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Introduction
The most significant attributes of cancer cells include 
their ability to proliferate uncontrollably, resist apoptosis, 
exhibit genomic instability, and invade surrounding 
tissues. In this context, the tumor microenvironment 
(TME) is vital role in enhancing these capabilities within 
cancer cells.1 In the cancer literature, different perspectives 
exist regarding the TME; nevertheless, the most concise 
elucidation of this term is "the setting that affects the 
growth, survival, and progression of tumor cells".2 Despite 
its simplistic definition, TME operates as a sophisticated 

and well-structured ecosystem. In addition to malignant 
cells, this milieu also harbors non-transformed cells, e.g., 
endothelial cells, pericytes, fibroblasts, immune cells, 
and other cell types that vary depending on the tissue, 
like neurons and adipocytes.3 Cancer cells' expansion 
and ability to evade immune surveillance is facilitated 
by the cellular interactions between cancerous and non-
cancerous cells, which serve as the cytological mechanism 
underlying tumor progression and metastasis.4 For 
instance, tumor angiogenesis involves a dynamic 
interplay between endothelial cells and other cells that 
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Abstract
The tumor microenvironment (TME), 
comprising malignant and non-
transformed cells like immune cells, 
endothelial cells, and cancer-associated 
fibroblasts, significantly affects tumor 
growth and progression. Tumor cells 
manipulate the TME by releasing 
chemokines and inhibitory cytokines, 
reprogramming surrounding cells to 
support their survival and evade immune 
detection. Innate immune cells within the 
TME play dual roles, either promoting or inhibiting tumor progression, impacting immunotherapy 
outcomes. Recent studies highlight the influence of innate immune cells in shaping the TME and the 
pivotal role of tumor-derived microRNAs (miRNAs) in modulating these cells. miRNAs regulate 
gene expression and enhance tumor immune evasion, angiogenesis, drug resistance, and invasion. 
Their tumor-specific expression patterns suggest potential as biomarkers and therapeutic targets. 
This study focuses on how miRNAs affect innate immune cells like macrophages, dendritic cells, 
myeloid-derived suppressor cells, and natural killer cells, contributing to immunosuppressive 
or immunogenic environments. Understanding miRNA-mediated interactions between cancer 
and immune cells opens new possibilities for improving targeted immunotherapy and advancing 
cancer treatments.
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drive angiogenesis, such as pericytes, vascular smooth 
muscle cells, macrophages, skeletal muscle cells, and 
tumor cells. This communication is mediated through 
various mechanisms, including cell-cell adhesion, 
junctional complexes formation, and paracrine cytokines 
and metabolite release5 (Fig. 1). Besides, cancer cells 
can manipulate their surrounding setting by secreting 
different chemokines, inhibitory cytokines, and other 
inhibitory molecules.6 Subsequently, the surrounding 
cells undergo a reprogramming mechanism, allowing 
them to assume a pivotal role in the survival and 
progression of tumors.6 For example, transforming 
growth factor‐beta (TGF‐β), interleukin (IL)‐6, and 
platelet‐derived growth factor (PDGF) secreted by tumor 
cells can activate quiescent fibroblasts and alter them into 
cancer‐associated fibroblasts (CAFs).7 CAFs are the main 
contributors to the production of TGF-β. TGF-β inhibits 
the proliferation of CD4 + T lymphocytes by reducing 

the production of IL-2 and facilitates the differentiation 
of naive CD4 + T lymphocytes into regulatory T cells 
(Tregs).8 The proliferation of cancer cells is marked by 
the restructuring of the vasculature and the extracellular 
matrix (ECM).3 This matrix, predominantly made 
up of collagen and proteoglycans, provides a scaffold 
for the cellular microenvironment and contributes to 
the secretion of various cytokines, chemokines, and 
other bioactive molecules.9,10 Cancer cells' capability 
to penetrate the ECM barrier, access the circulatory 
system, and develop distant metastases plays a vital role 
in the progression and metastasis of tumors.11 Hence, 
this intricate network is embedded within an altered, 
vascularized extracellular matrix, contributing to the 
organization of tumor settings.3 

