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Introduction
Non-coding RNA
Non-coding RNA (ncRNA) refers to a class of RNA 
molecules that do not code for proteins.1 Previously 
dismissed as "junk DNA," ncRNAs have proven to be 
crucial players in gene regulation, cellular development, 
and disease progression. These molecules come into 
various forms, including microRNAs (miRNAs), long 
non-coding RNAs (lncRNAs), and small interfering RNAs 
(siRNAs), each with its distinct functions (Fig. 1). Long 
non-protein-coding RNAs > 200 nucleotides in length, 
some of which play crucial roles in a variety of biological 
processes such as promoter-specific gene regulation, 
epigenetic control of chromatin, X-chromosome 
inactivation, mRNA stability, and imprinting. Small 
ncRNAs are symbolized by a wide range of identified and 

recently discovered RNA species, with many being related 
to 5′ or 3′ regions of protein-coding genes. This class 
includes well-documented siRNAs, miRNAs, piRNAs, 
and others.2,3 

Nanomedicine: Developing healthcare at the nanoscale
Nanomedicine is the application of nanotechnology 
in the field of medicine. It involves the design, 
development, and use of nanoscale materials and devices 
for various healthcare purposes. Nanomedicine also 
holds great promise for improving patient outcomes 
and revolutionizing healthcare. To realize the impact of 
nanomedicine, it is desirable to understand the nanoscale. 
The nanoscale refers to dimensions ranging from 1 to 100 
nm, where one nanometer is equivalent to one billionth of 
a meter.5 At this scale, materials exhibit unique physical, 
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Abstract
In today's rapidly advancing field of medical 
research, non-coding RNA (ncRNA) and 
nanomedicine have emerged as promising 
areas of study for therapeutic and diagnostic 
approaches. ncRNAs, previously considered 
"junk DNA" and hence insignificant, are 
now being documented for their remarkably 
extraordinary regulatory roles in gene 
expression and various cellular processes. 
These molecules acquire various forms, 
comprising microRNAs (miRNAs), long 
non-coding RNAs (lncRNAs), and small interfering RNAs (siRNAs), each with its distinct 
functions. The enormous benefits of ncRNA therapies include ease of sequence design and 
creation, functional flexibility, charge and protection, and the opportunity for patient-specific 
management. Nanomedicine, on the other hand, combines nanotechnology and medicine 
through developing innovative solutions for disease treatment and diagnosis. This article provides 
an overview of the technical aspects and potential of commercializing the design and targeting 
of ncRNAs using nanocarriers and nano-delivery systems for miRNA delivery. Furthermore, 
the impact of nanomedicine on the healthcare industry, as well as its therapeutic and diagnostic 
applications, has been investigated. Overall, this study will provide insight into novel systems for 
the treatment and diagnosis of ncRNA.
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chemical, and biological properties that vary from their 
bulk complements. These properties consist of increased 
surface area, enhanced reactivity, and improved cellular 
interactions. Scientists can create innovative solutions 
for medical challenges by manipulating, using, and 
engineering materials at the nanoscale.6 

Nanomedicine has the potential to revolutionize 
healthcare by enabling precise drug delivery, imaging, 
and diagnostics at the molecular level. 

Quantitative real-time PCR (qRT-PCR), digital 
droplet PCR (ddPCR), RNA, and sequencing (RNA 
seq) are common ways to investigate ncRNA potential 
biomarkers.7 By applying different materials and devices 
at the nanoscale, nanomedicine can offer innovative 
solutions for targeted treatments with reduced side 
effects and better-quality therapeutic outcomes.8 For 
this purpose, nano-sensors/biosensors (Fig. 2), and 
nanoparticles (NPs) as nanocarriers are some of the main 
fields that play significant roles in the nanomedicine 
scope.9 Multi-functionalized NPs and nano-based sensors 

have been developed by targeted action via binding 
specified ligands to target the tissues for the diagnosis and 
treatment of cancer.10 

Regulatory roles of microRNAs and nanocarriers
miRNA, a type of small non-coding RNA, regulates 
gene expression by binding to target messenger RNAs 
(mRNAs) and either inhibiting their translation or 
promoting their degradation. They play key roles in 
cellular processes such as development, differentiation, 
and apoptosis. 2 Furthermore, dysregulation of specific 
miRNAs has been linked to various diseases, including 
cancer, cardiovascular disorders, and neurodegenerative 
conditions.3 

It is believed that among ncRNA, miRNA can be 
effectively applied for cancer treatment, as well as 
for many other purposes. For this purpose, miRNA-
nanocarriers are engineered to deliver miRNA molecules 
to specific cellular targets with unparalleled precision. In 
cancer treatment, for example, these nanocarriers can 

Fig. 1. The different classification of ncRNA: Function and their regulatory role

Fig. 2. Enhancement of lncRNA detection by using functionalized NPs.
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deliver miRNAs that prevent tumor growth while sparing 
healthy tissues. 

There are five major nano-delivery systems groups 
for miRNA delivery. (1) miRNAs can be chemically 
conjugated to nucleic acid/protein NPs such as antibodies, 
aptamers, and pRNA to support delivery. (2) Inorganic 
NPs are a novel delivery system with a small size of about 
1-70 nm. (3) Cell-derived membrane nanocarriers can 
also be utilized up to 200 nm in size. (4) Lipid-based 
delivery systems are popular due to their high gene 
transfection efficiency. (5) Polymers are another efficient 
delivery strategy with their large size compared to other 
systems (up to 500 nm) (Fig. 3). It is believed that by 
tailoring treatment regimens based on an individual's 
miRNA profile, healthcare providers can improve therapy 
outcomes, minimize adverse effects, and enhance overall 
patient care.

Diagnostic and therapeutic applications of ncRNA
Although no pure ncRNA therapeutics are yet fully 
FDA-approved, RNA-targeting therapies are approved; 
none are classic "non-coding" RNAs, such as miRNAs 
or lncRNAs, used directly as drugs. Approved agents are 
primarily synthetic antisense oligonucleotides (ASOs) 
and siRNAs designed to target specific mRNAs. Multiple 
siRNA drugs are now FDA-approved, representing the 
most mature class of therapeutic ncRNAs. Several ASO 
drugs are approved, targeting non-coding regions or 

mechanisms involving ncRNAs.11 
Hence, the unique characteristics and regulatory 

capabilities of ncRNA make them valuable targets for 
diagnostic and therapeutic interventions, particularly in 
cancer (Table 1). 

