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Abstract
Introduction: Accurate and automated

assessment of anterior  cruciate
ligament (ACL) injuries in MR images image et A ‘ .

. . Preprocessing ‘ Classification Head —> |( “> Partially
is essential for athlete healthcare \ J N -

and rapid diagnosis of knee injuries.

However, challenges such as the small

size of the ligament, variations in MR

image quality, and complex anatomical structures complicate the classification process.
Methods: In this study, we propose a hierarchical deep learning model for the detection and
classification of ACL injuries. The model consists of two main phases: ACL segmentation and
injury classification. In the first phase, we employ an encoder-decoder architecture with attention
mechanisms to accurately identify the ACL region in MR images, while suppressing background
noise. Skip connections are used to preserve spatial details and improve segmentation accuracy.
In the second phase, the segmented ACL region is input into a hierarchical convolutional neural
network (CNN) for classification. Dense blocks are incorporated to maximize feature reuse, while
max-pooling and global average pooling (GAP) layers help to reduce overfitting and improve
feature extraction.

Results: Theproposed method wasevaluated onaknee MRIdatasetand compared with other state-of-
the-artapproaches. Our model demonstrated high accuracy in both segmentation and classification
tasks, owing to the integration of attention mechanisms and hierarchical feature extraction.
Conclusion: This approach offers a robust solution for the automated assessment of ACL injuries,
providing clinicians and sports medicine specialists with a reliable tool for more efficient and

accurate diagnosis.

Introduction

Sports injuries are a significant challenge in the field of
athlete healthcare, with anterior cruciate ligament tears
being one of the most common and severe injuries.
This type of injury frequently occurs in sports that
involve sudden changes in speed and direction, such as
football, basketball, and skiing. The timely and accurate
diagnosis of anterior cruciate ligament (ACL) injuries is
crucial for effective treatment and reducing long-term
complications. Traditional diagnostic methods, such as
clinical examinations and MR imaging, have limitations,
including high costs, dependency on specialist expertise,
and limited accessibility. In recent years, the emergence of
artificial intelligence (AI) and deep learning technologies
has introduced innovative solutions for diagnosing
and classifying sports injuries. Deep learning models
can analyze medical images and biomechanical data to

identify and categorize ACL injuries with high accuracy.
However, developing an automated hierarchical
classification system for ACL injuries presents several
challenges, such as data imbalance, variations in injury
characteristics, and the complexity of hidden patterns
in medical imaging data. To address these challenges,
researchers have explored various approaches, including
convolutional neural networks, transfer learning models,
and the integration of multimodal data (such as MR
images and clinical information). In this study, we propose
a hierarchical deep learning-based classification model
for ACL injury detection, aiming to improve diagnostic
accuracy and reduce reliance on traditional methods. This
approach has the potential to serve as an assistive tool for
medical professionals and sports specialists, ultimately
enhancing athlete healthcare and injury management.
The diagnosis and classification of anterior cruciate
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ligament injuries have been extensively explored using
deep learning techniques, particularly in conjunction with
magnetic resonance imaging. Recent advancements in Al
have led to the development of fully automated systems for
ACL tear detection, segmentation, and severity staging.
This section reviews significant contributions in this
field, focusing on segmentation techniques, classification
models, severity assessment, and multimodal learning
approaches.

Numerous studies have employed deep learning-based
methodologies to detect and classify ACL injuries from
MRI scans. Bien et al' introduced a fully automated
system utilizing convolutional neural networks for ACL
tear diagnosis, achieving accuracy levels comparable to
those of experienced radiologists. Yao et al* proposed an
efficient deep learning approach that required minimal
preprocessing, demonstrating superior performance
over conventional methods. Thomas et al* explored an
improved deep convolutional neural network (CNN)
model for distinguishing ACL tears from osteoarthritis,
highlighting the importance of robust feature extraction.
Further advancements in this domain include Liu et
al,* who developed an end-to-end deep learning model
for ACL segmentation and severity staging, enabling
precise injury localization. The U-Net architecture,
initially proposed by Ronneberger et al,® has been widely
adopted for medical image segmentation, including
ACL tear detection. Chen et al® refined the U-Net model
by integrating attention mechanisms, significantly
enhancing segmentation accuracy.

Several other studies have introduced novel approaches
to classification. Gongetal’ combined CNNs with recurrent
neural networks (RNNs) to assess ACL injury severity
from MRI scans. Wang et al® investigated transformer-
based architectures for severity classification, yielding
promising results in complex MRI datasets. Zhang et al’
proposed a multi-scale feature fusion approach to enhance
severity staging performance. Gupta et al’® incorporated
clinical data with MR images using a hybrid CNN-LSTM
model, achieving higher diagnostic accuracy. Additional
techniques have been developed to optimize ACL
injury detection and classification. He et al'' leveraged
transfer learning from large-scale medical imaging
datasets to improve classification robustness. Huang
et al' introduced a self-supervised learning approach
to mitigate data scarcity issues in ACL injury detection.
Kim et al® compared CNN-based models with radiologist
assessments, reporting a reduction in diagnostic errors.
Patel et al"* emphasized the role of Al-assisted diagnosis in
alleviating the workload of medical professionals.

