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Introduction
Cancer remains one of the most significant global health 
challenges, posing a substantial burden on healthcare 
systems and patients worldwide.1 Despite extensive 
research and advancements in treatment modalities, 
cancer remains a leading cause of mortality globally.2 
Among the various therapeutic strategies available, 
chemotherapy has remained the primary method for 
cancer treatment. Chemotherapy employs cytotoxic drugs 
to eliminate rapidly dividing cancer cells and inhibits 
cancer progression.3 However, traditional chemotherapy 
administration, predominantly through intravenous 
routes, presents several limitations that impact patient 

outcomes and quality of life.4

Intravenous (IV) chemotherapy, though effective in 
delivering drugs directly into the bloodstream, requires 
frequent hospital visits, invasive procedures, and strict 
medical supervision. This increases healthcare costs and 
imposes considerable physical and emotional stress on 
patients.5,6 Furthermore, intravenous administration 
often leads to non-specific drug distribution, which can 
result in severe side effects such as myelosuppression, 
gastrointestinal disturbances, alopecia, and organ 
damage.7,8 These adverse effects substantially reduce 
patient adherence to treatment regimens that ultimately 
affect the therapeutic outcomes.9
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Abstract
Oral chemotherapy offers 
an attractive alternative to 
conventional intravenous 
administration by providing high 
patient compliance and improved 
treatment adherence. However, 
several challenges, like poor drug 
solubility, enzymatic degradation, 
and extensive first-pass 
metabolism, have significantly 
limited the oral bioavailability 
of chemotherapeutic agents. 
Recently, polymeric nanoparticles 
(PNPs) have become an alternative strategy to overcome these challenges and revolutionize the 
oral chemotherapeutic approach. PNPs offer unique advantages, including drug protection from 
harsh gastrointestinal conditions, controlled release profiles, and enhanced mucosal adhesion, 
which collectively improve drug absorption and therapeutic efficacy. Additionally, surface-
modified PNPs can bypass efflux transporters such as P-glycoprotein and promote receptor-
mediated endocytosis to achieve targeted delivery and minimize systemic toxicity. While these 
advancements highlight the transformative potential of PNPs in oral chemotherapy, potential 
clinical challenges such as scalability, reproducibility, and regulatory hurdles must be addressed 
to enable successful clinical translation. The present review comprehensively explores the role of 
PNPs in enhancing the oral delivery of cancer therapeutics, emphasizing strategies to improve 
drug stability, prolong gastrointestinal retention, and facilitate efficient cellular uptake. The 
advancements discussed herein underscore the transformative potential of PNPs as a pivotal 
approach for improving oral chemotherapy outcomes and expanding therapeutic possibilities in 
cancer management.
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Oral chemotherapy has emerged as a promising 
alternative that offers numerous advantages over 
traditional intravenous administration. Oral 
administration enhances patient comfort by eliminating 
the need for invasive procedures, which reduces hospital 
visits and treatment-related stress. Additionally, oral 
chemotherapy facilitates long-term treatment regimens, 
which are particularly helpful in managing chronic 
cancers that require prolonged maintenance therapy. 
Improved patient adherence can come from better 
convenience and self-administration that further 
supports the potential of oral chemotherapy to improve 
clinical outcomes.10,11 However, it is crucial to emphasize 
that patient acceptance plays a pivotal role in the success 
of oral chemotherapy. Even if oral delivery achieves 
100% bioavailability, the approach remains systemic in 
nature, and therapeutic efficacy will only improve if the 
encapsulated drug successfully enters systemic circulation 
and reaches the tumor site.12,13 Without targeted delivery, 
oral administration may not necessarily reduce off-target 
effects or enhance treatment outcomes. Despite these 
advantages, the oral route for chemotherapy delivery 
faces considerable challenges that limit its widespread 
application. Many chemotherapeutic agents exhibit 
poor aqueous solubility, which impairs their dissolution 
and absorption in the gastrointestinal tract (GIT).14 
Furthermore, some drugs, after oral administration, often 
encounter significant enzymatic degradation in the GIT, 
which reduces their stability and bioavailability.15 The 
presence of efflux transporters such as P-glycoprotein 
(P-gp) and metabolic enzymes like cytochrome P450 
enzymes reduces the drug absorption from the GIT.16 
Additionally, the oral route is associated with hepatic 
first-pass metabolism, where drugs undergo extensive 
metabolic degradation in the liver before reaching the 
bloodstream, which further reduces their bioavailability 
and therapeutic efficacy.17 As a result, innovative strategies 
are required that can circumvent biopharmaceutical 
challenges.

Nanoparticles (NPs) have emerged as promising tools 
in pharmacology and medicine that enable targeted and 
efficient drug delivery. Their nanoscale size, high surface 
area, and tunable surface properties allow for improved 
drug stability, controlled release, and improved tissue 
distribution.18,19 Over the last three decades, various types 
of NPs have been explored for drug delivery applications. 
Among these, polymeric nanoparticles (PNPs), whether 
derived from natural or synthetic polymers, offer unique 
advantages such as biodegradability, biocompatibility, 
ease of functionalization, and the ability to modulate drug 
release profiles. 

PNPs have shown promise as a viable strategy to 
circumvent these challenges and revolutionize oral 
chemotherapy. PNPs are nanoscale carriers composed 
of biodegradable and biocompatible polymers capable 

of encapsulating chemotherapeutic agents within their 
polymeric matrix. The encapsulation of chemotherapeutic 
drugs in the polymeric matrix protects the entrapped 
drugs from the harsh gastrointestinal (GI) environment, 
prevents their premature degradation, and enhances 
their stability.20 Furthermore, PNPs can be engineered to 
improve drug solubility, facilitate controlled drug release, 
and enhance mucosal adhesion, all of which promote 
better drug absorption from the GIT. A high surface-to-
volume ratio due to the nanometric size of PNPs further 
improves their potential to traverse the mucosal barrier 
and enhance drug absorption, thereby improving oral 
bioavailability.21,22 Furthermore, the surface of PNPs 
can be engineered with PEG or targeting ligands that 
can inhibit efflux transporters like P-gp, and increase 
intracellular trafficking by receptor-mediated endocytosis 
that ultimately results in enhanced therapeutic outcomes 
with reduced systemic cytotoxicity.23,24

This article aims to deliver a holistic perspective on the 
role of PNPs in revolutionizing the oral delivery of cancer 
therapeutics. It will highlight different types of PNPs 
for oral chemotherapy, explore their mechanisms for 
overcoming biological as well as pharmaceutical barriers, 
and discuss their ability to enhance drug stability, oral 
bioavailability, and therapeutic outcomes. By delving into 
these fundamental aspects, this review strives to elucidate 
the significance of oral PNPs as a transformative approach 
for improved therapeutic outcomes with reduced systemic 
toxicity.