Researchers have explored the use of ncRNAs as 
biomarkers for disease detection and prognosis.53 ncRNA-
therapies can also provide enormous benefits, including 
ease of sequence design and creation, functional flexibility, 
charge and protection, and the opportunity for patient-
specific management.54 In addition, ncRNAs can facilitate 
the conversion of proteins into the cellular cytoplasm 
without requiring nuclear entry, and are not expected 
to interact with the host genome, therefore verifying the 
safety of these treatments.55

By analyzing the expression profiles of specific 
ncRNAs, healthcare professionals can gain insights into 
disease states and tailor treatment strategies accordingly. 
Additionally, the therapeutic potential of ncRNA lies in 
its ability to regulate gene expression. 

Small non-coding RNAs regulate gene expression post-
transcriptionally, typically by binding to target mRNAs 
with partial complementarity, leading to mRNA cleavage 
or inhibition of protein synthesis. The outcome depends 
on the degree of complementarity between the siRNA/
miRNA and its target. Perfect complementarity induces 
endonucleolytic cleavage of the mRNA. In contrast, 
imperfect pairing is more common in mammals, results 

Fig. 3. Schematic illustration of nanocarriers for miRNA delivery.
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in translational repression. This occurs either through 
disruption of the translational machinery (leading to 
truncated proteins) or by sequestering mRNAs into 
cytoplasmic P-bodies. Within P-bodies, mRNAs may 
undergo degradation by exonucleases or deadenylation 
by poly(A)-specific nucleases.56

The ability to regulate miRNA expression in vivo 
holds promise as a foundation for developing novel 
therapies. Several strategies have already been established 
to modulate miRNA levels. To increase miRNA activity, 
researchers can employ: (i) miRNA mimics, (ii) small 
synthetic double-stranded molecules that are processed 
into functional miRNAs, (iii) miRNA expression vectors to 
induce cellular miRNA production, or (iv) direct delivery 
of mature miRNAs. Conversely, to suppress miRNA 
activity, antagomirs and miRNA sponges synthetic 
sequences complementary to target miRNAs can be used 
to block their interaction with endogenous mRNA. Given 
that miRNAs play key roles in cancer-related processes 
such as cell proliferation, apoptosis, differentiation, 
invasion, metastasis, and tumorigenesis, these regulatory 
approaches may offer significant therapeutic potential.57

Like miRNAs, siRNAs act as post-transcriptional 
regulators and have been investigated for their therapeutic 
potential in various diseases, including cancer, hepatitis, 
and metabolic and genetic disorders. In recent years, 
siRNAs have garnered significant attention due to their 

potential clinical applications. Several miRNA- and 
siRNA-based therapies are currently under evaluation in 
clinical trials, and three Food and Drug Administration 
(FDA) approved RNA interference (RNAi) drugs based on 
siRNA are available for targeting primary hyperoxaluria 
type 1, acute hepatic porphyria, and transthyretin-
mediated amyloidosis.56 Hence, diagnostic applications 
of small non-coding RNAs, such as miRNAs, which 
are stable in biofluids (blood, saliva, urine) and serve as 
non-invasive biomarkers for various cancers, including 
glioblastoma (e.g., miR-21) and breast cancer (e.g., miR-
155). siRNAs are also used in liquid biopsies for detecting 
oncogenic mutations. piRNAs, though less studied, 
show promise in early-stage cancer detection (e.g., piR-
823 in colorectal cancer). Therapeutic applications are 
a significant feature of ncRNA, where miRNA mimics 
(e.g., miR-34a) and antagomirs (anti-miRs) are utilized 
in clinical trials for cancer and cardiovascular diseases, 
respectively. Furthermore, siRNA-based drugs (e.g., 
Patisiran for amyloidosis) were used to leverage RNAi to 
silence disease-causing genes.58

Understanding tRNA modifications as medium 
ncRNAs is highly significant because even minor 
disruptions in this balance, such as the absence of a single 
tRNA, can lead to tissue degeneration or death. Recent 
studies have shown that tRNA expression can be post-
transcriptionally regulated by microRNAs (miRNAs). 

Table 1. Summary of evaluating ncRNA as biomarkers for cancer

ncRNA Associated cancer Application Ref.

H19 (lncRNAs) Gastric cancer Diagnostic, prognostic 12,13

let-7 Lung cancer Diagnostic, prognostic 14,15

circHIPK3 Liver & colorectal cancer Diagnostic, prognostic, therapeutic target 16,17

HOTAIR (lncRNA) Breast & colorectal cancers Diagnostic, prognostic, diagnose metastasis 18-23

MALAT1 (lncRNA) Lung & breast cancers Diagnostic, prognostic, diagnose metastasis 24,25

lncRNA GAS5 Breast & prostate cancer Diagnostic, prognostic, therapeutic target 26,27

lncRNA PCA3 Prostate cancer Diagnostic, prognostic 28,29

circPVT1 Gastric & colorectal cancer Diagnostic, prognostic 18,30-32

lncRNA SChLAP1 Prostate cancer Diagnostic, prognostic, diagnose metastasis 33, 34

piRNAs Various cancers Diagnostic, prognostic 35,36

miR-21 Various cancers Diagnostic, prognostic, therapeutic target 37,38

miR-155 Breast Cancer & esophageal squamous cell carcinoma Diagnostic, prognostic 39-42

miR-34a Prostate, lung & breast cancers Diagnostic, prognostic, therapeutic target 43-46

miR-125b Breast & ovarian cancer Diagnostic, prognostic, therapeutic target 47-52

miR-15b
miR-21 Colorectal cancer Diagnostic NCT06738225

miR-20a Gastric cancer Diagnostic NCT05901376

miR-21 Gastric cancer Diagnostic NCT05901376

miR-106b Gastric cancer Diagnostic NCT05901376

miR-199a Gastric cancer Diagnostic NCT05901376

miR-22 Gastric cancer Diagnostic NCT05901376

Sha-miR-71a Bilharzial BlC Diagnostic, prognostic NCT05697224
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Additionally, dysregulation in tRNA expression, 
misacylation by aminoacyl-tRNA synthetases, and 
tRNA hypomodification can all impact gene expression, 
potentially contributing to diseases such as cancer, 
neurodegenerative disorders, and metabolic conditions. 
Given that aberrant tRNA levels can modulate gene 
expression, deciphering the mechanisms controlling tRNA 
expression and the consequences of its dysregulation is 
crucial. Unraveling these processes could pave the way 
for novel therapeutic strategies, enabling targeted and 
personalized treatments for various diseases. 59