Automated segmentation is a critical component of
ACL injury assessment. Singh et al'® employed ensemble
learning techniques to reduce model variance and
enhance classification robustness. Xie et al'® applied
semi-supervised learning to improve classification

performance when labeled data availability was limited.
Park et al” integrated generative adversarial networks
(GANS) to refine ACL segmentation, effectively reducing
artifacts in low-quality MRI scans. Additionally,
Zhao et al'® explored explainable AI techniques to
generate interpretable severity assessments for clinical
applications. Li et al" introduced meta-learning strategies
to adapt severity classification models to varying
MRI protocols and patient demographics. Sun et al®
developed a reinforcement learning-based segmentation
framework, dynamically optimizing model parameters
during training. Recent studies have investigated
multimodal data fusion and transfer learning to enhance
ACL injury diagnosis. Ahmed et al*! proposed a multi-
view CNN model that integrates MRI sequences from
different planes to improve classification accuracy.
Lee et al” introduced an interpretable deep learning
model for ACL tear diagnosis, providing clinicians with
enhanced transparency in decision-making. Feng et
al® employed contrastive learning to improve feature
representation in ACL classification, outperforming
traditional handcrafted feature extraction techniques.
Several studies have also explored domain adaptation
methods. Zhang et al** utilized capsule networks for ACL
tear classification, demonstrating robust feature learning.
Han et al* implemented federated learning for ACL tear
detection across multiple institutions, enabling privacy-
preserving model training while enhancing generalization
performance. Xu et al*® investigated multi-scale CNN
architectures, achieving improved performance on
heterogeneous MRI datasets.

Deep learning-based methods have consistently
outperformed traditional machine learning and manual
assessment techniques. Li et al”’ explored knowledge
distillation techniques to optimize deep learning models
for ACL tear classification. Wu et al® investigated
data augmentation strategies, including synthetic MRI
generation, to improve segmentation accuracy in limited
datasets. Shi et al* applied graph neural networks for ACL
injury prediction, leveraging spatial relationships within
MRI features. Further improvements in model efficiency
and clinical deployment have been explored. Gao et al®
integrated radiology reports with MRI data to enhance
classification accuracy. Lin et al’! examined cross-domain
transfer learning, utilizing knowledge from related
musculoskeletal imaging tasks. Cheng et al* introduced
a self-attention mechanism for effectively fusing multi-
sequence MRI data in ACL diagnosis. Li et al** proposed
a deep ensemble learning strategy to enhance ACL injury
detection robustness. Sun et al** developed an edge Al
solution for real-time ACL tear detection on portable
medical devices, facilitating on-site athlete assessment.
Zhou et al*® applied Bayesian deep learning techniques to
estimateuncertaintyin ACLinjury classification, providing
clinicians with confidence measures for Al-assisted
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diagnoses. An end-to-end deep learning model, DCLU-
Net, was proposed for the simultaneous segmentation and
classification of ACL injuries. By incorporating radiomic
features, the model achieved classification accuracies of
90% for intact ACLs, 82% for partial tears, and 92% for
complete ruptures. Additionally, the use of supervised
learning techniques reduced the reliance on extensive
manual annotations.’® In another recent study, a fully
automated deep learning framework was introduced,
comprising two models: ACL-DNet for segmentation
and ACL-SNet for classification. The classification model
achieved a sensitivity and specificity of 97%, along with
an area under the receiver operating characteristic curve
(AUC) of 0.99, outperforming experienced orthopedic
specialists in diagnostic accuracy.” Furthermore, a
modified 3D ResNet architecture was employed for the
detection and classification of ACL injuries. This model
achieved a peak accuracy of 97.15% using custom data
splits and demonstrated substantial improvements over
conventional three-class classifiers, thereby enhancing
diagnostic precision in sports medicine applications.”
In summary, deep learning has significantly advanced
ACL injury detection, segmentation, and severity
staging. While CNN-based models remain predominant,
emerging techniques such as transformers, contrastive
learning, and multimodal fusion are enhancing diagnostic
accuracy. Future research should focus on improving
model generalizability, interpretability, and real-time
clinical deployment to optimize athlete healthcare
and injury prevention strategies. Given the challenges
outlined in this paper, a method based on Hierarchical
Classification of Anterior Cruciate Ligament Injuries
Using Deep Learning for Athlete Healthcare is proposed.
This approach aims to address the difficulties associated
with small ligament size, varying MR image quality, and
complex anatomical features, offering a more accurate
and efficient way to detect and classify ACL injuries.
The key innovations of this method include the use of an
encoder-decoder model with an attention mechanism for
precise segmentation of the ACL region, which allows the
model to focus on relevant areas and filter out background
noise. Additionally, the hierarchical deep learning

Image
Preprocessing

ACL Localization

architecture enhances the classification performance by
leveraging dense blocks, maximizing feature reuse, and
improving gradient flow. These innovations contribute to
superior results in both segmentation and classification,
outperforming several existing models

Following is the structure of the article. After the
introduction, the paper provides a detailed explanation
of the proposed method. Following that, the dataset used
for the experiments is introduced, and the method is
thoroughly evaluated from various aspects. Finally, the
conclusion is presented.