Beyond the cellular interactions present within the 
environment, the significance of tumor heterogeneity 
cannot be overlooked. Numerous cancer types exhibit 

Fig. 1. Cellular and molecular components of the TME and their interactions. Abbreviations: TME: tumor microenvironment, ECM: extracellular matrix, TAN: 
tumor-associated neutrophils, NK cell: natural killer cell, Treg: T regulatory cell, DC: dendritic cell, CAF: cancer-associated fibroblast, MDSC:  myeloid-
derived suppressor cells, CTL: cytotoxic T cells, MQ: macrophage, HIF-1α: Hypoxia-inducible factor-1α, VEGF: Vascular endothelial growth factor, TGF: 
Transforming growth factor, PDGF: Platelet-derived growth factor.
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considerable heterogeneity in the TME, both spatially 
and temporally.12 Heterogeneity is described as the 
diversity observed among cancer cells, both within 
individual tumors and between different tumors. This 
diversity includes variations in cellular morphology, 
transcriptional profiles, metabolic processes, and the 
capacity for metastasis. The presence of heterogeneity is a 
common feature in most tumors, presenting considerable 
challenges within cancer ecosystems. It significantly affects 
the long-term effectiveness of treatments for solid tumors, 
leading to resistance, heightened metastatic behavior, and 
recurrence.12 Due to their genomic instability and capacity 
for phenotypic variation, cancer cells can quickly modify 
their behavior to exploit local environmental conditions. 
A well-documented instance of this is the metabolic 
symbiosis that takes place between cancer cells in oxygen-
deprived regions and those in well-oxygenated parts 
of tumors.13 Recent advancements in the field have also 
focused on the TME and the interactions that facilitate 
the evolution of the tumor ecosystem.12 As previously 
stated, immune cells are fundamental constituents of 
the TME.3 Within TME, a heterogeneous population of 
adaptive and innate immune cells infiltrates, displaying 
the potential to exert both pro- and anti-tumorigenic 
impacts.14 The immune landscape surrounding tumors 
is predominantly characterized by two categories of 
immune cells: those that promote tumor growth and 
those that inhibit it. Key pro-tumor immune cells consist 
of myeloid-derived suppressor cells (MDSCs), Tregs, 
and M2-type tumor-associated macrophages (TAMs), 
which collectively enhance tumor development and 
immune escape mechanisms. In contrast, the anti-tumor 
immune response is primarily mediated by activated 
cytotoxic T lymphocytes (CTLs) and natural killer (NK) 
cells1,15 (Fig. 1). Considering this, the tumor immune 
microenvironment is a cutting-edge concept that has been 
associated with the clinical outcomes of cancer patients, 
predicting and directing their immunotherapy response.16 
The tumor immune microenvironment provides valuable 
insights into the potential trajectory of a patient's immune 
response. This path of cancer development is shaped 
by the kinds of immune cells that infiltrate tumors, the 
presence of inhibitory immune checkpoint molecules on 
tumor or immune cells, and changes in the TME.17 

Scientific reports have highlighted the presence of 
adaptive and innate immune cells within the tumor 
milieu.4,18 The main focus of earlier studies has been on 
the analysis of adaptive immune cells within the context 
of cancer.19-22 The literature on the TME has expanded, 
shedding light on the profound influence of innate 
immune cells.23 It is now apparent that the response of 
innate immune cells not only indirectly affects the TME 
by controlling the fate of T cells.24,25 but also plays a 
critical role in shaping the TME. In this regard, within 
TME, innate immune cells can play a dual role by either 