Pharmacokinetic journey of orally administered drugs
The journey of an orally administered drug begins in the 
mouth and follows a well-established pathway described 
by the ADME process: Absorption, Distribution, 
Metabolism, and Excretion.25 This pathway determines the 
drug’s pharmacokinetic profile, which in turn influences 
its therapeutic effectiveness. A general pharmacokinetic 
journey of the drug after oral administration is 
diagrammatically illustrated in Fig. 1. After ingestion, 
the drug must first dissolve in the fluids of the GI 
tract to be absorbed. This typically occurs in the small 
intestine, which has a large surface area and a rich blood 
supply, which makes it the primary site for absorption.26 
The drug crosses the intestinal wall either by passive 
diffusion (moving from high to low concentration) or 
active transport (requiring energy and specific transport 
proteins).27 Once absorbed, the drug enters the portal 
circulation and is transported directly to the liver, where 
it may undergo first-pass metabolism. This process can 
significantly reduce the amount of active drug reaching 
the rest of the body.28 After passing through the liver, the 
drug enters the systemic circulation and is distributed 
throughout the body to various tissues and organs.29 
The extent of distribution depends on factors such as 
blood flow, how easily the drug can pass through tissue 
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barriers (permeability), and how much of the drug binds 
to proteins in the blood.30 Next, the drug is metabolized, 
primarily in the liver, through phase I (modification) and 
phase II (conjugation) reactions. These chemical changes 
are carried out by enzymes, most notably those from the 
cytochrome P450 family, and can convert the drug into 
either active or inactive forms.31,32 Finally, the drug and its 
metabolites are excreted from the body. The kidneys play a 
major role, filtering the blood and eliminating substances 
through urine. Other excretion routes include bile 
(from the liver to the intestines), the lungs (exhalation), 
and secretions such as sweat or saliva.33 Together, these 
processes determine the drug’s bioavailability (how much 
of it reaches the bloodstream), half-life (how long it stays 
in the body), and overall therapeutic effect. 

Advantages and limitations of the oral route
The major advantages of the oral route include improved 
patient convenience, non-invasiveness, and the potential 
for self-administration. This approach eliminates the need 
for healthcare supervision during drug administration 
and reduces the frequency of hospital visits and medical 
expenses.34 Oral drug delivery systems are typically easier 
to formulate, manufacture, and distribute, making them 
economically viable and scalable.35 Furthermore, oral 
formulations offer diverse dosage forms such as tablets, 
capsules, syrups, and suspensions, catering to various 
patient populations, including pediatric and geriatric 
patients. Additionally, oral drug delivery mimics the 
natural process of nutrient absorption in the intestine, 
making it an intuitive and adaptable method for patients.36

Despite its numerous benefits, the oral route is 

associated with several limitations that restrict its 
universal applicability, especially for certain classes of 
drugs such as chemotherapeutic agents. One major 
limitation is the extensive first-pass metabolism that 
occurs primarily in the liver. Enzymatic degradation in 
the GIT further limits the bioavailability of susceptible 
molecules.37 Another critical challenge with oral drug 
delivery is the variability in absorption. Factors such as 
gastric pH, food intake, GI motility, and the presence of 
bile salts can significantly impact drug dissolution and 
absorption profiles.38 Certain classes of drugs, especially 
BCS class II and IV drugs, face poor solubility and 
permeability issues that hinder their absorption across 
the intestinal epithelium.39 Some drugs, particularly 
chemotherapeutic agents, possess inherent cytotoxicity 
that can damage the delicate GI lining, which may lead to 
undesirable effects, including nausea, vomiting, diarrhea, 
and mucositis.40 Furthermore, drug efflux mechanisms 
such as the P-gp transporter significantly reduce the 
intracellular accumulation of certain anticancer drugs, 
which further limits their oral bioavailability.41 The 
presence of tight junctions in the intestinal epithelium 
also restricts the paracellular transport of macromolecules 
and hydrophilic drugs.42 Therefore, there is a need to 
address these challenges by developing novel approaches. 
PNPs offer a compelling strategy for oral chemotherapy 
to achieve better therapeutic outcomes.

Importance of the oral route over intravenous 
administration
Traditionally, IV administration has been the 
predominant route for delivering chemotherapeutic 

Fig. 1. A diagrammatic illustration of the general pharmacokinetic journey of the drug upon administration via the oral route. Created in BioRender. Rizwanullah 
M. (2025). https://BioRender.com/r80x564.

https://BioRender.com/r80x564
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agents due to its ability to achieve rapid and complete 
systemic drug availability. However, in recent years, there 
has been a significant paradigm shift towards the oral 
administration of anticancer drugs. This shift is primarily 
driven by patient-centered considerations, improved drug 
formulations, and evolving healthcare delivery models. 
Currently, more than 80 oral chemotherapeutic agents 
have received regulatory approval in the United States 
and Europe for clinical use, highlighting the growing 
acceptance and application of this route in oncology.43

One of the most compelling advantages of oral 
chemotherapy is the convenience it offers to patients. 
Unlike IV therapy, which typically necessitates hospital 
visits, infusion facilities, and trained healthcare personnel, 
oral chemotherapy can often be self-administered at 
home. This enables outpatient treatment and reduces the 
burden on healthcare infrastructure, including hospital 
admissions and infusion-related resource utilization. 
Consequently, this approach not only enhances patient 
autonomy but also significantly lowers overall treatment 
costs by minimizing the need for hospitalization, medical 
personnel, and infusion equipment.44 From a clinical 
perspective, oral chemotherapy provides the potential 
for prolonged drug exposure, which is critical for drugs 
exhibiting time-dependent pharmacodynamics.45 
Continuous oral administration may achieve 
pharmacokinetic profiles comparable to or even better 
than intermittent IV infusions for drugs with short 
half-lives, thereby potentially improving therapeutic 
outcomes.46 Moreover, several studies have indicated that 
patients generally prefer oral therapy over IV therapy 
due to its non-invasive nature, avoidance of venous 
catheterization, and the psychological comfort associated 
with home-based treatment.47 

Patient compliance is a critical determinant of oral 
chemotherapy efficacy, as non-adherence can lead 
to suboptimal dose intensity, therapeutic failure, and 
emergence of resistance. Therefore, oral therapy must 
be accompanied by appropriate patient education, 
monitoring strategies, and adherence-support systems 
to ensure successful outcomes. Furthermore, for oral 
chemotherapy to be clinically viable, its safety and 
efficacy must be at least equivalent to conventional IV 
formulations.48 When these conditions are met, oral 
therapy has been shown to offer comparable tumor 
control with improved patient quality of life and reduced 
treatment-related fatigue and stress. Overall, the oral 
route offers a convenient, cost-effective, and patient-
preferred alternative to IV chemotherapy.49