Proposed Method

Accurate localization of the anterior cruciate ligament
plays a crucial role in the automated detection and
classification of ACL injuries in MR images. However,
detecting small objects in medical imaging presents
several challenges due to the complexity of anatomical
structures and variations in image contrast. Traditional
deep learning models often struggle to accurately identify
small objects like the ACL, as critical features may be
lost during the down-sampling process. To overcome
this challenge, we propose an encoder-decoder-based
model that leverages attention mechanisms to enhance
feature extraction. This model effectively transfers spatial
and contextual information through skip connections,
improving segmentation accuracy while preserving fine
structural details. Once the ACL is precisely localized,
the next step is to classify its condition into three main
categories: healthy, partial tear, and complete tear. This
classification is of significant clinical importance, as
different injury levels require distinct treatment strategies.
To achieve this, we employ a deep convolutional neural
network with dense blocks, which enables the extraction
of discriminative features from MRI scans. The proposed
model integrates a combination of convolutional layers,
max-pooling, dense feature extraction, and global average
pooling. This combination enhances classification
accuracy and improves the model's ability to distinguish
between different ACL conditions. Fig. 1 illustrates the
overall stages of the proposed method. Next, each step
will be explained in more detail.

healthy

partial

Fig. 1. Main steps of the Hierarchical ACL tear model.
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Image preprocessing

In the proposed method, the data preprocessing phase
involves resizing all MR images to a fixed dimension of
256 % 256 pixels to ensure uniformity in input dimensions.
This step enhances the performance of the neural network
by allowing it to extract relevant features without being
affected by variations in image size. In addition to resizing,
other preprocessing techniques such as pixel intensity
normalization are applied to homogenize brightness
and contrast levels, and noise reduction is performed to
eliminate irrelevant information.

ACL localization

After preprocessing, the next phase is the localization of the
anterjor cruciate ligament. This step is crucial as it serves
as the foundation for subsequent injury classification.

12812832 64'64°32

MR Image 256'250"16 12612816
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The proposed method utilizes an encoder-decoder
architecture enhanced with attention mechanisms to
effectively detect and segment the ACL region. The
encoder extracts hierarchical features from the input MR
scan, while the attention mechanism ensures a focused
feature representation by highlighting relevant regions.
Finally, the decoder reconstructs the spatial details to
generate an accurate segmentation mask. This phase is
illustrated in Fig. 2.

Encoder module

The encoder module is responsible for extracting
hierarchical feature representations from the input MR
image. It consists of multiple convolutional layers followed
by down-sampling operations, which progressively reduce
the spatial dimensions while increasing the depth of the
feature maps. This hierarchical extraction enables the

8'8

3232*128
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Attention

—‘ Attention
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Fig. 2. Anterior cruciate ligament (ACL) localization using an attention-based encoder-decoder architecture.
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model to capture both low-level and high-level anatomical
structures. Given an input MR image I of size Hx W, the
first convolutional layer applies a set of k convolutional
filters with kernel size (f, f) to extract initial features:

F=o(W, *I+b,) (1)

Where * represents the convolution operation, W, and
b, are the weights and bias of the first convolutional layer,
o is the activation function (ReLU), F, is the resulting
feature map. As the image progresses through deeper
layers, high-level contextual information is extracted:

F,=o(W,*F_+b) 2)

Where 1 represents the layer index in the encoder. To
reduce spatial dimensions, down-sampling is performed
using max-pooling or stride convolution:

F, = MaxPool (F,, p) 3)

Where p is the pooling window size. These operations
compress the image representation while preserving
essential features, enabling the model to learn patterns
critical for ACL localization.

Attention mechanism

One of the key challenges in ACL localization is the small
size of the ligament relative to the entire knee structure.
To address this, attention mechanisms are integrated into
the model to selectively focus on the most relevant regions
while suppressing irrelevant background information.
These attention layers refine high-level features by
weighting the most informative areas, ensuring that the
ACL remains the focal point of the model’s learning
process. Furthermore, the attended features are combined
with the encoder outputs through residual connections,
preserving spatial information and improving feature
propagation. By dynamically adjusting feature weights
based on learned importance, the model prioritizes the
ACL region, leading to more precise localization. Given
an input feature map F, attention weights are computed
using a scaled dot-product attention mechanism:

Attention (Q, K, V) =softmax ( oK J 14 @

Ji

Where:

« Q=W K=W,F, V=W F are the query, key, and
value matrices,

+ d,d,is the scaling factor (dimensionality of the key),

o The softmax function ensures that attention weights
sum to 1.

The attended feature map is then computed as:

F

attended

=aF+(1-a)- Attention (Q,K, V) (5)

Where a is a learnable parameter that balances original
and attended features. To preserve spatial information,
attended features are combined with encoder outputs via
residual connections:

skip encoder T Fattended (6)
Decoder module

The decoder module reconstructs spatial details of the
ACL region from the encoded feature representations.
Using up-sampling layers and convolutional operations,
the decoder progressively restores the spatial resolution
of the input image. Feature refinement is achieved by
integrating high-resolution spatial information from the
skip connections, ensuring that fine anatomical details are
preserved. Skip connections play a vital role in mitigating
information loss, as they enable direct information transfer
between corresponding encoder and decoder layers. This
allows the model to retain structural details necessary
for accurate segmentation. The final layer of the decoder
produces a binary segmentation mask, highlighting the
predicted ACL region. This mask undergoes further
refinement to ensure precise localization, which is
essential for subsequent injury classification and severity
assessment. Given an encoded feature map F, , the up-
sampling operation expands the spatial resolution:

F

upsampled = Upsample (F;nc B S) (7)
Where s is the scaling factor. This operation is followed
by convolutional refinement:

F

dec

+b

=0 (W, *F, c) (8)

dec upsampled
Skip connections play a crucial role in merging high-

resolution spatial features from the encoder with up-

sampled decoder features:

Fﬁnal = Fdec + Fskip (9)

Finally, the segmentation output is obtained through a

sigmoid activation function:

M, :O-(VVo*F

final

+b,) (10)
Where M, represents the binary mask highlighting
the ACL region.