promoting (pro-tumoral innate immune cells).26,27 or 
inhibiting (anti-tumoral innate immune cells)28,29 tumor 
progression. Despite the inhibitory role of pro-tumoral 
innate immune cells in tumor progression, the altering of 
anti-tumoral innate immune cells by tumor cells within 
the TME can inhibit their ability to combat tumors 
by fostering an immunosuppressive environment and 
metabolic reprogramming.30-32 Additionally, tumor cells 
can strengthen the ability of pro-tumoral innate immune 
cells to maintain and perpetuate this immunosuppressive 
setting.30-32 In line with this, a growing body of scientific 
studies has shown that cancer-derived microRNAs 
(miRNAs) have a profound impact on the formation of 
an immunosuppressive TME.33,34 miRNAs, which are 
short non-coding RNAs (ncRNAs) consisting of around 
22 nucleotides, have a significant impact on the regulation 
of gene expression. These regulatory molecules modulate 
gene activity by attaching to the 3’ untranslated region 
(3’UTR) of target mRNAs, which can lead to reduced 
gene expression by blocking transcription or protein 
production.35 miRNAs play a crucial role in modulating 
the activity of innate immune cells, diminishing the 
immunogenic potential of cancer cells, and enabling tumor 
cells to evade detection by the innate immune system.33,34 
Besides, the regulation of the TME by miRNAs can lead 
to changes in tumor angiogenesis,36 drug resistance,37 
proliferation of malignant cells,38 and their invasion.39 
Hence, the expression of immunity-associated genes 
in cancer cells and tumor-infiltrating innate immune 
cells is subject to regulation by miRNAs. Moreover, 
the expression profiles of miRNAs differ significantly 
among most tumors, and specific miRNAs can serve as 
markers to distinguish between various tumor types and 
their respective stages.40,41 As a result, miRNAs have the 
potential to be used clinically in the treatment, prognosis, 
and diagnosis of various cancers (Table 1). Herein, we aim 
to clarify the impact of tumor cells-related miRNAs on 
the alteration of the function and characteristics of innate 
immune cells, including macrophages (MQ), MDSCs, 
dendritic cells (DCs), NK cells, neutrophils, and γδ T cells 
toward the modulation of malignancy and the creation 
of both an immunosuppressive and an immunogenic 
setting. By underscoring the pivotal role of miRNAs, 
this study sheds light on the intricate signaling network 
that exists between cancer cells and innate immune cells, 
thereby elucidating the crucial involvement of miRNAs 
in tumor immune evasion. Furthermore, this study 
highlights the potential avenues for utilizing miRNAs 
as targets in therapy, thereby augmenting the efficacy of 
targeted immunotherapy for the treatment of cancer.

Interplay between miRNAs and tumor-associated 
innate immune cells
Tumor-associated Macrophages
Tumor-associated macrophages (TAMs), originating 
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Table 1. Recruiting trials for the clinical applications of miRNAs in various cancers

NCT number Cancer type Clinical application Summary of study Enrolled 
patients

NCT02635087 Colonic neoplasms Prognostic biomarker An observational study determining the use of miRNAs as a 
tool to predict disease prognosis 630

NCT03962088 Rectal cancer A biomarker for monitoring 
tumor response

An observational study aiming to evaluate the tumor 
response to surgery after neoadjuvant chemoradiotherapy 
of affected patients by examining the expression pattern of 
miRNAs

200

NCT04285476 Thyroid cancer Diagnostic biomarker
An interventional study evaluating the sensitivity and 
specificity of miRNAs as a diagnostic tool and risk 
stratification biomarker

70

NCT04845425 Endometrial cancer Diagnostic and prognostic 
biomarkers

An observational study aiming to evaluate the miRNA 
expression pattern to identify biomarkers to better stratify 
Endometrial cancer patients

150

NCT05346757 CRC Screening test An interventional study to validate a miRNA-based fecal test 
for CRC screening 9670

NCT05918510

SCC of the oropharynx, 
carcinomas of unknown 
primary sites, high-risk 
HPV infection

Diagnostic and prognostic 
biomarkers

An observational study evaluating the possibility of miRNAs 
as a potential diagnostic and prognostic biomarkers 142

NCT05854030 Lung neoplasm
Prognostic biomarker, a 
biomarker for monitoring 
tumor response