Overview of PNPs for oral chemotherapy
Over the previous two decades, PNPs have evolved into 
a promising strategy for oral chemotherapy owing to 
their unique physicochemical characteristics. PNPs are 
nanoscale colloidal systems fabricated from biodegradable 

and biocompatible polymers such as poly(lactic-co-
glycolic acid) (PLGA), chitosan, polycaprolactone 
(PCL), and eudragit.50 PNPs enable improved drug 
solubility, stability, sustained drug release, and enhanced 
bioavailability. The selection of polymers is critical as it 
directly influences the stability of the PNPs, encapsulation 
efficiency, and release kinetics.51 PNPs are engineered 
to safeguard chemotherapeutic agents from the harsh 
GI milieu and facilitate drug absorption through the 
intestinal epithelium. By encapsulating lipophilic 
chemotherapeutics within the polymer matrix, PNPs can 
increase the solubility in the GI milieu of these drugs and 
enhance their dissolution rate and subsequent absorption 
from the intestine. Furthermore, PNPs offer protection 
against enzymatic degradation in the GIT, particularly 
for drugs susceptible to hydrolysis or oxidation. The 
polymer matrix serves as a protective barrier and ensures 
the structural integrity of the chemotherapeutic drugs 
until they reach the site of absorption.52,53 Another crucial 
advantage of PNPs is their ability to promote mucoadhesion 
and enhance permeation across the intestinal epithelium. 
Polymers such as chitosan, known for their cationic 
nature, can interact with negatively charged mucosal 
surfaces and prolong the residence time of PNPs in the 
GIT.54 Controlled and sustained drug release is another 
significant advantage of PNPs in oral chemotherapy. By 
tuning the polymer composition, molecular weight, and 
cross-linking density, PNPs can be fabricated to provide 
prolonged drug release and ensure a sustained therapeutic 
drug concentration in the bloodstream. This controlled 
release reduces dosing frequency, thereby enhancing 
patient adherence and mitigating the risk of adverse 
effects linked to plasma drug level fluctuations.55,56 The 
ability of PNPs to inhibit P-gp transporter on intestinal 
epithelial cells further enhances oral bioavailability. 
Many chemotherapeutic agents are P-gp substrates, and 
the presence of P-gp on intestinal epithelial cells often 
limits their absorption. PNPs can effectively inhibit 
these efflux mechanisms by incorporating excipients like 
D-α-tocopheryl polyethylene glycol succinate (TPGS) or 
Pluronic block copolymers, which act as P-gp inhibitors.57 
Moreover, surface modification of PNPs by conjugating 
receptor-specific ligands can further increase intracellular 
trafficking via receptor-ligand interaction that results in 
improved drug accumulation in cancerous tissues and 
reduces off-target toxicity.58 Different mechanisms by 
which PNPs enhance bioavailability upon oral ingestion 
are diagrammatically illustrated in Fig. 2. 

Different types of PNPs for oral chemotherapy 
Different types of highly efficient PNPs for effective oral 
chemotherapy are discussed as follows. The different 
types of PNPs widely used for oral chemotherapy are 
diagrammatically illustrated in Fig. 3. 
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Nanospheres
Nanospheres are matrix-type PNPs in which the 
chemotherapeutic agent is uniformly dispersed 
throughout the polymer matrix. With a high drug-
loading capability, these systems facilitate prolonged drug 
release by controlling polymer degradation and diffusion 
mechanisms.59 The uniform dispersion of drugs within 
the polymeric matrix facilitates stable drug encapsulation, 
reducing premature drug degradation in the GIT and 
ensuring prolonged drug release. Nanospheres are 
particularly advantageous for poorly water-soluble drugs 
by improving their dissolution rates and enhancing oral 
absorption.60 Furthermore, the surface of nanospheres 
can be functionalized with targeting ligands for site-
specific drug delivery.61 This targeted approach minimizes 
systemic toxicity while improving therapeutic outcomes 
in cancer management. 

Nanocapsules 
These are vesicular polymeric systems with a core-shell 
structure in which the hydrophobic drug is confined within 
a liquid or polymeric core surrounded by a polymeric shell.62 
This core-shell architecture provides enhanced protection 
for encapsulated drugs against enzymatic degradation, acid 
hydrolysis, and bile salt-induced degradation in the GIT, 
ultimately improving oral bioavailability. Nanocapsules 
are particularly effective for lipophilic anticancer drugs 
that suffer from poor aqueous solubility and chemical 
instability.63,64 The polymeric shell, often composed 
of PLGA, polyethylene glycol (PEG), or chitosan, acts 
as a protective barrier and can be further engineered 
with targeting ligands to promote active targeting of 
cancer cells.65 Moreover, the surface functionalization of 
nanocapsules enhances mucoadhesion and improves drug 
absorption through different transport mechanisms.66

Fig. 2. Diagrammatic representation of the diverse mechanisms by which PNPs enhance the oral bioavailability of chemotherapeutics. (1) PNPs provide 
protection from the harsh GI environment that ensures drug stability. (2) Their small size offers a high surface area-to-volume ratio, which results in improved 
dissolution and absorption. (3) Controlled drug release from PNPs ensures sustained therapeutic drug levels. (4) PNPs protect drugs from digestive 
enzymes and improve drug stability. (5) PNPs disrupt tight junctions and promote paracellular transport. (6) Mucoadhesive PNPs interact with the mucus 
layer, extend residence time, and enhance absorption. (7) PNPs utilize M cells in Peyer’s patches to achieve lymphatic absorption and bypass the first-pass 
metabolism. (8) PNPs can inhibit P-gp efflux transporters, thereby reducing the drug efflux and improving intracellular drug retention. (9) Receptor-mediated 
endocytosis improves overall intracellular drug trafficking. Created in BioRender. Rizwanullah M. (2025). https://BioRender.com/n74p262.

https://BioRender.com/n74p262
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Dendrimers
These are highly branched, monodisperse PNPs 
characterized by a well-defined structure with multiple 
functional groups on their surface. This distinctive 
architecture enables the ability to control the size, shape, 
and surface functionality and offer higher loading 
capacity, stability, and targeted delivery.67 Dendrimers 
are extensively explored for oral chemotherapy owing to 
their potential to traverse the GI epithelium.68 The surface 
of dendrimers can be engineered with PEG, targeting 
ligands, or bioadhesive polymers to enhance mucosal 
adhesion, prolong intestinal residence time, and promote 
receptor-mediated endocytosis, thereby improving drug 
absorption and systemic availability.69,70 Their nanoscale 
size and tunable surface chemistry further enable precise 
drug release control through pH-sensitive or enzymatic 
degradation mechanisms.71