Classification head

After accurately localizing the anterior cruciate ligament
through segmentation, the next critical step is classifying
the injury type into three main categories: healthy, partial
tear, and complete tear. A healthy ACL appears intact
with no signs of damage, whereas a partial tear involves
damage to some ligament fibers while maintaining partial
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structural integrity. In contrast, a complete tear results in
a fully ruptured ligament, causing a discontinuity in its
structure. To achieve robust and precise classification,
a deep Convolutional Neural Network is employed,
integrating dense connectivity, feature down-sampling,
and global average pooling. This architecture ensures
effective feature extraction from the segmented ACL
region, enabling fine-grained differentiation between
injury types and facilitating accurate clinical diagnosis.
The classification phase is shown in Fig. 3.

Feature extraction using convolutional layers

The classification process begins by extracting features
from the localized ACL region obtained in the
segmentation phase. This extracted ACL patch is fed into
a deep CNN consisting of multiple Conv2D layers, each
followed by batch normalization and a ReLU activation
function. These layers progressively learn both low-level
and high-level features that distinguish between healthy
and injured ligaments. Given an input ACL patch I, , of
size H x W, the first convolutional layer applies k filters of
size (f, ) to extract basic features:

EZG(BN(VI/I*IACL +b1)) (11)

Where * denotes the convolution operation, W, and
bl are the weight matrix and bias, BN represents batch
normalization, which stabilizes training and speeds up
convergence and o is the ReLU activation function:

o(x) =max(0,x) (12)

16w

As the image propagates through deeper convolutional
layers, the feature extraction process continues:

F,=c(BN(W,*F_ +b,)) (13)

Where F, represents the feature map extracted at the I-th
layer. To reduce computational complexity and improve
feature robustness, max-pooling layers are employed
at multiple stages in the network. Max-pooling helps
retain the most prominent features while reducing spatial
dimensions. The pooling operation is defined as:

F;= MaxPool (F,, p) (14)

Where p is the pooling window size (2x2). This
operation helps, reduce overfitting by forcing the
network to focus on important regions and provide
translational invariance, making classification robust to
small variations in the ACL's position. To improve feature
extraction efficiency, dense blocks are integrated into the
CNN architecture. In a dense block, each layer receives
input from all preceding layers, ensuring maximum
feature reuse and gradient flow:

Fi=o(BN (W] *[E,I,EZ,...,EI’l]er;)) (15)

Where, F, is the feature map at layer [ within the dense
block. The concatenation operation [ . | ensures that each
layer receives all previous feature maps as input. The
integration of dense blocks provides several advantages.

healthy

completely

[

Conv2D  MaxPooling Dense Block

| +BN+ReLu

Global Averag
Pooling

Fig. 3. ACL Injury classification using a CNN with dense blocks.
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First, it prevents information loss, ensuring that fine
details related to ACL injuries are preserved throughout
the network. Second, it enhances gradient flow, leading
to improved training stability and faster convergence.
Finally, dense connectivity reduces redundant feature
extraction, making the network more parameter-efficient
while maintaining high performance in distinguishing
between healthy, partial tear, and complete tear cases.
After extracting dense features, the network applies
Global Average Pooling to convert feature maps into a
compact representation:

1 &,
F..=—)>F,
GAP NIZ::‘ d (16)

Where N is the total number of spatial locations
in the feature map. Unlike fully connected layers,
GAP minimizes overfitting while preserving spatial
relationships. The final feature vector is passed through
a softmax classifier, which assigns probabilities to each of
the three ACL injury categories:

eW;FGAP
P(y)=—i (17)

Z eW'ijGAP
J

Where P(y) represents the probability of ACL being
in class i (healthy, partial tear, or complete tear). The
predicted class is determined as:

y=arg, max P(y,) (18)
Where p is the final classification result.

Loss function and optimization

Training a deep learning model for ACL injury
classification requires an effective loss function and
optimization strategy to ensure accurate convergence and
prevent overfitting.

Categorical cross-entropy loss function

Since the classification task involves three mutually
exclusive classes (Healthy, Partial Tear, Complete Tear),
the categorical cross-entropy loss function is used to
measure the divergence between the predicted probability
distribution and the ground-truth labels. This loss
function is defined as:

c

L:—;yilogP(yi) (19)

Where:

o C is the number of classes (Healthy, Partial Tear,
Complete Tear).

+  y,represents the ground-truth label for class i, which
is one-hot encoded (i.e., if the true label is class j, then

y,=1and all other y,=0).

« P(y) is the predicted probability that the model
assigns to class i, obtained from the softmax activation
function in the final layer:

Py)=ce—=
€

(20)

Where z, is the network’s output (logit) for class i, and
the denominator ensures that the sum of probabilities
across all classes is 1. The cross-entropy loss penalizes
incorrect predictions more when the model assigns high
confidence to the wrong class, which helps in better
training.