Small RNAs derived from tRNAs have garnered 
significant interest as potential biomarkers. Several studies 
have identified circulating tRNA-derived fragments 
(tRFs) as diagnostic tools for various diseases, including 
epilepsy, clear cell renal cell carcinoma, and gastric cancer 
(GC). In line with these findings, Wang et al observed 
significantly reduced plasma levels of specific tRFs—tRF-
GluCTC-003, tRF-GlyCCC-007, tRF-GlyCCC-008, tRF-
LeuCAA-003, tRF-SerTGA-001, and tRF-SerTGA-002—
in patients with early breast cancer (EBC).60

The authors proposed that these 5′-derived tRFs could 
serve as potential biomarkers for the in situ diagnosis 
of EBC, though further validation with a larger sample 
size is required. In this line, Zhang et al. reported that 
tRF-3019a is overexpressed in GC and directly targets 
the tumor suppressor gene FBXO47 (F-box protein 47). 
Their findings revealed that tRF-3019a promotes GC 
malignancy by suppressing FBXO47, highlighting its 
critical role in GC progression. These results suggest 
that tRF-3019a may function as an oncogenic factor, 
positioning it as a promising diagnostic biomarker or 
therapeutic target for GC.61 Beyond GC-associated tRFs, 
Green et al also observed a significant downregulation 
of tRF-3003a in osteoarthritic cartilage, implicating its 
potential role in osteoarthritis (OA).56,62

Dysregulation of rRNA biogenesis kinetics, for 
example, in breast cancer (BC), is linked to elevated 
levels of intermediate rRNA species that are less efficient 
in mRNA translation. Recent studies suggest a silencing 
mechanism that inhibits pre-rRNA expression when 
rRNA processing is defective. Notably, ribosomes 
exhibit structural and functional heterogeneity, and 
their varying affinities for different mRNAs represent 
an emerging mechanism of translational control in gene 
expression. However, rRNA synthesis can be disrupted 
at multiple stages, including alterations in rDNA copy 
number, impaired rDNA transcription, and errors in 
rRNA processing and modification, ultimately leading 
to defective ribosome assembly. Such dysregulation may 
promote aberrant protein aggregation, thereby disrupting 
proteostasis.56

In this context, diagnostic applications of medium 
ncRNAs, such as tRFs, have been identified in the 
dysregulation of neurodegenerative diseases and 

cancers, serving as novel biomarkers. Also, snoRNAs 
(e.g., SNORD78 in lung cancer) correlate with tumor 
progression. 63 On the other hand, therapeutic applications 
of modified tRNAs are explored for suppressing nonsense 
mutations in genetic disorders. snoRNA-targeting 
therapies are also being tested for ribosomopathies and 
cancers.64

Linear lncRNAs are currently being explored in clinical 
trials as noninvasive biomarkers, detectable in circulating 
blood or urine. Their expression levels can indicate disease 
severity or reveal specific patterns in certain types of cancer. 
For example, Htoo et al demonstrated that elevated PCA3 
lncRNA levels in urine correlate with prostate cancer 
progression. Similarly, Kumarswamy et al identified 
LIPCAR lncRNA in plasma as a potential prognostic 
biomarker for cardiovascular mortality. Additionally, 
Lorenzen et al showed that circulating TAPSAKI lncRNA 
levels could predict mortality in patients with acute kidney 
injury.56 To disrupt lncRNA activity, several strategies 
can be employed: (i) Transcriptional modulation: 
Altering the promoter activity of the lncRNA-coding 
region to suppress transcription. (ii) RNAi and antisense 
targeting: Using siRNAs, shRNAs, or modified antisense 
oligonucleotides (e.g., gapmers) to silence lncRNAs, 
which can lead to epigenetic derepression and subsequent 
activation of sense genes. (iii) Aptamer-based disruption: 
Employing aptamers to bind specific lncRNA structural 
domains, interfering with their interactions with binding 
partners. (iv) Ribozyme-mediated degradation: Utilizing 
ribozymes to cleave and degrade target lncRNAs. (v) 
Small-molecule/peptide inhibitors: Designing synthetic 
molecules or peptides to block lncRNA interactions 
with regulatory factors. To enhance or restore lncRNA 
expression to normal levels, strategies leveraging 
clustered regularly interspaced short palindromic 
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) 
technology can be employed. Specifically, a catalytically 
inactive Cas9 (dCas9) fused to the transcriptional activator 
domain VP64 can be used to activate a target promoter. 
However, plasmid or viral vector-based approaches may 
yield ambiguous results, as some lncRNAs influence gene 
expression within their native genomic contexts. While 
lncRNAs hold significant promise as therapeutic agents, 
several challenges hinder their full understanding and 
application. These include the lack of humanized models 
or organoid cultures, the involvement of lncRNAs in 
diverse molecular mechanisms, and their multifunctional 
roles.65 However, Diagnostic applications of lncRNAs are 
determined by HOTAIR (in breast cancer) and MALAT1 
(in lung cancer) as prognostic markers.66 Linc-p21 
is also associated with chemoresistance in multiple 
types of cancer. As a therapeutic target, ASO targeting 
lncRNAs (e.g., targeting NEAT1) is being evaluated in 
glioblastoma. Moreover, CRISPR-based lncRNA editing 
is being investigated for epigenetic modulation.67
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Techniques such as RNAi utilize a variety of interfering 
RNAs to silence disease-causing or mimic silenced/
haploinsufficient genes selectively to restore regular gene 
expression.2 In addition, the development of delivery 
systems, including nanocarriers, has further facilitated the 
efficient delivery of these RNA molecules to target cells, 
thereby opening new avenues for precise and personalized 
medicine.68 

Overall, ncRNA-based systems have been explored in 
several syndromes, and many have progressed to clinical 
trials. However, to make an RNA product suitable for 
biomedical applications, specific conditions must be met, 
and RNA purity, stability, and bioactivity must be verified. 
So, in the following, a viewpoint on the key challenges 
and advanced approaches for the broad diagnostic and 

therapeutic applications (Fig. 4) of ncRNA is introduced.