Polymeric micelles
These are self-assembled polymeric nanocarriers 
composed of amphiphilic block copolymers that possess 
lipophilic cores and hydrophilic shells. The hydrophobic 
core serves as a reservoir for lipophilic anticancer 
agents, while the hydrophilic corona stabilizes the 
micelle in aqueous environments and enhances systemic 
circulation.72,73 Polymeric micelles fabricated using 
copolymers such as polyethylene glycol-polycaprolactone 
(PEG-PCL) or polyethylene glycol-polylactic acid (PEG-
PLA) have shown remarkable potential in enhancing 
the oral absorption of chemotherapeutics by promoting 
lymphatic uptake and bypassing first-pass metabolism.74,75 
Their ability to incorporate P-gp inhibitors like TPGS 

further enhances oral bioavailability.76

Polymer-drug conjugates (PDCs)
PDCs are innovative nanosystems in which the 
chemotherapeutic agent is covalently linked to a polymer 
backbone via biodegradable linkers. This conjugation 
strategy enhances the pharmacokinetic stability of the 
drug, protects it from premature enzymatic degradation 
within the GIT, and facilitates controlled release at the 
target site.77,78 The tumor specificity of PDCs is primarily 
achieved through the rational design of stimulus-
responsive linkers that undergo cleavage in response 
to distinct physicochemical or enzymatic conditions 
prevalent in the tumor microenvironment.79,80 Acid-
sensitive linkers, such as hydrazone or cis-aconityl bonds, 
remain stable at physiological pH but are hydrolyzed 
in the mildly acidic conditions of tumor interstitium 
or intracellular endo/lysosomes.81 Similarly, enzyme-
sensitive linkers composed of peptide sequences are 
cleaved by overexpressed proteolytic enzymes such as 
cathepsins and matrix metalloproteinases, while disulfide 
bonds serve as redox-sensitive linkers that respond 
to elevated glutathione levels typically found in the 
intracellular milieu of cancer cells.82 These intelligent 
linker designs ensure that the active drug is selectively 
released at the tumor site, thereby minimizing systemic 
toxicity and improving therapeutic index. Compared 
to traditional chemotherapeutic formulations, PDCs 
offer several distinct advantages, including enhanced 
biopharmaceutical stability, prolonged systemic 
circulation, and significantly reduced off-target effects.83 
The site-specific release of the payload results in a high 

Fig. 3. Schematic illustration of different types of PNPs employed for oral chemotherapy. Created in BioRender. Rizwanullah M. (2025). https://BioRender.
com/o29i997.

https://BioRender.com/o29i997
https://BioRender.com/o29i997
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localized drug concentration at the tumor site, which can 
substantially enhance antitumor efficacy even at lower 
doses. Moreover, the polymer backbone can be engineered 
to enable sustained drug release, reduce dosing frequency, 
and improve patient adherence.84

Polymersomes
These are bilayered vesicular nanoparticles formed by the 
self-assembly of amphiphilic block copolymers, closely 
resembling liposomes but with improved stability and 
tunable properties. The hydrophobic bilayer membrane 
encapsulates hydrophobic therapeutics, while the aqueous 
core can encapsulate hydrophilic drugs, which enables 
simultaneous delivery of multiple therapeutics.85,86 
Polymersomes constructed from copolymers provide 
enhanced protection for encapsulated drugs against 
gastrointestinal degradation, improving oral absorption.87 
Additionally, polymersomes can be designed with 
pH-sensitive or redox-responsive elements to achieve 
controlled release at the target site. Surface modification 
with PEG or targeting ligands further enhances systemic 
circulation, cellular uptake, and tumor-targeted 
delivery.88,89 Polymersomes demonstrate significant 
potential for oral chemotherapy by improving drug 
stability, enhancing transmembrane permeability, and 
promoting receptor-mediated endocytosis that ultimately 
enhances the therapeutic outcomes with reduced off-
target toxicity.90,91

Further, a comparative analysis of different PNPs for 
oral chemotherapy is summarized in Table 1.

Different strategies to enhance the oral efficacy of 
chemotherapeutic drugs with PNPs
To enhance the oral bioavailability and therapeutic 
outcomes of chemotherapeutic drugs using PNPs, various 
strategies have been discussed. The subsequent section 
discusses different strategies to improve therapeutic 
outcomes on oral chemotherapy.

Increasing chemotherapeutic drug stability
Ensuring the GI stability of drugs and drug-loaded 
formulations is crucial to achieve better therapeutic 
outcomes in oral chemotherapy. PNPs can protect 
the encapsulated drug from harsh gastric conditions, 
enzymatic degradation, and hydrolysis, thereby 
preserving their therapeutic efficacy.104 Polymers such as 
PLGA, chitosan, and Eudragit are commonly employed 
due to their pH-responsive properties and ability to form 
protective matrices around the drug.105 Moreover, surface 
modification with PEG can improve stability by preventing 
nanoparticle aggregation and reducing premature drug 
release.106 For instance, Sorasitthiyanukarn et al developed 
fucoxanthin (FX)-loaded alginate/chitosan nanoparticles 
(FX-ALG/CS-NPs) that demonstrated improved stability 
in simulated GI conditions with a controlled release 

profile.107 FX bioaccessibility increased 2.7-fold, and FX-
ALG/CS-NPs retained 3 times more FX content under 
UV exposure than free FX. FX-ALG/CS-NPs reduced 
MDA-MB-231 cell viability by 19.5%, showing 2.3-fold 
greater efficacy than free FX. Sajomsang et al designed pH-
responsive N-benzyl-N, O-succinyl chitosan micelles for 
curcumin (CUR) delivery.108 These micelles maintained 
particle size below 200 nm for four months and showed 
minimal CUR release in SGF but significant release at 
pH 5.5-7.4. Cellular uptake studies demonstrated a 6-fold 
increase in intracellular CUR levels, while CUR-loaded 
micelles exhibited 4.7-, 3.6-, and 12.2-fold reduced IC50 
in HeLa, SiHa, and C33a cells, respectively. Apoptosis 
studies showed CUR-loaded micelles increased early 
apoptosis by 30-55% compared to free CUR. Ünal et al 
developed PNPs for oral camptothecin (CPT) delivery in 
colorectal cancer models.109 These CPT-PNPs improved 
intestinal permeability 2.7-fold. In vitro studies showed 
enhanced antiproliferative effects against CT-26 cells. 
In vivo results confirmed significant tumor reduction 
and reduced liver metastases in CT-26 tumor-bearing 
Balb/c mice. Biodistribution studies indicated targeted 
accumulation in tumor foci, supporting localized 
CRC treatment. Wang et al fabricated polydopamine 
nanoparticles (PDA-NPs) for oral delivery of gambogenic 
acid (GA).110 These nanoparticles demonstrated enhanced 
stability and biphasic release profiles. FA-GA-PNPs 
demonstrated higher intracellular trafficking in 4T1 
cells than unmodified PNPs. The IC50 value for FA-
GA-PNPs was 2.58 μM, significantly lower than free 
GA (7.57 μM). Cellular uptake studies using C6 dye 
showed stronger fluorescence intensity with FA-GA-
PNPs. In vivo pharmacokinetics in Sprague Dawley 
(SD) rats showed 2.97-fold improved oral bioavailability 
(Fig. 4A). In 4T1 tumor-bearing Balb/c mice, FA-GA-
PNPs showed significantly greater tumor suppression 
than the pure drug (Fig. 4B). Additionally, FA-GA-PNPs 
enhanced GA distribution in key organs such as the liver, 
lung, and kidney without noticeable toxicity. In another 
study, Alshehri et al fabricated chitosan-coated PLGA-
NPs for the oral delivery of thymoquinone (TQ-PNPs) 
to enhance its efficacy against breast cancer.111 The CS 
coating significantly improved GI stability and prolonged 
TQ release. The CS coating enhanced mucoadhesion and 
intestinal permeation, with TQ-PNPs demonstrating 
1.92- and 3.15-fold higher permeation than uncoated 
TQ-PNPs and TQ suspension, respectively. Further, 
TQ-PNPs demonstrated 1.89- and 1.72-fold lower IC50 
values than pure TQ in MDA-MB-231 and MCF-7 cells, 
respectively. These findings underscore the potential of 
PNPs in enhancing the stability and therapeutic efficacy 
of oral chemotherapeutics.