Optimization with Adam optimizer

To efficiently minimize the loss function and improve
model convergence, the Adam (adaptive moment
estimation) optimizer is used. Adam dynamically adjusts
the learning rate for each parameter during training by
computing adaptive moment estimates. The parameter
update rule for Adam is given as:

mt
v +e (1)

Where 0, represents the weight parameters at time step
t, which are updated in each training iteration. ) is the
learning rate, controlling the step size of weight updates.
m, is the first moment estimate (moving average of
gradients), calculated as:

0t+1= Ht_ n

m, = Bim,_, +(1_181)gz (22)

Where g, is the gradient of the loss with respect to the
weights at time step t, and j3, is a decay factor. (1=0.9).
v,is the second moment estimate (moving average of
squared gradients), given by:

Vi :ﬂZVt—I +(1_ﬂ2)g;2 (23)

Where f, is another decay factor (8,=0.999). € is a
small constant added to avoid division by zero (e=107%).
Adam combines the benefits of momentum-based
updates (using m,) and RMSProp (adaptive scaling with
v,), leading to faster convergence, better stability, and
improved generalization in deep networks. To prevent
overfitting and improve generalization, L2 regularization
(also known as weight decay) is applied, modifying the
loss function as:

L,=L+ AZH@HZ 4

Where A is a regularization coefficient that controls
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the penalty on large weights. This encourages the model
to keep weight values small, improving generalization
on unseen MRI scans. Additionally, dropout layers are
introduced during training, randomly setting some
neuron activations to zero, which forces the network to
learn more robust and distributed representations.

Results

Dataset

The dataset used in this study consists of 917 sagittal
plane DICOM MRI scans of the knee, obtained from
the Clinical Hospital Center of Rijeka archiving and
communication system. The images are 12-bit grayscale
and are accompanied by their corresponding ACL
diagnosis labels. All scans were acquired using a Siemens
Avanto 1.5T MRI scanner (manufactured in Muenchen,
Germany) between 2007 and 2010. The imaging protocol
included proton density-weighted fat suppression,
ensuring high contrast for ligament visualization. The
dataset is categorized into three classes: healthy (0 label),
partial tear (1label), and complete tear (21abel). The dataset
comprises 690 healthy samples, 172 partial tear cases and
55 complete ruptures, stored in pickle format for efficient
processing. Additionally, metadata, including diagnostic
details, is provided in CSV format for reference.’ Given
the class imbalance in the dataset, where the number of
healthy samples significantly exceeds the partial tear
and complete tear cases, data augmentation techniques
are employed to balance the dataset. Augmentation
strategies such as rotation, flipping, contrast adjustment,
and elastic deformations are applied to increase the
number of samples in the underrepresented classes. After
augmentation, the total number of training samples per
class was balanced to approximately 720 images for each
category (Healthy, Partial Tear, Complete Tear). This
ensures a more balanced distribution, preventing bias
toward the majority class and enhancing the model’s
ability to generalize across different ACL injury severities.
Fig. 4 illustrates an example of the augmented data.

Evaluation metrics

To assess the performance of the proposed ACL
localization and classification model, standard evaluation
metrics are employed. Given the class distribution in
the dataset, the following metrics are used to ensure a
comprehensive evaluation:

Original Image

Augmented 1 Augmented 2

Accuracy: Measures the overall percentage of correctly
classified samples. It is defined as:

TP+TN
TP+TN + FP+ FN (25)

Accuracy =

Where TP and TN represent true positives and true
negatives, while FP and FN denote false positives and false
negatives, respectively.

Precision: Evaluates the proportion of correctly predicted
positive instances among all positive predictions. It is
calculated as:

Precision = _r (26)
TP+ FP

Precision is crucial in medical diagnosis, as a high
precision value ensures fewer false positives, reducing
unnecessary medical interventions.

Sensitivity: Measures the ability of the model to identify
actual positive cases (injured ACLs). It is given by:

TP

Sensitivity = ————
YT IPeEN @7)
High recall ensures that the model does not miss a
significant number of ACL injuries.
Specificity: Measures the proportion of actual negative
cases (healthy ACLs) correctly identified by the model:

TN

Specificity = ———
P = N Fp (28)
This metric is crucial in medical imaging, ensuring that
healthy individuals are not misclassified as injured.
F1-Score: Provides a balanced measure of precision and
recall:

Fl— Score = 2 x Precision x Recall (29)
Precision + Recall

This metric is especially useful in datasets with class
imbalance, such as the current dataset where healthy cases
significantly outnumber injured ones.