Diagnostic Advancements through Nanomedicine
One of the main areas where nanomedicine is making 
significant advances is in diagnosis. For instance, 
nanosensors are being developed to detect diseases at an 
early stage.9 In addition, nano-based sensors/biosensors 
can be designed to detect specific biomarkers or abnormal 
cellular activities with remarkable accuracy, enabling the 
early detection of conditions such as cancer, diabetes, 
infectious diseases, and neurological disorders.69 

It has been verified that ncRNAs exhibit remarkable 
stability in whole blood, which can be utilized as novel 
biomarkers for specific syndromes, including cancers 
(Fig. 5).70 Among ncRNAs, miRNAs have been studied 

Fig. 4. ncRNA is used as a diagnostic and therapeutic indicator of cancer. (A) ncRNA-based treatments might target the ncRNA by exploiting RNAi therapeutic 
molecules and/or using tiny molecular suppressors of their protein associates. These helpful paths could be proper for oral or intravenous administration.  
Additionally, targeted therapies such as gene editing, gene silencing, and gene expression via nucleic acid nanoassembly have enhanced the chances of 
RNA therapy. (B) Tumor cells and various body fluids are used for diagnosis. ncRNA isolation and detection. The identification of ncRNAs associated with 
cancer has been facilitated by the advancement of several high-performance expression analysis technologies. Nucleic acid nanoassemblies for ncRNA 
detection and imaging may be employed for cancer identification and prognosis, and can serve as therapeutic biomarkers.

Fig. 5. RNA-based therapeutic in cancer. ncRNAs via modification can be effective in the prevention of proliferation, metastasis, angiogenesis, drug 
resistance, DNA damage, and invasion.
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in most studies, and they are involved in many biological 
processes.71-74 For instance, most liver cancer-associated 
miRNAs have been investigated by Shi et al. in a clinical 
system.75 Based on their investigation, four miRNAs were 
up-regulated and five miRNAs were down-regulated in 
liver cancer tissues.

The integration of nanomedicine with imaging 
modalities has revolutionized medical imaging, offering 
high-resolution images for precise diagnosis.76 For this 
case, NPs are being used as contrast agents in medical 
imaging techniques such as MRI and CT scans, allowing 
for more accurate and detailed visualization of tissues and 
organs.77 

Another thrilling application of nanomedicine in 
diagnostic systems is the improvement of liquid biopsy 
tests.78 These tests can be applied to nanoscale technologies 
to detect and discover circulating tumor cells or fragments 
of tumor DNA in the circulation.79,80

Nanomedicine has revolutionized liquid biopsy 
procedures by improving the sensitivity and specificity 
of ncRNA detection. Liquid biopsies, which analyze 
biomarkers in bodily fluids such as blood, rely on 
nanotechnology to isolate microRNAs and lncRNAs 
from complex biological matrices. Liquid biopsies offer 
a non-invasive alternative to traditional tissue biopsies 
and can provide valuable information about the presence, 
progression, and treatment response of cancer. NPs, such 
as gold nanoparticles and magnetic beads, functionalized 
with antibodies or oligonucleotides, enable the selective 
capture of ncRNAs even at low concentrations. For 
example, a study by Wang et al demonstrated that silica-
coated magnetic nanoparticles efficiently extracted 
exosomal microRNAs from plasma, enhancing detection 
limits by 100-fold compared to conventional methods.81 
Moreover, gold nanoparticles and quantum dots enhance 
extraction efficiency by selectively binding to ncRNAs, 
enabling their isolation even at minimal concentrations.82 
This approach minimizes sample loss and improves 
diagnostic accuracy, particularly in early-stage cancers 
where ncRNA levels are typically low.

Furthermore, advanced nanoplatforms for ncRNA 
enrichment are also introduced. Nanotechnology-based 
platforms, such as exosome isolation kits employing 
antibody-coated nanoparticles, have been instrumental in 
enriching tumor-derived exosomes containing ncRNAs. 
Exosomes, which carry ncRNAs, are crucial for cancer 
diagnostics but are challenging to isolate due to their small 
size. Silicon-based nanowires and polymer nanoparticles 
have demonstrated high affinity for exosomal ncRNAs, 
facilitating their purification from complex biofluids.82 
A notable example is the use of lipid-based nanoparticles 
to extract exosomal lncRNAs in cancer patients, enabling 
early diagnosis with high accuracy. These nanoplatforms 
not only enhance yield but also preserve RNA integrity, 
ensuring reliable downstream analysis.83

The integration of nanomedicine in liquid biopsies 
holds immense potential for personalized medicine, 
particularly in oncology. For example, a study by Dogra 
et al84 demonstrated that nanoparticle-based enrichment 
of miR-155 in the blood of lung cancer patients correlated 
with treatment response, highlighting its prognostic 
value. Despite these advances, challenges such as 
standardization and biocompatibility remain. Future 
research should focus on optimizing nanoparticle designs 
for clinical scalability while minimizing off-target effects. 
As nanomedicine continues to evolve, its role in liquid 
biopsy-based ncRNA diagnostics is expected to expand, 
paving the way for earlier and more accurate disease 
detection.