An observational study determining the serum exosomal 
miRNA in combination with PD-L1 as a biomarker in 
predicting the efficacy of anti-PD-L1 immunotherapy

60

NCT04435756 Germ cell tumor
Disease recurrence 
biomarker, outcome 
prediction biomarker

A prospective observational study to evaluate miRNA 371 for 
outcome prediction in affected patients 956

NCT06277986 GC cachexia Diagnostic biomarker An observational study evaluating the clinical value of tumor 
cell-derived exosomal miRNA in the diagnosis of GC cachexia 150

NCT01849952 Glioma Survival biomarker
An observational study aiming to evaluate the correlation of 
miRNA-10b expression levels with patients' survival, tumor 
grade, and genotypic variations

200

NCT05443412 Prostate cancer Diagnostic biomarker
An observational study assessing the possibility of artificial 
intelligence-assisted-based prostate cancer diagnosis based 
on the expression levels of miRNAs

510

NCT04965259 HCC Diagnostic biomarker
An observational study aims to validate a panel of circulating 
miRNA biomarkers to develop an in-vitro diagnostic kit for 
the detection of early HCC

2000

NCT05431621 Digestive system 
cancers Diagnostic biomarker

An observational study to establish molecular testing 
methods for non-invasive screening and early diagnosis of 
digestive system cancers through the expression levels of 
miRNA7

2430

NCT05495685 Pancreatic cancer Diagnostic biomarker

An observational study aimed at early detecting pancreatic 
cancer by combined assays for biomarkers of cfDNA 
methylation, serum protein markers, blood miRNA markers, 
and others

450

NCT03253107 GC Predicting biomarker of GC 
chemotherapy response

An observational study to identify and validate a biomarker 
for the response to chemotherapy in GC 800

NCT05148572 HCC
Disease recurrence 
biomarker, diagnostic 
biomarker

An observational study aims to validate a panel of circulating 
miRNAs to aid in the diagnosis and prediction of recurrence in 
affected patients

100

NCT05556603 Pancreatic cancer Diagnostic biomarker An observational study aiming to evaluate the possibility of 
blood miRNAs for the diagnosis of pancreatic cancer patients 7062

NCT05901376 GC Diagnostic biomarker An observational study determining the possibility of blood 
miRNAs for the diagnosis of GC 280

NCT06261294 Lung cancer Diagnostic biomarker
A two-arm, open-label, non-randomized controlled pilot 
study validating the circulating miRNA expression as a 
diagnostic biomarker

800

NCT05529251 Seminoma
Predicting biomarker of 
seminoma treatment 
response

A phase 2 study aims to validate the serum levels of 
miRNA-M371 association with clinical stage, primary tumor 
size, and response to treatment in patients.

90

https://clinicaltrials.gov/study/NCT02635087?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=1&tab=table
https://clinicaltrials.gov/study/NCT03962088?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=2
https://clinicaltrials.gov/study/NCT04285476?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=3
https://clinicaltrials.gov/study/NCT04845425?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=4
https://clinicaltrials.gov/study/NCT05346757?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=5
https://clinicaltrials.gov/study/NCT05918510?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=6
https://clinicaltrials.gov/study/NCT05854030?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=7
https://clinicaltrials.gov/study/NCT04435756?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=10
https://clinicaltrials.gov/study/NCT06277986?cond=Cancer&intr=miRNA&aggFilters=status:rec&limit=50&page=1&rank=12
https://clinicaltrials.gov/study/NCT01849952?cond=Cancer&intr=miRNA&aggFilters=status:rec&limit=50&page=1&rank=13
https://clinicaltrials.gov/study/NCT05443412?cond=Cancer&intr=miRNA&aggFilters=status:rec&limit=50&page=1&rank=14
https://clinicaltrials.gov/study/NCT04965259?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=15
https://clinicaltrials.gov/study/NCT05431621?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=16
https://clinicaltrials.gov/study/NCT05495685?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=17
https://clinicaltrials.gov/study/NCT03253107?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=18
https://clinicaltrials.gov/study/NCT05148572?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=19
https://clinicaltrials.gov/study/NCT05556603?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=20
https://clinicaltrials.gov/study/NCT05901376?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=21
https://clinicaltrials.gov/study/NCT06261294?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=23
https://clinicaltrials.gov/study/NCT05529251?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=24