AUC-ROC: Measures the model's ability to distinguish
between classes. A higher AUC value indicates better
discrimination between healthy, partial tear, and complete
tear cases.
Augmented 3

Augmented 4 Augmented 5

Fig. 4. Example of augmented MRI scans for class balancing.
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Experimental results

In this section, the performance of the proposed method
is evaluated based on standard evaluation metrics for
machine learning models. The metrics include overall
accuracy, precision, recall, specificity, and Fl-score for
each of the classes: Healthy, Partial, and Complete. This
analysis helps assess the model's accuracy in classifying
different classes and identifies its strengths and
weaknesses. Fig. 5a shows the Confusion Matrix, which
illustrates the distribution of the model’s predictions
compared to the true labels. For evaluation purposes, a
subset of 300 samples (comprising 140 healthy, 80 partial
tears, and 80 complete tears) was randomly selected
from the dataset. This number was chosen to maintain

a relatively balanced class distribution in the evaluation
phase and to reduce bias, allowing for a more accurate
assessment of the model's performance across all classes.
This matrix allows us to analyze the accuracy of the model’s
predictions and the types and frequencies of its errors. As
can be seen, the proposed model has correctly classified
the majority of samples, with minimal misclassification
in each class. A detailed examination of this matrix helps
identify in which classes the model makes the most errors
and whether specific types of data pose challenges for the
model. Fig. 5b presents the bar plot of evaluation metrics,
which enables direct comparison of evaluation metrics
across the different classes. It is evident that the precision
and recall values are high for all three classes, indicating

Confusion Matrix

True Labels
partial healthy

complete

1) 1
healthy partial

120

100

80

60

-20

complete

Predicted Labels

Evaluation Metrics for Each Class

1.0

0.8 1

0.6 1

Score

0.4 4

0.2

0.0

&
sy
& S

Class

Fig. 5. (a) Confusion matrix for evaluating model performance in classifying the three classes: healthy, partial and complete (b) bar chart of evaluation

metrics for each class.
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the model’s ability to reduce type I and type II errors.
The high F1-score also suggests a balanced performance
between precision and recall, confirming the model’s
consistent ability.

Given that the proposed method involves a considerable
number of hyperparameters that significantly affect the
model’s performance, it is essential to clearly specify
their values. Table 1 presents the hyperparameter settings
used in our approach. These values were determined
based on extensive experiments and empirical tuning to
achieve optimal performance. All reported results and
analyses in this study are based on these hyperparameter
configurations.

To evaluate the effectiveness of the proposed
hierarchical architecture, its performance was compared
to a flat CNN model without the segmentation stage. As
shown in Table 2, the proposed method outperformed the
flat CNN in all evaluation metrics, including accuracy,
sensitivity, precision, specificity, and the AUC.

Given the imbalanced nature of the dataset in this study,
the use of two metrics, receiver operating characteristic
(ROC) curve and precision-recall (PR) curve, was
crucial for a more accurate evaluation of the model's
performance. In classification problems with imbalanced
data, especially when the number of samples for one or
more classes is significantly smaller than the others,
traditional metrics like accuracy may lead to misleading
performance evaluations. For instance, a high accuracy
rate may result from simply predicting the majority
class, without adequately addressing the minority class.
Therefore, metrics such as AUC for the ROC curve and
average precision (AP) for the PR curve were employed to
assess the model's ability to distinguish between classes,

Table 1. Hyperparameter settings for the proposed ACL classification model

Hyperparameter Value
Image size 256 x 256
Loss Categorical cross-entropy
Number of dense blocks 3
Dropout rate 0.3
Optimizer Adam
Learning rate 0.001

€ (Adam parameter) le-8
B2 (Adam parameter) 0.999
B+ (Adam parameter) 0.9

L2 Regularization (A) 0.0001
Number of epochs 50
Batch size 32

particularly for the minority classes. In this study, the ROC
curves were computed for each of the classes (Healthy,
Partial, Complete), and the Area Under the Curve was
evaluated separately for each. The results obtained from
the AUC show the model's ability to distinguish between
the different classes. Specifically, the AUC for the Healthy
class was 0.98, for Partial it was 0.94, and for Complete it
was 0.93. These results indicate that the model performed
exceptionally well in distinguishing the Healthy class
with the highest AUC, while maintaining acceptable
performance for the Partial and Complete classes.
Notably, while the AUC for the minority classes (Partial
and Complete) is lower, it still reflects good classification
performance, considering the inherent class imbalance.
On the other hand, the PR curves were also plotted for
each class, and Average Precision was computed for each.
The obtained values of AP were 0.96 for the Healthy class,
0.89 for the Partial class, and 0.85 for the Complete class.
These values demonstrate that the model, particularly in
identifying positive samples of the Healthy class, exhibited
strong performance. However, the performance for the
Partial and Complete classes, which have fewer samples,
showed a slight decrease. This is especially important in
imbalanced data settings, as the AP metric can reveal the
model's shortcomings in identifying the minority classes.
Specifically, while the model achieves high precision in
detecting healthy ACLs, its precision slightly decreases for
the smaller classes, especially in recognizing partial and
complete ACL tears. Ultimately, the results from these
two analyses emphasize the importance of using ROC
and PR metrics for evaluating classification models with
imbalanced datasets. These metrics, in particular, help
assess the model’s ability to accurately identify minority
classes. The results of these analyses are shown in Fig.
6a and 6b, where the ROC and Precision-Recall curves
for each class are fully displayed. These plots provide
additional insights into the model’s performance, offering
a clearer understanding of its ability to recognize minority
classes in imbalanced data scenarios.