To date, electrochemical, optical, and electromechanical 
systems (including mass, surface stress, and resonance) 
based on various biological responses have been 
developed using DNA-based biosensors for the 
recognition of cancer-associated biomarkers. Among 
several DNA-based biosensors, electrochemical ones 
offer an outstanding capacity for biomarker detection due 
to their striking benefits, including ease, rapidity, cost-
effectiveness, and the opportunity for miniaturization.85,86 
Most electrochemical assays were established to identify 
overexpressed oncogenic miRNAs by enhancing the 
monitoring of the signal from cancer cells and comparing 
it to that from healthy cells. Cancer suppressor miRNAs, 
which are underexpressed in cancer cells, are typically 
not targeted because their levels are frequently below the 
detection limits of the assays. Therefore, recently, more 
sensitive and specific systems have been developed for 
miRNA determination.87-90 In this case, a sensitive and 
specific technique for the electrocatalytic detection of 
target miRNA (miR-107) by gold-loaded nanoporous 
superparamagnetic magnetic nanocubes (Au-
NPFe2O3NC) has been developed. The proposed system 
was employed to determine miR-107 levels in cancer cell 
lines with remarkable reproducibility and high specificity. 
RT-qPCR was applied as a standard method. The 
obtained system displayed a high translational potential 
for monitoring miRNAs in biological fluid samples.91

Therapeutic Innovations with NPs
Nanomedicine is updating the field of therapeutics by 
supporting targeted drug delivery and personalized 
medicine.92,93 NPs, such as liposomes and polymeric 
NPs as efficient nanocarriers, can be engineered and 
commonly applied to encapsulate drugs and deliver them 
directly to the site of action.94,95 This targeted approach 
lessens side effects and enriches the efficacy of the 
treatment. NP-based therapies can be functionalized with 
ligands that specifically bind to receptors on diseased 
cells, further enhancing drug delivery and reducing off-
target effects.50,96 Additionally, nano-based therapies have 
shown promising results in battling multidrug-resistant 
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pathogens and overcoming biological barriers.
Nanomedicine has shown great promise for cancer 

treatment.97,98 NP-based therapies, such as gold NPs and 
carbon nanotubes, can selectively target cancer cells 
while maintaining healthy tissues.99,100 These NPs can be 
loaded with chemotherapy drugs or therapeutic agents 
and delivered directly to the tumor site, maximizing the 
treatment's effectiveness.101 Additionally, nanorobots are 
being developed to navigate through the bloodstream 
and deliver drugs with precision, minimizing systemic 
toxicity.17,102

Some types of NPs have been discovered for 
ncRNA delivery, including liposomes, polymeric NPs, 
dendrimers, and inorganic NPs. NPs employed in the 
delivery of therapeutic ncRNAs for FDA-approved 
and clinical-stage candidates exhibit diverse structural 
characteristics tailored to enhance stability, targeting, and 
cellular uptake.

Liposomes, composed of lipid bilayers, are one of 
the most extensively investigated NPs for ncRNA 
delivery.103,104 They can be applied as encapsulated 
agents for both hydrophilic and hydrophobic ncRNAs, 
providing protection and controlled release. In this line, 
LNPs, such as those used in Patisiran (ONPATTRO®), 
feature ionizable lipids, phospholipids, and cholesterol 
to deliver siRNA, leveraging their biocompatibility and 
endosomal escape capabilities. PEG-lipids were used 
to encapsulate siRNA, enabling endosomal escape and 
hepatic delivery.105 Also, LNPs modified with targeting 
ligands (e.g., GalNAc for hepatocyte-specific delivery) 
are being verified for miRNA therapeutics in cancer and 
metabolic diseases.106

Polymeric NPs, on the other hand, are composed of 
biocompatible polymers, such as poly(lactic-co-glycolic 
acid) (PLGA) and polyethylene glycol (PEG). These NPs 
can be easily modified to improve stability, targeting, and 
release kinetics. Polymeric NPs, including PLGA and 
polyethyleneimine (PEI), offer controlled release and 
cationic surfaces for nucleic acid complexation. In clinical 
trials, novel formulations like cyclodextrin-based polymers 
(e.g., CALAA-01) and gold NPs functionalized with 
oligonucleotides demonstrate improved biocompatibility 
and tumor targeting.107

Dendrimers, with their highly branched structure, offer 
a high payload capacity and efficient cellular uptake. 
Inorganic NPs, such as gold NPs and quantum dots, 
offer unique optical and magnetic properties that can 
be exploited for imaging and therapeutic purposes.108-110 
Additionally, exosome-based systems leverage natural 
vesicular structures for enhanced biodistribution. Key 
modifications, such as PEGylation and ligand conjugation 
(e.g., GalNAc for hepatocyte targeting), further 
refine pharmacokinetics and tissue specificity. These 
advancements highlight the critical role of nanoparticle 
design in overcoming biological barriers for effective 

ncRNA therapeutics.105

Furthermore, advancements in extracellular vesicle 
(EV)-based NPs and peptide-derived carriers offer 
promising alternatives with reduced immunogenicity. 
Despite challenges such as scalability and off-target effects, 
the integration of smart NPs responsive to pH, enzymes, 
or redox conditions holds promise for precision therapy. 
Collectively, these innovations underscore the pivotal 
role of nanotechnology in realizing the clinical potential 
of ncRNA therapeutics. Besides the potential of NP-based 
ncRNA therapeutics, several challenges and boundaries 
should be addressed carefully.111,112 One of the main 
worries is the stability and degradation of ncRNAs within 
the NPs.113 Nucleases and other enzymes introduced into 
the biological milieu can degrade ncRNAs, leading to 
reduced therapeutic efficacy.104,114 Chemical modifications 
and encapsulation strategies within protective matrices 
have been applied to overcome this issue.115 Another 
challenge is achieving targeted delivery of ncRNAs to 
specific cells or tissues.116 While surface modification 
of NPs with targeting ligands can enhance specificity, 
further optimization is still needed to ensure efficient and 
selective delivery. In addition, the immunogenicity and 
toxicity of NPs should be carefully evaluated to diminish 
adverse effects.

To improve the effectiveness of NP-based 
ncRNA therapeutics, several approaches have been 
discovered.113,116,117 NPs along with ligands or antibodies, 
can boost cellular uptake and targeting by surface 
modification.118-120 Therapeutic agents such as small 
molecules or proteins integrated with ncRNAs can 
enrich the effectiveness.121,122 Mixture therapy attitudes, 
where several ncRNAs or therapeutic compounds are 
conveyed simultaneously, have also exposed beneficial 
consequences. These policies aim to overcome the 
challenges of diseases by targeting multiple pathways or 
molecular targets simultaneously.

