforcing the 
model's credibility and its ability to generalize.

Comparison with other methods
The proposed method in this study was implemented 
and evaluated on a specific dataset, and its results were 
compared with existing methods. This comparison 
was based on standard evaluation metrics, including 
accuracy, recall, precision, and F1 score. The results of 
this experiment are presented in Table 3. According to the 
obtained results, the proposed method exhibited strong 
performance across all evaluation metrics. The overall 
accuracy of the proposed model was 96.33%, which 
demonstrates its high capability in correctly classifying 
samples across all classes. This accuracy outperforms 

(a)

(b)

Fig. 7. (a) Error Plot of the Proposed Method for Training and Evaluation Data. (b) Model Accuracy Progression During Training
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Fig. 8. Cross-validation results with k = 5, Error bar plot of evaluation metrics including Precision, Sensitivity, Specificity, F1-Score and Accuracy for three 
different classes along with the variance of each metric.

Table 3. Comparison of state-of-the-art works with our proposed model

Author,
Year Model Dataset Output

Evaluation

Accuracy Sensitivity Precision Specificity AUC

Bien et al,40

2018 AlexNet MRNet
1370 exams

ACL tear 0.867 0.759 - 0.968 0.965

abnormal 0.850 0.879 - 0.714 0.937

meniscus tear 0.725 0.892 - 0.741 0.847

Chang
et al,41 2019

Dynamic
patch + ResNet

260 MRI
coronal volumes

partial AC,
full torn 0.967 - 1.00 0.938 0.933 -

Liu et al,1

2019 

VGG16
sagittal MR
175 (exams)

full
thickness
ACL tear,
Intact ACL

-  0.92 - 0.92 0.95

DensNet - 0.96 - 0.96 0.98

AlexNet - 0.89 - 0.88 0.90

Namiri
et al,7 2019 2D CNN

NIH MRI
1243
(exams)

Intact ACL - 0.22 - 0.90 -

Partial tear - 0.75 - 1.00 -

Full tear - 0.82 - 0.94 -

Zhang
et al,42 2020

3D DenseNet
sagittal MR
408 (exams)

ACL tears
Intact ACL

0.957 0.976 0.940 0.944 0.960

ResNet 0.943 0.952 0.952 0.909 0.946

VGG16 0.899 0.912 0.869 0.886 0.859

Tsai et al,44

2020 EfficientNet MRNet
1370

abnormal 0.917 0.968  - 0.72 0.941

ACL tear 0.904 0.923 - 0.891 0.960

Irmakci
et al,43 2020 GoogleLeNet

MRNet
1370
exams

abnormal 0.833 0.978 - 0.280 0.909

ACL tear 0.808 0.666 - 0.924 0.890

Mazhar et al,2 
2021 Customized ResNet-14 KneeMRI

917 exams

ACL Intact 0.92 0.89 0.89 0.92 0.93 0.98

partial tear 0.91 0.87 0.87 0.92 0.97

ruptured 0.93 0.99 0.96 0.99 0.99

Li et al,45 2021 Multi-modal feature
fusion Deep CNN

MRI group +   
Arthroscopy group
ACL:60 cases

Grade 0
Grade 1
Grade II
Grade III

92.1% 96.7% - 90.6 % 0.963

Proposed 
method

Encoder-Decoder-
Attation

KneeMRI
917 exams

Healthy 0.977 0.964 0.978 0.981 0.97

partial 0.973 0.950 0.974 0.990 0.97

Complete 0.939 0.975 0.928 0.972 0.97
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several other methods, such as AlexNet (86.7%) and 
ResNet (90.4%). In terms of recall, the proposed model 
showed high sensitivity, especially in the "Complete" class, 
with a value of 97.5%, which is higher than the recall of 
other models, such as GoogleLeNet (66.6%) and AlexNet 
(88.9%). This high performance in identifying instances 
from various classes indicates that the proposed model 
is better at classifying samples with greater precision. 
Additionally, the F1 score of the proposed model 
also demonstrated strong performance, especially in 
identifying the "Healthy" and "Partial" classes, with F1 
scores of 97.12% and 96.20%, respectively. These values 
are notably higher than those of other models, such 
as DenseNet (95%) and ResNet (94.3%). Overall, the 
results indicate that the proposed method outperforms 
many existing models across all evaluation metrics and 
demonstrates a high ability to accurately classify and 
identify different classes.

Our approach leverages an encoder-decoder architecture 
enhanced with attention mechanisms, which significantly 
improves the localization and segmentation of the ACL. 
The attention mechanism allows the model to prioritize 
important regions, ensuring precise feature extraction, 
while skip connections help prevent the loss of fine details 
during down-sampling. These features enable the model 
to effectively distinguish between different ACL injuries, 
such as partial and complete tears, with high accuracy. 
Additionally, the use of a deep convolutional network 
with dense blocks facilitates robust feature extraction, 
further improving the model's ability to classify ACL 
conditions accurately.

However, there are some limitations. One of the main 
challenges is the computational complexity of the model, 
which requires significant hardware resources. Moreover, 
the model's sensitivity to the quality and variability of 
training data may affect its performance, particularly 
in clinical settings where MRI images vary in quality or 
are obtained from different devices. These limitations 
could impact the model's scalability and training time. 
Despite these challenges, our method provides substantial 
improvements in ACL injury detection and classification, 
offering a valuable tool for clinical decision-making.

Conclusion
In this study, a deep learning-based hierarchical 
classification model was proposed for the detection and 
classification of anterior cruciate ligament injuries in 
MR images. By leveraging advanced techniques such 
as attention mechanisms and hierarchical architecture 
in convolutional neural networks, the proposed model 
demonstrated outstanding performance in both ACL 
segmentation and injury classification stages. The 
experimental results showed that the proposed model 
achieved high accuracy compared to other methods, 
particularly in identifying different types of ACL 

injuries, and it excelled in precision, recall, F1 score, and 
sensitivity metrics across various classes. These results 
clearly indicate that the proposed method can serve as 
an efficient and effective tool for physicians and sports 
medicine specialists in the rapid and accurate diagnosis of 
ACL injuries. Furthermore, the model's ability to classify 
various injury types, specially complete tears, significantly 
enhances diagnostic workflows, potentially improving 
clinical outcomes.
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