Training prosses

To evaluate the training process and the accuracy of the
proposed model, two key graphs were analyzed: the loss
curve and the accuracy curve. In Fig. 7a, the cross-entropy
loss reduction over 50 training epochs is depicted. This
graph includes two curves representing the training loss
and test loss. As shown, the loss value steadily decreases in
both datasets, indicating a gradual and optimal learning
process of the proposed model. Additionally, towards the
final epochs, the gap between the two curves narrows,

Table 2. Comparison between flat CNN and the proposed hierarchical method based on evaluation metrics

Method Accuracy (%) Sensitivity (%) Precision (%) Specificity (%) AUC
Flat CNN (without segmentation) 88.1 85.2 86.5 89.3 0.89
Proposed Hierarchical Method 96.3 96.3 96.0 97.1 0.97
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Fig. 6. (a) ROC curves for each class (Healthy, Partial, Complete) with AUC values. (b) Precision-recall curves for each class (Healthy, Partial, Complete)

with average precision (AP) values.

suggesting a reduced risk of overfitting and demonstrating
that the model generalizes well to unseen data. In Fig.
7b, the accuracy curve illustrates the performance of the
model throughout the training process. The graph shows
that the accuracy steadily increases for both the training
and test datasets, ultimately reaching over 85%. This
upward trend confirms that the model has successfully
learned to differentiate between various ACL injury
categories. Moreover, the convergence of the two curves
in the later training stages indicates that the model does
not suffer from significant mismatches between training
and test performance, further reinforcing its reliability on
real-world data. Overall, the continuous loss reduction
and increasing accuracy confirm the model's effectiveness
in learning complex ACL injury features. The narrowing
gap between training and test curves indicates that the
model generalizes well without overfitting. Additionally,
achieving over 95.7 accuracy on the test set highlights
the model's high capability in automatic ACL injury

classification from MR images. These results suggest that
the proposed approach can serve as a precise and efficient
diagnostic tool to assist clinicians in evaluating ACL
injuries.

In this study, statistical significance of the results
from the proposed method was evaluated using 5-fold
cross-validation. This approach was applied to examine
the stability and accuracy of the model across different
datasets and to assess its generalization ability to new,
unseen data. Using this technique, the model was trained
and evaluated five times on different subsets of the data.
The results from this experiment are shown in Fig. 8. The
plot presents the average values of various evaluation
metrics, including precision, sensitivity, specificity, F1-
score, and accuracy, for the three classes: Healthy, Partial,
and Complete, along with the variance of each of these
metrics. Specifically, for the Healthy class, the precision is
0.978, sensitivity is 0.964, specificity is 0.981, F1-score is
0.971,and accuracy is 0.977. For the Partial class, precision

Biolmpacts. 2025;15:31060 [ 11
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Fig. 7. (a) Error Plot of the Proposed Method for Training and Evaluation Data. (b) Model Accuracy Progression During Training

is 0.974, sensitivity is 0.950, specificity is 0.990, F1-score
is 0.962, and accuracy is 0.973. For the Complete class,
precision is 0.928, sensitivity is 0.975, speciﬁcity is 0.972,
Fl-score is 0.951, and accuracy is 0.939. The variance of
these metrics for all three classes ranges between 0.001 and
0.009, indicating stable results. The use of 5-fold cross-
validation means that the model was trained and evaluated
five times on different portions of the data, which allows
for a more comprehensive and accurate assessment. The
low variance in the metric values suggests that the model
demonstrates consistent performance and that the results
are not due to random fluctuations. In other words, the
model exhibits high stability, and these results are both
reliable and statistically significant. This analysis indicates
that the proposed model demonstrates meaningful and

stable performance across all metrics, reinforcing the
model's credibility and its ability to generalize.

Comparison with other methods

The proposed method in this study was implemented
and evaluated on a specific dataset, and its results were
compared with existing methods. This comparison
was based on standard evaluation metrics, including
accuracy, recall, precision, and F1 score. The results of
this experiment are presented in Table 3. According to the
obtained results, the proposed method exhibited strong
performance across all evaluation metrics. The overall
accuracy of the proposed model was 96.33%, which
demonstrates its high capability in correctly classifying
samples across all classes. This accuracy outperforms
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Error Bar Plot for Evaluation Metrics by Class

1.050
1.025 +
1.000 4
[}
0.975 o $ .
)| $
T .
2
O 0.950 4 L] (]
o]
[92]
0.925 4 1
0.900 -
@ Precision
0.8751 @ sensitivity
® specificity
® Fl-score
Accuracy
0.850 T T T
Healthy Partial Complete
Classes

Fig. 8. Cross-validation results with k=5, Error bar plot of evaluation metrics including Precision, Sensitivity, Specificity, F1-Score and Accuracy for three
different classes along with the variance of each metric.