Naseri et al

   BioImpacts. 2025;15:31430 5

from tissue-resident macrophages or bone-marrow-
derived monocytes, stand out as critical players within the 
TME, substantially impacting tumor cells' progression, 
metastasis, angiogenesis, and even side effects of therapies. 
Investigations have demonstrated that they exhibit anti-
tumorigenic and tumoricidal properties during the initial 
stages of tumor development. However, as the cancer 
progresses to its intermediate and advanced stages, TAMs 
undergo a functional transition, subsequently exerting 
pro-tumorigenic effects that facilitate tumor growth, 
invasion, and metastasis. Suppressive immune cells and 
immunomodulatory factors present within the TME, 
along with metabolic alterations within cells, induce a 
shift in the macrophage phenotype from an anti-tumor to 
a pro-tumor state.42,43 

Due to TAMs' capacity to modulate both innate and 
adaptive immune responses, coupled with their substantial 
presence within the TME, they exert a profound influence 
on the TME's status and nowadays they are regarded as 
promising therapeutic targets for cancer immunotherapy 
strategies.44 Key treatment strategies involving TAMs 
include depleting pro-tumor TAMs, reprogramming 
them and activating anti-tumor ones, blocking their 
recruitment to the TME, and employing novel therapies 
such as nanocarrier-based approaches to directly target 
TAMs or modulate their molecular expression profiles.45-48

The polarization of TAMs within the TME into 
two distinct subsets, classically activated (M1 or pro-
inflammatory subtype) and alternatively activated (M2 
or immunosuppressive subtype), is a highly flexible and 

NCT number Cancer type Clinical application Summary of study Enrolled 
patients

NCT06060873 Malignant testicular 
germ cell tumor Diagnostic biomarker A phase 2 study of serum miRNA-371 in the diagnosis of the 

affected patients 418

NCT04914026 Testicular cancer

Predicting biomarker 
of testicular cancer 
chemotherapy response, 
disease recurrence 
biomarker

An observational study determining the miRNA-371 as a 
marker for disease activity and as a tool to monitor the 
impact of chemotherapy and detection of recurrence in 
patients

350

NCT05089747 Solid tumors

Treatment efficacy 
biomarker, diagnostic 
biomarker, prognostic 
biomarker

An observational study aims to analyze blood miRNAs to 
validate the circulating miRNAs as biomarkers for cancer 
diagnosis, treatment efficacy, and disease progression.

6000

NCT05417048 BC Diagnostic biomarker

A non-randomized cohort study was carried out at a single 
center to assess the clinical diagnostic performance of 
glycosylated extracellular vesicles and their contents in the 
early detection of BC.

420

NCT04406831 Pancreatic cancer

Treatment efficacy 
biomarker, diagnostic 
biomarker, prognostic 
biomarker

An observational study aims to ascertain the utility of 
miRNA as a biomarker in predicting treatment response and 
providing prognostic information for patients.

200

NCT06206603 CRC Diagnostic biomarker An observational study determining blood miRNAs as a 
potential biomarker for the diagnosis of patients 400

NCT04906330 BC Diagnostic biomarker An observational study evaluating miRNAs for early BC 
detection 500

NCT06203496 Glioma Disease recurrence 
biomarker

An observational study aims to describe plasma levels of pro-
oncogenic miRNAs, after surgery for grade 4 glioma, in order 
to assess whether they can be utilized to detect false-positive 
recurrences on MRI

60

NCT05292573 Endometrial malignancy Outcome prediction 
biomarker

A phase 3 study aims to evaluate miRNAs as biomarkers for 
predicting future endometrial malignancy in women with 
endometrial hyperplasia without atypia