Recent innovations in NP-based ncRNA therapeutics have 
confirmed their potential in numerous syndromes.123-125 For 
instance, NP-based delivery of tumor suppressor ncRNAs 
has revealed promising potential in animal studies.126,127 
Correspondingly, in Alzheimer's and Parkinson's, NP-
mediated delivery of neuroprotective ncRNAs has displayed 
neurorestorative impacts.115 Some clinical evaluations are 
presently ongoing to assess the safety and efficiency of NP-
based ncRNA therapeutics in humans, emphasizing their 
promising potential in the healthcare system.

Looking ahead, NP-based ncRNA therapeutics 
play a significant role in personalized medicine and 
disease-specific targeting.128-130 With advancements in 
nanomedicine and our understanding of ncRNA biology, 
it is possible to design NPs that can selectively deliver 
ncRNAs to specific cell types or disease sites.131,132 This 
opens up new avenues for precision medicine, where 
therapies can be tailored to individual patients based 
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on their genetic profile and disease characteristics. 
Furthermore, NP-based ncRNA therapeutics can also be 
employed in gene editing and gene therapy applications, 
offering potential cures for genetic disorders.

Overall, therapeutic advances with NPs for ncRNA have 
developed the field of molecular medicine. NPs provide 
unique advantages in terms of stability, protection, and 
targeted delivery of ncRNA therapeutics. A comparative 
analysis of nano-delivery systems for ncRNAs reveals 
distinct advantages and limitations based on their design 
and composition. LNPs, especially liposomes, are widely 
used due to their high biocompatibility and efficient 
encapsulation of ncRNAs like siRNA and miRNA; 
however, they may suffer from instability and rapid 
clearance in vivo.70 Polymeric NPs, such as PLGA or 
chitosan, offer controlled release and protection against 
enzymatic degradation, but can exhibit cytotoxicity and 
low transfection efficiency.133 Inorganic NPs, such as 
gold or silica-based systems, provide tunable surfaces 
for functionalization and enhanced cellular uptake; 
however, their potential long-term toxicity and poor 
biodegradability remain concerns.134 Each system thus 
presents trade-offs between delivery efficiency, safety, and 
therapeutic applicability.

Emerging nano-delivery platforms, such as exosomes 
and hybrid systems, aim to overcome these limitations 
by leveraging natural biocompatibility and targeting 
capabilities. Exosomes, as endogenous vesicles, minimize 
immune responses and enhance the tissue-specific 
delivery of ncRNAs, but their large-scale production 
and heterogeneity pose challenges.135 Hybrid systems 
combining lipids, polymers, or inorganic materials 

attempt to synergize the benefits of multiple approaches, 
improving stability and targeting precision.136 However, 
the complexity of fabrication and potential batch-to-batch 
variability may hinder clinical translation. The choice 
of delivery system ultimately depends on the specific 
ncRNA (e.g., siRNA, lncRNA, or circRNA), desired 
pharmacokinetics, and the target tissue, necessitating further 
optimization for personalized therapeutic applications.

Despite the challenges and limitations in therapeutic 
strategies, ongoing research in nanomedicine is paving 
the way for the development of safe and effective NP-
based ncRNA therapeutics. With further optimization 
and clinical validation, these innovative approaches have 
the potential to transform the treatment landscape for 
various diseases, bringing us closer to the realization of 
personalized and precision medicine. In this context, the 
efficiency of treatment achieved through the transfer of 
ncRNA using nano-delivery systems for cancer treatment 
is represented in Table 2.

Commercialization opportunities, overcoming obstacles, 
and conclusion
The convergence of ncRNA and nanomedicine presents 

substantial commercialization opportunities in the 
healthcare industry. Although traditional detection 
methods for ncRNAs, such as qRT-PCR, northern 
blotting, and microarray, are widely applied, they have 
some limitations that discourage their use, including 
laborious techniques, long processing times, sample 
size requirements, varying sensitivities of the kits and 
instruments, and false-positive results. In terms of 
technical aspects, analytical companies, utilizing sensor 
and biosensor devices, can develop non-invasive tests 
that use nano-sensors/biosensors to identify ncRNAs as 
biomarkers, thereby providing accurate and timely disease 
detection. Pharmaceutical companies, alternatively, can 
capitalize on the targeted drug delivery systems offered 
by nanomedicine, improving drug efficacy and controlled 
release. This can be achieved by constructing more 
stable, longer-lasting, and less toxic antisense or mimic 
oligonucleotides to downregulate or upregulate a specific 
ncRNA, respectively, for therapeutic purposes. 

Advances in RNAi technologies, such as siRNA and 
miRNA-based therapies, have led to FDA-approved 
treatments, including Patisiran, for hereditary 
transthyretin amyloidosis. Nanocarriers, such as LNPs 
and polymeric nanoparticles, enhance delivery efficiency, 
reducing off-target effects and improving bioavailability. 

Companies like Alnylam and Moderna are leveraging 
these innovations, with increasing investments in RNA-
nanomedicine hybrids for the treatment of cancer, 
cardiovascular diseases, and rare genetic disorders. 
Additionally, diagnostics utilizing exosomal ncRNAs as 
biomarkers for early cancer detection present lucrative 
opportunities for biotechnology firms. However, 
scalability, manufacturing consistency, and regulatory 
hurdles remain key challenges to widespread adoption.148

While the prospects are promising, several challenges 
must be addressed for effective commercialization to occur. 
Safety concerns surrounding the use of nanomaterials, 
regulatory frameworks, and manufacturing scalability are 
among the key hurdles. Stability issues, immune system 
clearance, and inefficient tissue targeting limit therapeutic 
efficacy. Recent innovations, such as exosome-based 
carriers, offer improved biocompatibility and natural 
tropism for specific cells, enhancing delivery precision. 