Prolonging residence time in the GIT
Prolonging the retention time in the is crucial for 
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enhancing oral drug delivery using PNPs. The extended 
residence in the GIT ensures that the drug-loaded 
PNPs have ample opportunity to interact with the 
intestinal epithelium and facilitates their transport into 
the lymphatic system or bloodstream.112 PNPs can be 
engineered with mucoadhesive materials, which allow 
them to adhere to the intestinal mucosa for extended 
periods. Polymers such as chitosan and carbopol are 
commonly employed for this purpose due to their 
bioadhesive nature. These polymers interact with mucins 
in the intestinal lining and form strong adhesive bonds 
that resist peristaltic movement and gastric emptying. This 
prolonged residence time enhances the drug absorption 

window and improves bioavailability.113,114 In this context, 
Antonio et al fabricated chitosan-modified PLGA-
NPs to improve the oral bioavailability of ursolic acid 
(UA).115 The CS coating improved stability in simulated 
GI fluids and enhanced mucoadhesion, sustaining drug 
release. The UA-CS-PNPs showed superior intracellular 
trafficking and cytotoxicity against B16-F10 and HEp-
2 cells. In vivo pharmacokinetic studies revealed UA-
CS-PNPs achieved a 4.14-fold higher half-life, 3.84-fold 
higher oral bioavailability, and 3.3-fold slower clearance 
than free UA. Lima et al fabricated CS-coated PLGA-NPs 
(FA-CS-PNPs) for better oral delivery of ferulic acid.116 
In vitro release studies displayed a biphasic profile with 

Fig. 4. Image showing (A) pharmacokinetic profiles of FA-GA-PNPs and pure GA and (B) in vivo therapeutic effect of developed formulation on (a) body 
weight, (b) tumor volume, (c) tumor weight, and (d) tumor morphology. Reprinted with permission from Wnag et al.110 Copyright (2025) American Chemical 
Society.

Table 1. Comparative analysis of different PNPs for oral chemotherapy

PNPs type Structural features Key advantages Limitations Reference

Nanospheres Solid matrix system with drug 
uniformly dispersed

High drug-loading capacity, simple design, 
sustained release, high transepithelial 
transport

Limited control over release 
kinetics, potential for burst 
release

92,93

Nanocapsules Core-shell structure with drug in 
the core and polymeric shell

Enhanced drug protection from GI 
degradation, controlled release, 
comparatively high bioavailability

Complex formulation, stability 
of the shell may affect the 
release profile

94,95

Dendrimers
Highly branched, monodisperse 
macromolecules with functional 
end groups

Precise control over size and surface, high 
drug payload, surface modifiability, excellent 
intracellular uptake, and receptor-mediated 
targeting

High production cost, potential 
toxicity if the surface is not 
modified

96,97

Polymeric 
Micelles

Amphiphilic block copolymers self-
assemble into a core-shell structure

Good solubilization of hydrophobic drugs, 
improved lymphatic uptake, potential for high 
oral absorption

Instability in dilute 
environments, possible 
premature disassembly

98,99

PDCs Drug covalently linked to polymer 
backbone via a cleavable linker

High stability, site-specific release, minimized 
systemic toxicity

Synthesis complexity; slower 
release may delay the onset 
of action

100,101

Polymersomes Bilayer vesicular structures formed 
by amphiphilic block copolymers

Dual drug loading (hydrophilic and lipophilic), 
excellent membrane stability, Efficient tumor 
targeting, and reduced off-target toxicity

Slow degradation, potential 
scale-up challenges

102,103
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15% FA released in SGF and minimal release in SIF. 
Further, the formulation revealed 27.7% FA release in 
phosphate buffer solution. FA-CS-PNPs achieved 20% 
permeation in a Caco-2/HT29-MTX/Raji B co-culture 
model, significantly higher than uncoated NPs. FA-CS-
PNPs preserved FA’s antioxidant activity and showed 
comparable cytotoxicity to free FA against B16-F10 
and HeLa cells, with improved mucoadhesion and drug 
retention. Mehandole et al developed dasatinib-loaded 
mucoadhesive chitosan-based hybrid NPs (DAS-CS-
HNPs) for enhanced oral delivery against triple-negative 
breast cancer.117 DAS-CS-HNPs demonstrated sustained 
release over 48 hours, 10.27-fold greater mucus adhesion, 
and a 10-fold enhancement in permeability coefficient 
versus free DAS. In vitro studies in MDA-MB-231 
cells showed DAS-CS-HNPs reduced IC50 by 4.14-fold, 
increased ROS generation by 3.82-fold, and enhanced 
apoptosis by 2.10-fold. In vivo pharmacokinetics in Balb/c 
mice revealed a 5.08-fold increase in oral bioavailability. 
Toxicity studies confirmed improved safety profiles with 
no significant organ damage. In another study, Huang et 
al formulated SN38-loaded deoxycholic acid-grafted N'-
nonyl-trimethyl chitosan-based micelles (SN38-PMCs) 
for improved oral delivery and anticancer efficacy.118 In 
vitro studies showed sustained release with enhanced 
mucoadhesion and intestinal retention. SN38-PMCs 
exhibited 2.36-fold higher intestinal permeability than 
free SN38. In vivo pharmacokinetics in SD rats revealed 
a 2.99-fold improved oral bioavailability. In H22 tumor-
bearing mice, SN38-PMCs represented much higher 
tumor inhibition potential, while histological evaluation 
confirmed biocompatibility with no major toxicity in 
vital organs. Collectively, these studies highlight the 
significance of prolonging the GIT residence time of 
PNPs in enhancing oral bioavailability and therapeutic 
outcomes.