Table 3. Comparison of state-of-the-art works with our proposed model

Evaluation
UL Model Dataset Output
Year Accuracy Sensitivity Precision  Specificity AUC
ACL tear 0.867 0.759 - 0.968 0.965
Bien et al,* MRNet
2018 AlexNet 1370 exams abnormal 0.850 0.879 - 0.714 0.937
meniscus tear 0.725 0.892 - 0.741 0.847
Chang Dynamic 260 MRI partial AC,
et al,** 2019 patch + ResNet coronal volumes full torn 0.967 1.00 0.938 0.933
VGG16 full - 0.92 - 0.92 0.95
Liuetal,! sagittal MR thickness
2019 DensNet 175 (exams) ACL tear, ; 0.9 ’ 0.9 0.98
AlexNet Intact ACL - 0.89 - 0.88 0.90
Namirt NIH MRI Intact ACL - 0.22 - 0.90 -
2D CNN 1243 Partial tear - 0.75 - 1.00 -
etal,” 2019
(exams) Full tear - 0.82 - 0.94 -
3D DenseNet 0.957 0.976 0.940 0.944 0.960
Zhang sagittal MR ACL tears
ResNet 0.943 0.952 0.952 0.909 0.946
etal,® 2020 estie 408 (exams) Intact ACL
VGG16 0.899 0.912 0.869 0.886 0.859
Tsai et al 4 MRNet abnormal 0.917 0.968 - 0.72 0.941
! EfficientNet
2020 1370 ACL tear 0.904 0.923 - 0.891 0.960
Irmakei MRNet abnormal 0.833 0.978 - 0.280 0.909
ot al.# 2020 GoogleLeNet 1370
, exams ACL tear 0.808 0.666 - 0.924 0.890
ACL Intact 0.92 0.89 0.890.92 0.93 0.98
Mazhar et al,? . KneeMRI .
2021 Customized ResNet-14 917 exams partial tear 0.91 0.87 0.87 0.92 0.97
ruptured 0.93 0.99 0.96 0.99 0.99
Grade 0
. MRI group +
Lietals201 Multrmodalfeature )y oo oy group  Or2del 92.1% 96.7% - 90.6 % 0.963
fusion Deep CNN Grade Il
ACL:60 cases
Grade Il
Healthy 0.977 0.964 0.978 0.981 0.97
P d Encoder-Decoder- KneeMRI
ropose neoder-becoder nee partial 0973 0.950 0.974 0.990 0.97
method Attation 917 exams
Complete 0.939 0.975 0.928 0.972 0.97
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several other methods, such as AlexNet (86.7%) and
ResNet (90.4%). In terms of recall, the proposed model
showed high sensitivity, especially in the "Complete” class,
with a value of 97.5%, which is higher than the recall of
other models, such as GoogleLeNet (66.6%) and AlexNet
(88.9%). This high performance in identifying instances
from various classes indicates that the proposed model
is better at classifying samples with greater precision.
Additionally, the F1 score of the proposed model
also demonstrated strong performance, especially in
identifying the "Healthy" and "Partial" classes, with F1
scores of 97.12% and 96.20%, respectively. These values
are notably higher than those of other models, such
as DenseNet (95%) and ResNet (94.3%). Overall, the
results indicate that the proposed method outperforms
many existing models across all evaluation metrics and
demonstrates a high ability to accurately classify and
identify different classes.

Ourapproachleveragesanencoder-decoderarchitecture
enhanced with attention mechanisms, which significantly
improves the localization and segmentation of the ACL.
The attention mechanism allows the model to prioritize
important regions, ensuring precise feature extraction,
while skip connections help prevent the loss of fine details
during down-sampling. These features enable the model
to effectively distinguish between different ACL injuries,
such as partial and complete tears, with high accuracy.
Additionally, the use of a deep convolutional network
with dense blocks facilitates robust feature extraction,
further improving the model's ability to classify ACL
conditions accurately.

However, there are some limitations. One of the main
challenges is the computational complexity of the model,
which requires significant hardware resources. Moreover,
the model's sensitivity to the quality and variability of
training data may affect its performance, particularly
in clinical settings where MRI images vary in quality or
are obtained from different devices. These limitations
could impact the model's scalability and training time.
Despite these challenges, our method provides substantial
improvements in ACL injury detection and classification,
offering a valuable tool for clinical decision-making.

Conclusion

In this study, a deep learning-based hierarchical
classification model was proposed for the detection and
classification of anterior cruciate ligament injuries in
MR images. By leveraging advanced techniques such
as attention mechanisms and hierarchical architecture
in convolutional neural networks, the proposed model
demonstrated outstanding performance in both ACL
segmentation and injury classification stages. The
experimental results showed that the proposed model
achieved high accuracy compared to other methods,
particularly in identifying different types of ACL

Research Highlights

What is the current knowledge?

o Traditional methods like MRI scans and clinical
assessments are commonly used for ACL injury
diagnosis.

o Deep learning models have been explored for ACL
injury detection, focusing on MRI segmentation and
classification.

o CNNs have been utilized for ACL segmentation and
severity staging with varying success.

o Attention mechanisms and transfer learning have
improved segmentation and classification accuracy in
ACL injury diagnosis.

o Multimodal approaches combining MRI and clinical
data have enhanced diagnostic performance.

What is new here?

o Proposes a hierarchical deep learning-based model for
precise ACL injury detection and classification.

o Integrates an attention mechanism into an encoder-
decoder architecture for accurate ACL localization.

o Uses dense blocks and global average pooling in the
classification phase for improved feature extraction.

o Focuses on overcoming challenges like small ligament
size and image quality variations in ACL imaging.

o Introduces a fully automated, hierarchical classification
system for better clinical utility and athlete healthcare.

injuries, and it excelled in precision, recall, F1 score, and
sensitivity metrics across various classes. These results
clearly indicate that the proposed method can serve as
an efficient and effective tool for physicians and sports
medicine specialists in the rapid and accurate diagnosis of
ACL injuries. Furthermore, the model's ability to classify
various injury types, specially complete tears, significantly
enhances diagnostic workflows, potentially improving
clinical outcomes.
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