Clinical trials, such as those investigating exosome-
delivered miR-34a for solid tumors (NCT03608631), 
highlight both promise and pitfalls, e.g., variable patient 
responses and manufacturing complexities. Furthermore, 
regulatory agencies demand rigorous safety assessments, 
necessitating standardized protocols for nanoparticle 
characterization. Collaborative efforts between academia, 
industry, and regulators are essential to address these 
challenges.

Nanorobotics holds immense potential in the field 
of ncRNA therapeutics and diagnostics, yet several 
challenges must be addressed for clinical translation. One 
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Table 2. Summary of cancer treatment with the delivery of ncRNA therapeutics through nano-delivery systems

ncRNA Delivery system Cancer type Therapeutic impact Ref.

MT1DP Folate-modified 
liposome NPs NSCLC

Raised erastin-induced ferroptosis by augmentation 
of Malondialdehyde and ROS levels, enhancement of 
intracellular Ferrous iron concentration, and reduction 
of glutathione levels

137

MDC1
Thermosensitive 
magnetic cationic 
liposomes

Cervical cancer

Magnetic cationic liposomes cause
Overwhelmed with definite adverse responses and 
improved the inhibition of cell growth related to 
cervical cancer

138

LINC01257 Lipid NPs AML
LNPs lessen cell count after 48 h of treatment, damage 
Kasumi-1 cell proliferation without disturbing healthy 
PBMCs

109

NRCP DOPC nanoliposomes Ovarian cancer

Considerably diminished tumor growth NRCP playing 
as a middle-associated partner between STAT1 and 
RNA polymerase II, leading to amplified expression of 
downstream target genes

139

Malat1 Liposomal spherical 
nucleic acid constructs Lung adenocarcinoma Boosted the tumor suppressor, interferon-induced 

protein with IFIT2
140

LCDR NT-NPs Lung adenocarcinoma

siLCDR/AUTP multiplexes precisely target the 
nucleus to suppress the effective gene, declining 
cancer growth of patient-derived xenografts of lung 
adenocarcinoma

141

CCAT1 CSNPs Colorectal cancer Expressively limited HT-29 tumor growth, with suitable 
biosafety and biocompatibility in the animal model

142

lncAFAP1-AS1 PDSA polymer NPs Triple-negative breast cancer

Silencing lncAFAP1-AS1 expression and scavenging 
the elevated GSH, leading to synergistic reversal of 
radioresistance. Enhanced the radiosensitivity and 
improved the radiotherapy effect

13

DANCR RGD-PEG-ECO NPs Triple-negative breast cancer Meaningfully limited the survival, invasion, migration, 
and proliferation of the TNBC cell lines

38

ANRIL DTBP-3NP-siANRIL NPs Hepatocellular carcinoma Signaling the expression of miR-203a and its following 
genes and augmented the ratios of NK cells and T cells

15

MALAT1 s-PGEA-FA NPs Esophageal squamous cell 
carcinoma

Effectively inhibiting esophageal squamous cell 
carcinoma development

143

MEG3 PuPGEA NPs Hepatocellular carcinoma Effectively inhibiting tumor growth and inducing tumor 
necrosis

21

MEG3 CNC@CB8 @PGEA NPs Hepatocellular carcinoma Effectively inhibiting HCC tumor growth 117

MEG3 PAMAM-PEG-EpDT3 
NPs CRPC Noteworthy anti-CRPC outcome, both in the animal 

model and in vitro study
22

MALAT1 ASO-Au-TAT NPs Lung cancer
Reducing MALAT1 expression level, decreasing 
migration capability in vitro and reducing metastatic 
tumor nodule formation in an animal study

23

OUM1 ICG-MOF-RGD NPs UM Conquers UM proliferation and metastasis and 
enhances cisplatin sensitivity in UM cells

25

MALAT1
Single wall carbon 
nanotube (SWCNT)-
antiMALAT1

 MM Inducing DNA damage and cell apoptosis in vivo 36

LINC00589 PMSNs GC Conquer the metastatic ability of GC cells in an animal 
model and in vitro study

45

miR-122 Multivalent rubber-like 
RNA NPs Liver cancer Silencing of drug exporters and oncogenic proteins, as 

well as inhibition of tumor growth
46

miR-218 LA-PAMAM Liver cancer Diminished tumor progression and amended liver 
histological features

41

miR-451 calcium carbonate NPs Bladder cancer Suppression of multidrug resistance and augmented 
growth of intracellular Adr with anticancer properties

42

miR-199a-3p Omentum-derived 
exosomes Ovarian cancer Inhibition of cell proliferation and invasion 27
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major obstacle is the precise delivery of ncRNA molecules 
to target cells without degradation or off-target effects. 
Nanorobots equipped with molecular recognition systems 
can enhance specificity by binding to overexpressed 
biomarkers on diseased cells, thereby improving the 
accuracy of therapeutic interventions. Additionally, 
advancements in biocompatible materials and propulsion 

mechanisms, such as magnetic or enzymatic propulsion, 
are overcoming biological barriers, including immune 
clearance and vascular dynamics.149 Nanorobotics 
integrated with ncRNA-based therapies offers 
unprecedented control over gene regulation and disease 
detection. For instance, nanorobots carrying CRISPR-
Cas9 and guide RNA can perform precise gene editing, 

ncRNA Delivery system Cancer type Therapeutic impact Ref.

miR-let-7c-5p SiO2-polyethyleneimine 
NPs Cervical cancer Suppression of cell proliferation and migration 144

miR-200c

CXCR4-targeted 
polymeric poly-
Lglutamic acid-coated 
NPs

Colon cancer Enhanced immune responses against tumors 29

miR-139-5p R9 modified with125I-
labeled RGD and Ce6 Cancer in general Boosted the radiotherapy sensitivity with low toxicity 31

let-7i Nano-graphene oxide 
platform Cancer in general Retreated intracellular drug and improved 

photothermal therapy with chemical agents
32

miR-532-3p PLGA-PEG-VB12 NPs Gastric cancer Mitochondrial impairment, amplified apoptosis, and 
limitation of cell proliferation 

51

miR-181a GDY-CeO2 nanozymes Esophageal cancer Improvement of tumor hypoxia and radiation-induced 
DNA damage, and inhibition of tumor growth