Enhancing transmembrane permeability
Poor transmembrane permeability is one of the major 
limiting factors behind poor therapeutic outcomes 
with oral chemotherapy. Enhancing transmembrane 
permeability is crucial in improving oral bioavailability, 
especially for chemotherapeutic drugs that exhibit limited 
permeability due to their (i) physicochemical properties 
and (ii) active efflux by the P-gp efflux pump.119,120

Inhibition of P-gp efflux pump
Inhibiting the P-gp efflux pump can significantly 
improve drug absorption. PNPs can incorporate P-gp 
inhibitors such as TPGS, Pluronic copolymers, or 
verapamil to block P-gp activity and reduce drug efflux.121 
TPGS, in particular, has demonstrated substantial 
efficiency in enhancing the intracellular trafficking of 
chemotherapeutic agents by inhibiting P-gp, which 
promotes transcellular transport.122 In a study, Jiang et 
al fabricated thiolated TPGS-based chitosan-modified 

PNPs for oral lung cancer chemotherapy using paclitaxel 
(PTX).123 The TPGS incorporation and thiolated chitosan 
modification improved mucoadhesion, intestinal 
permeation, and drug absorption. Cellular uptake studies 
in Caco-2 and A549 cells revealed 1.67-fold and 1.93-fold 
enhanced internalization for PTX-TPGS-CS-PNPs than 
unmodified PNPs, respectively (Fig. 5A). Cytotoxicity 
studies demonstrated superior efficacy with reduced IC50 
values compared to Taxol® (Fig. 5B). Ex vivo intestinal 
permeation studies confirmed enhanced PTX absorption 
due to improved mucoadhesion and P-gp inhibition 
(Fig. 5C). Chen et al fabricated multifunctional chitosan 
polymeric micelles (PTX-PMCs) for oral PTX delivery.124 
The GA-CS-TPGS copolymer, synthesized by combining 
chitosan (CS), gallic acid (GA), and TPGS, improved 
mucoadhesion, inhibited P-gp efflux, and reduced CYP3A-
mediated metabolism. In vitro studies showed enhanced 
mucoadhesion (692.5 µg mucin adsorption/mg micelles) 
and increased PTX permeability compared to PTX alone. 
CYP3A inhibition by PTX-PMCs reached 89.94% at the 
highest concentration. Pharmacokinetic studies in SD 
rats showed PTX-PMCs improved bioavailability by 3.8-
fold over Taxol®, with a higher Cmax and extended Tmax. In 
vivo, PTX-PMCs significantly reduced tumor volume and 
weight compared to Taxol®. Overall, incorporating P-gp 
inhibitors in PNPs is a promising strategy to improve drug 
absorption and therapeutic efficacy of chemotherapeutics.
Targeting intestinal epithelial receptors/transporters
Targeting intestinal epithelial receptors and transporters 
with PNPs can enhance drug uptake through active 
transport mechanisms.125 PNPs can be engineered with 
receptor-specific ligands such as biotin, transferrin, or 
RGD peptides, which bind to corresponding receptors 
or transporters on the intestinal epithelium. Engineered 
PNPs facilitate receptor-mediated endocytosis and can 
enhance cellular uptake of PNPs and the subsequent 
release of chemotherapeutic drugs into the systemic 
circulation.126,127 In this context, Lin et al developed 
PTX-loaded biotin-PEG-biotin (BPB) conjugated TPGS-
modified carboxymethyl chitosan-rhein-based mixed 
micelles aimed to achieve improved oral bioavailability 
and breast cancer treatment.128 Mucoadhesion and 
permeation studies showed over 3-fold improved PTX 
absorption via biotin receptor-mediated endocytosis. 
Targeted PTX-PMCs exhibited significantly higher 
uptake in Caco-2 and 4T1 cells than non-targeted PTX-
PMCs or pure PTX. Cytotoxicity studies revealed targeted 
PTX-PMCs were 4.65- and 1.98-fold more potent than 
non-targeted PTX-PMCs in Caco-2 and 4T1 cells, 
respectively. Pharmacokinetic studies in SD rats showed 
8.92-fold higher PTX bioavailability versus Taxol®. In 
4T1 tumor-bearing Balb/c mice, targeted PTX-PMCs 
achieved superior tumor accumulation and enhanced 
antitumor efficacy compared to non-targeted PTX-PMCs 
and Taxol®.
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Co-delivery of multiple drugs using PNPs for oral 
chemotherapy
The co-delivery of multiple drugs via PNPs offers 
a promising strategy to improve the efficacy of oral 
chemotherapy. PNPs serve as highly adaptable carriers 
that can encapsulate both hydrophilic and lipophilic 
drugs and enable synergistic activity with improved 
therapeutic outcomes and overcome multidrug resistance 
(MDR).129,130 The PNPs ensure controlled drug release, 
enhanced stability, and better mucoadhesive properties. 
Upon oral administration, PNPs navigate the harsh GI 
milieu and protect the drugs from premature degradation. 
Upon reaching the small intestine, pH-responsive 
polymers trigger drug release in the alkaline environment 
and improve absorption. Additionally, the bioadhesive 
nature of PNPs prolongs their interaction with epithelial 
cells and facilitates both paracellular and transcellular drug 
transport for improved bioavailability and therapeutic 
efficiency.131 In a study, Jamil et al developed gemcitabine 
(GM) and simvastatin (SV) co-loaded PLGA-based NPs 
(GM/SV-PNPs) for pancreatic cancer.132 Cytotoxicity 
studies in MIA PaCa-2 cells revealed superior efficacy for 
GM/SV-PNPs (IC50: 2.9 µM) compared to GM (4.6 µM) 
and SV (21.4 µM) alone. Flow cytometry confirmed higher 
cellular uptake, while pharmacokinetic studies in Wistar 
rats showed 1.4- and 1.3-fold improved bioavailability 

for GM and SV, respectively. Katiyar et al developed 
rapamycin (RPM) and piperine (PIP) co-loaded PNPs 
(RPM/PIP-PNPs) for breast cancer.133 Ex vivo study 
showed a 5-fold increase in RPM uptake with PIP-PNPs. 
Cytotoxicity studies in MDA-MB-231 cells revealed 
enhanced efficacy (IC50: 11.39 µM vs. 20.35 µM for RPM 
solution). Pharmacokinetics in SD rats revealed 4.8- and 
3-fold improvements in bioavailability and plasma half-
life, respectively. Similarly, Dian et al fabricated docetaxel 
(DTX) and curcumin (CUR) co-loaded PMCs (DTX/CUR-
PMCs) using TPGS and Soluplus for drug-resistant breast 
cancer.134 DTX/CUR-PMCs revealed higher intracellular 
trafficking and cytotoxicity in MCF-7/Adr cells, achieving 
a ~55-fold increase in Rhodamine 123 uptake and the 
highest apoptosis rate (60.97 ± 3.14%) with elevated ROS 
levels. Pharmacokinetics in SD rats revealed a 5.95-fold 
increase in half-life, 5.29-fold higher mean retention time, 
and 5.74-fold enhanced bioavailability (Fig. 6A). In vivo, 
DTX/CUR-PMCs achieved tumor inhibition comparable 
to intravenous Taxotere® with improved safety profiles 
(Fig. 6B & 6C). Overall, co-delivery of multiple drugs via 
PNPs offers a versatile and effective strategy to improve 
oral chemotherapy outcomes.

Table 2 summarizes the key outcomes related to oral 
chemotherapy. 

Fig. 5. Image illustrating (A) CLSM images of Caco-2 cells after treatment with coumarin-6-loaded TPGS-CS-PNPs, (B) effect of PTX-TPGS-CS-PNPs 
against A549 cells at different time intervals, and (C) intestinal permeation of the developed PTX-TPGS-CS-PNPs. Adapted from Jiang et al123  under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0).

http://creativecommons.org/licenses/by/2.0
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Fig. 6. Image showing (A) pharmacokinetic profiles of DTX/CUR-PMCs and other formulations after oral administration, (B) in vivo therapeutic effects of DTX/
CUR-PMCs and other formulations in tumor-bearing mice, and (C) change in body weight of mice of different treatment groups via different routes. Adapted 
from Dian et al134 under the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/).

Associated challenges and outlook
PNPs have emerged as a promising solution to circumvent 
the limitations of conventional chemotherapy and show 
potential to revolutionize oral drug delivery in oncology. 
However, despite significant progress, multiple challenges 
hinder their clinical translation. One critical challenge lies 
in the complex and hostile GI environment. Harsh acidic 
gastric conditions, digestive enzymes, and variations 

in gastric emptying time can compromise the stability 
and integrity of orally administered PNPs.135,136 Effective 
strategies to stabilize PNPs under these conditions are 
essential to preserve drug efficacy. Surface modifications 
with PEG or pH-responsive polymers have demonstrated 
promise in enhancing stability across diverse patient 
physiologies.137

Another major barrier is the low oral bioavailability 

http://creativecommons.org/licenses/by-nc/3.0/
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Table 2. Different PNPs for improved oral efficacy against various cancers 

Drug 
encapsulated Main ingredients Pharmaceutical 

attributes Cancer type Major outcomes Ref.

Fucoxanthin Chitosan, alginate, 
tripolyphosphate

PS: 227 ± 23 nm
PDI: 0.31 ± 0.02
ZP: 35.3 ± 1.7 mV
EE: 81.2 ± 2.8%

Breast

•	 Better stability in GI fluids and 3 times improved 
photostability. 

•	 2.7-fold enhanced bioaccessibility and controlled release 
profile.

•	 2.3-fold enhanced cytotoxicity against MDA-MB-231 cells.

107

Curcumin N-benzyl-N,O-
succinyl chitosan 

PS: ~94 nm
PDI: ~0.085
ZP: −28.3 mV
EE: 38.3%

Non-specific

•	 Better stability in GI fluids and biphasic release profile.
•	 6-fold increase in intracellular trafficking in HeLa, SiHa, and 

C33a cells.
•	 4.7-, 3.6-, and 12.2-fold reduction in IC50 against HeLa, 

SiHa, and C33a cells.

108

Camptothecin Polycationic 
cyclodextrin

PS: 135 ± 19 nm
PDI: 0.27
ZP: + 40 ± 1 mV
EE: 35%

Colorectal

•	 Better stability and 2.7-folds improved intestinal 
permeation.

•	 Much better in vitro (CT-26 cells) and in vivo (orthotopic 
CT-26 colorectal cancer bearing Balb/c mice) anticancer 
activity.

•	 Much higher accumulation in the colon. 

109

Gambogenic 
acid 

Polydopamine, 
folic acid

PS: 185.3 ± 5.1 nm
PDI: 0.203 ± 0.06
ZP: −32.7 ± 1.2 mV
EE: 86.88%

Breast

•	 Better stability in GI fluids and controlled release profiles.
•	 Much higher intracellular trafficking and cytotoxicity 

against 4T1 cells.
•	 2.97-fold enhanced oral bioavailability on oral 

administration in SD rats.

110

Thymoquinone Chitosan, PLGA

PS: 152.3 ± 5.7 nm
PDI: 0.133 ± 0.014
ZP: + 12.2 ± 2.3 mV
EE: 77.56 ± 5.48%

Breast

•	 Better stability in GI fluids and higher mucoadhesion.
•	 3.15-fold higher intestinal permeation than the free drug.
•	 1.89- and 1.72-fold reduction in IC50 against MDA-MB-231 

and MCF-7 cells. 

111

Ursolic acid Chitosan, PLGA

PS: 329.3 ± 37.2 nm
PDI: 0.20 ± 0.05
ZP: + 27.8 ± 9.4 mV
EE: 97.47 ± 1.3%

Non-specific

•	 Much better stability in GI fluids, sustained release profile, 
and mucoadhesion.

•	 High intracellular trafficking and cytotoxicity against 
B16-F10 HEp-2 cells.

•	 4.14 and 3.84-fold improved plasma half-life and oral 
bioavailability.

115

Ferulic acid Chitosan, PLGA

PS: 242 ± 19 nm
PDI: 0.2 ± 0.03
ZP: + 32 ± 5 mV
EE: ~50%

Non-specific

•	 Higher mucoadhesion with biphasic release profiles.
•	 Much higher permeation against Caco-2/HT29-MTX/Raji B 

co-culture model.
•	 Comparable cytotoxicity against B16-F10 and HeLa cells. 

116

Dasatinib Chitosan, egg 
lecithin

PS: 179.7 ± 5.42 nm
PDI: 0.23 ± 0.01
ZP: + 36.4 ± 0.4 mV
EE: 64.65 ± 0.06%

Breast

•	 10.27-fold greater mucoadhesion and a 10-fold increase in 
intestinal permeability.

•	 4.14-fold reduction in IC50, 3.82-fold increased ROS 
generation, 2.10-fold enhanced apoptosis against MDA-
MB-231 cells.

•	 5.08-fold improved oral bioavailability and better safety in 
Balb/c mice. 