52

miR-15a and 
miR-16–1

Cationic PEGylated 
niosomes Prostate cancer Augmented apoptosis of tumor cells 34

miR-320

a combination of 
TAT-coated SLNs with 
peptides containing the 
NGR motif

Head and neck cancer Declined Oxa-associated toxicities and high antitumor 
value

145

miR-181a ZIF-8 nano-complexes Rectal cancer Improved radiosensitivity, limited proliferation, 
lessened migration, and boosted apoptosis

146

miR-30a-5p MMNs Ocular melanoma Enriched pro-inflammatory anticancer immunity 
against skin cancer

147

MRX34 (miR-
34a mimic) Liposome Solid tumor Phase I terminated NCT02862145

Atu027 Liposome Solid tumors Phase I completed NCT00938574 

siG12D LODER PLGA matrix LAPC Phase I completed
Phase II

NCT01188785
NCT01676259

TKM-080301 LNP
NET and ACC
HCC
Liver cancer

Phase I/II completed
Phase I/II completed
Phase I completed

NCT01262235
NCT02191878
NCT01437007

EphA2 siRNA DOPC neutral liposome Advanced or recurrent solid 
tumor Phase I NCT01591356

NU-0129 Gold nanoparticle Glioblastoma Phase I completed NCT03020017

ALN-VSP02 Co-delivery of two 
siRNAs with LNP

Advanced solid tumor with 
liver
involvement

Phase I completed NCT00882180

CALAA-01

Cyclodextrin 
nanoparticles targeting 
transferrin
receptor

Solid tumor Phase I terminated NCT00689065

DCR-MYC LNP
Solid tumor, multiple 
myeloma, or lymphoma
HCC

Phase I terminated
Phase I/II terminated

NCT02110563
NCT02314052

NSCLC, non-small-cell lung cancer; AML, acute myeloid leukemia; CRPC, Castration-resistant prostate cancer; UM, Uveal melanoma; MM, Multiple 
myeloma; GC, gastric cancer.

Table 2. Continued
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while those loaded with fluorescent reporters enable real-
time imaging of tumor-associated ncRNAs. Furthermore, 
adaptive nanorobots can respond to microenvironmental 
cues (e.g., pH, enzymes) to release payloads selectively, 
minimizing systemic toxicity. Such innovations bridge 
the gap between ncRNA biology and clinical applications, 
paving the way for personalized medicine.150

Despite progress, scalability and long-term safety remain 
hurdles in nanorobotic-ncRNA systems. Manufacturing 
nanorobots with uniform properties at scale requires 
sophisticated techniques, such as DNA origami or 
3D nanoprinting. Immunogenicity and unintended 
biodistribution also pose risks, necessitating rigorous 
preclinical testing (Sharma et al., 2023). Computational 
modeling and AI-driven design are being employed 
to predict the behavior of nanorobots in vivo, thereby 
optimizing their efficacy and safety profiles. Addressing 
these challenges will be critical for regulatory approval 
and clinical adoption.151

The convergence of nanorobotics and ncRNA 
nanomedicine is revolutionizing therapeutic and 
diagnostic paradigms. By overcoming delivery barriers, 
enhancing precision, and improving biocompatibility, 
nanorobots are unlocking new avenues for treating 
cancers, genetic disorders, and infectious diseases. Future 
research should focus on scalable fabrication, smart 
responsiveness, and rigorous clinical trials to translate 
these technologies from bench to bedside. As the field 
advances, interdisciplinary collaboration will be key to 
harnessing the full potential of nanorobotics in ncRNA 
medicine.

Exosomes have also emerged as promising 
carriers for ncRNAs due to their biocompatibility, 
low immunogenicity, and ability to cross biological 
barriers. These nanoscale vesicles facilitate intercellular 
communication by transferring functional ncRNAs to 
target cells, modulating gene expression, and cellular 
functions. Their endogenous origin minimizes toxicity 
and enhances stability, making them superior to synthetic 
nanoparticles for therapeutic delivery. Additionally, 
exosomes can be engineered to enhance targeting 
efficiency, allowing for the precise delivery of ncRNA-
based therapeutics in diseases such as cancer and 
neurodegenerative disorders. Despite their potential, 
exosome-based ncRNA delivery faces challenges, 
including low yield during isolation, heterogeneity, and 
inefficient loading of therapeutic ncRNAs. Advances 
in nanotechnology have addressed these issues by 
optimizing isolation techniques (e.g., ultracentrifugation, 
size-exclusion chromatography) and developing novel 
loading strategies, such as electroporation and sonication. 
Surface modification with ligands (e.g., peptides, 
antibodies) enhances tissue-specific targeting, while 
genetic engineering of parent cells allows for customized 
exosome production.

Furthermore, integrating exosomes with synthetic 
nanoparticles (hybrid systems) improves payload 
capacity and pharmacokinetics, overcoming limitations 
in clinical scalability. Hence, Exosome-based carriers 
represent a transformative platform for ncRNA delivery, 
bridging the gap between nanomedicine and clinical 
applications. While challenges remain in standardization 
and large-scale production, ongoing advancements in 
bioengineering and nanotechnology are paving the way 
for scalable, targeted therapies. Additionally, translating 
scientific discoveries into marketable products requires 
substantial investments in developing basic research, 
conducting clinical trials, and protecting intellectual 
property. 

Nanomedicine and ncRNA represent cutting-edge 
fields with tremendous potential in the field of healthcare. 
The complex regulatory roles of ncRNA and the precision 
of nanotechnology hold promising solutions for the 
development of innovative diagnostic and therapeutic 
approaches. By leveraging the power of these technologies, 
we can advance disease detection, enhance treatment 
outcomes, and pave the way for a more personalized and 
efficient healthcare system.

In conclusion, the potential synergy derived from 
combining ncRNA and nanomedicine offers a pathway 
to address unmet medical needs. By driving scientific 
advancements, fostering collaborations, and embracing 
commercialization opportunities, we can unlock the full 
potential of these cutting-edge technologies and shape the 
future of healthcare systems. Further advancements in this 
interdisciplinary field will contribute to the progression of 
precision medicine and patient satisfaction.
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