117

SN38 N'-nonyl-trimethyl 
chitosan

PS: 203.5 ± 1.75 nm
PDI: 0.192 ± 0.07
ZP: 26.25 ± 0.98 mV
EE: 73.46 ± 2.56%

Hepatocellular 
carcinoma

•	 Stronger mucoadhesion and sustained release profile.
•	 2.36-fold higher permeation in Caco-2 cells.
•	 2.99-fold improved oral bioavailability in SD rats.
•	 Significantly greater tumor inhibition in the H22 tumor-

bearing mouse model.

118

Paclitaxel Thiolated 
chitosan, TPGS

PS: 206.1 ± 3.66 nm
PDI: 0.286
ZP: + 24.66 mV
EE: 97.56%

Lung
•	 Improved mucoadhesion, intestinal permeation, and drug 

absorption by inhibiting the P-gp efflux transporter.
•	 Much better cytotoxicity against A549 cells.

123

Paclitaxel Chitosan, TPGS, 
gallic acid

PS: 134.9 ± 10.2 nm
PDI: 0.172 ± 0.13
ZP: 34.8 ± 1.3 mV
EE: 80 ± 3%

Lung

•	 Much higher mucoadhesion, permeability, and P-gp efflux 
inhibition.

•	 3.80-fold improved oral bioavailability in SD rats.
•	 Significant reduction in tumor volume in A549 lung tumor-

bearing mice. 

124

Paclitaxel Chitosan, biotin, 
TPGS, PEG

PS: 195.9 ± 7.63 nm
PDI: 0.08
ZP: ‒25.4 ± 1.47 mV
EE: 55.27 ± 6.62%

Breast

•	 Better mucoadhesion and 3-fold improved permeation in 
Caco-2 cells.

•	 Higher intracellular trafficking and cytotoxicity in 4T1 cells.
•	 8.92-fold improved oral bioavailability in SD rats.
•	 Much higher tumor accumulation and tumor volume 

reduction in 4T1 tumor-bearing Balb/c.

128



Mangu et al

   BioImpacts. 2025;15:31117 13

of chemotherapeutic drugs, primarily due to biological 
barriers such as efflux transporters (e.g., P-gp) and 
metabolic enzymes like cytochrome P450. Although 
excipients such as TPGS and Pluronic block copolymers 
have shown potential in overcoming efflux, further 
optimization and validation across varied patient 
groups are necessary to ensure robust and consistent 
absorption. Variability in intestinal physiology, including 
pH differences, mucus thickness, and enzyme activity, 
further complicates drug absorption and residence 
time. Mucoadhesive polymers such as chitosan have 
been utilized to enhance GI residence time. However, 
prolonged retention must be optimized to prevent local 
irritation or disruption of the epithelial barrier.138

Importantly, while reduced systemic toxicity is often 
emphasized, the potential toxicological effects of PNPs 
remain a major concern. Long-term exposure risks, 
organ accumulation, and immunogenicity due to the 
nature of polymeric materials or surface coatings require 
careful assessment. Studies have shown that certain 
biodegradable polymers may trigger immune responses 
or accumulate in reticuloendothelial organs like the liver 
and spleen.139 Dedicated toxicological evaluation using 
preclinical models is essential, including data on chronic 
toxicity, immunogenicity, and polymer degradation 
products. Moreover, potential local toxicities due to high 
local concentrations of cytotoxic drugs in the GI tract 
should be assessed, especially in regions with prolonged 
nanoparticle residence.

The manufacturing and industrial scalability of 
PNPs also presents considerable obstacles. Production 
challenges include achieving consistent particle size, 
high drug loading, and batch-to-batch reproducibility.140 
Techniques such as nanoprecipitation, emulsification, 
and spray drying have demonstrated feasibility; however, 
comparative evaluations of these methods in terms of 
cost-efficiency, drug loading capacity, and process yield 
are necessary. For instance, while nanoprecipitation 
offers simplicity and scalability, it may suffer from low 
drug encapsulation efficiency.141 Additionally, GMP 
(Good Manufacturing Practice) compliance, sourcing 
pharmaceutical-grade excipients, and polymer cost 
significantly impact commercial translation.142 From 
a regulatory perspective, the clinical approval of PNPs 
requires a comprehensive understanding of their 
pharmacokinetics, safety, and efficacy. Regulatory agencies 
such as the U.S. FDA and EMA have issued guidelines 
on NPs-based drug formulations, emphasizing the need 
for robust characterization, toxicity data, and evidence 
of therapeutic benefit over existing standards of care.143 
Regulatory approval pathways often involve additional 
scrutiny due to the complexity of nanomaterials, including 
their surface properties, interaction with biological 
systems, and long-term biocompatibility.144

Furthermore, interindividual variability remains 

a critical factor affecting therapeutic outcomes. 
Patient-specific factors such as age, gut microbiota 
composition, nutritional status, comorbidities, and 
genetic polymorphisms (e.g., in metabolizing enzymes 
or transporter proteins) can significantly influence 
the pharmacokinetics and pharmacodynamics.145 
Incorporating precision medicine approaches, such as 
pharmacogenomics and biomarker-guided therapy, may 
improve the efficacy and safety profile of PNP-based 
chemotherapy. Personalized nanomedicine is an emerging 
strategy wherein PNP formulations are tailored based on 
individual patient characteristics, such as genetic profile, 
disease stage, and metabolic status. Such approaches may 
enhance therapeutic precision, reduce off-target effects, 
and improve treatment adherence.146,147 Lastly, there is a 
need to integrate real-world data and clinical evidence to 
support the application of oral PNPs in oncology. While 
numerous preclinical studies exist, few clinical trials 
have fully validated the long-term safety, tolerability, 
and effectiveness of PNPs in cancer chemotherapy.148,149 
Examples of marketed products and clinical trials are 
represented in Table 3.

Conclusion
PNPs have revolutionized the landscape of oral 
chemotherapy by addressing critical biopharmaceutical 
challenges that hinder drug stability, absorption, and 
therapeutic efficacy. Through advanced engineering 
strategies, PNPs have demonstrated a remarkable ability 
to improve the bioavailability of anticancer drugs by 
enhancing GI stability, promoting mucoadhesion, 
bypassing hepatic first-pass metabolism, and inhibiting 
efflux transporters. Furthermore, functionalized PNPs 
enable targeted drug delivery, reduce systemic toxicity, 
and enhance therapeutic outcomes. Despite these 
advancements, the clinical translation of PNPs remains 
challenging due to concerns regarding large-scale 
production, batch-to-batch variability, and long-term 
safety. Future research should focus on refining PNPs 
formulations through personalized medicine approaches 
and integrating precision targeting strategies to maximize 
clinical success. By overcoming these challenges, PNPs 
have the potential to establish a new paradigm in oral 
chemotherapy.
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