1000

NCT06314971 CRC Diagnostic marker of 
disease recurrence

An observational study aims to validate tissue miRNA 
correlation with tumor recurrence after curative resection. 200

NCT06154317 MM Treatment efficacy 
biomarker

An observational study seeks to validate target therapy 
efficacy in MM cells from affected individuals by miRNAs 
released from B Cells

30

NCT04113122 Testicular cancer Treatment efficacy 
biomarker 

An observational study aims to confirm the potential of 
miRNA -103, miRNA -107, and miRNA -29 tissue expression as 
a treatment efficacy biomarker

192

Abbreviations: SCC: squamous cell carcinoma, BC: breast cancer, CRC: colorectal cancer, GC: gastric cancer, HPV: human papillomavirus, HCC: 
hepatocellular carcinoma, PD-L1: programmed cell death ligand 1, PC: prostate cancer, MM: multiple myeloma, miRNA: microRNA, MRI: magnetic 
resonance imaging.

Table 1. Continued

https://clinicaltrials.gov/study/NCT06060873?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=27
https://clinicaltrials.gov/search?cond=Cancer&intr=miRNA&aggFilters=status:rec
https://clinicaltrials.gov/study/NCT05089747?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=29
https://clinicaltrials.gov/study/NCT05417048?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=31
https://clinicaltrials.gov/study/NCT04406831?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=33
https://clinicaltrials.gov/study/NCT06206603?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=34
https://clinicaltrials.gov/study/NCT04906330?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=35
https://clinicaltrials.gov/study/NCT06203496?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=36
https://clinicaltrials.gov/study/NCT05292573?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=39
https://clinicaltrials.gov/study/NCT06314971?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=40
https://clinicaltrials.gov/study/NCT06154317?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=41
https://clinicaltrials.gov/study/NCT04113122?cond=Cancer&intr=miRNA&aggFilters=status:rec&rank=45&tab=table
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reversible process, which shows opposing effects on tumor 
progression.49 The M1 macrophage phenotype (MHC II⁺, 
iNOS⁺, CD86⁺,) is induced by GM-CSF, IFN-γ, LPS, and 
TLR activation. These cells have pro- and anti-tumor 
functions, producing cytokines like TNF-α, IL-1β, IL-6, 
and IL-12, along with ROS/NOS. M1 macrophages also 
promote immune cell infiltration, particularly Th1 cells, 
supporting anti-tumor immunity.50 On the other side, 
the M2 phenotype (CD163 + , CD206 + , Arginas1hi, and 
vascular endothelial growth factor (VEGF)hi ) is induced 
mainly by CSF-1, IL‑4, IL‑10, IL‑13, and TGF-β cytokines 
and activation of transcriptional factors, including signal 
transducer and activator of transcription 6 (STAT6), 
suppressor of cytokine signaling 2 (SOCS2), and 
peroxisome proliferator-activated receptor γ (PPAR).51,52 
In the context of cancer, the effects of IL-4 and IL-13, 
produced by Th2 cells, on the induction of M2 macrophages 
have explicitly been elucidated. All these factors 
ultimately contribute to forming an immunosuppressive 
TME, facilitating angiogenesis, epithelial-mesenchymal 
transition (EMT), tissue remodeling, tumor progression, 
and an unfavorable clinical prognosis. Thus, it is evident 
that M2 cells mainly contribute to cancer progression by 
both promoting the growth and development of tumor 
cells and suppressing immune system responses.53 M2 
macrophages can be classified into M2a, M2b, M2c, and 
M2d, each playing distinct functions in progression of 
cancer. M2a cells, induced by IL-4 and IL-13, enhance 
tumor growth, angiogenesis, and immune suppression 
through factors like TGF-β and IL-10. M2b, known as 
regulatory macrophages, suppress immune responses 
and support Treg and Th2 differentiation. M2c promotes 
tumor invasion, while M2d secretes pro-tumoral 
cytokines (e.g., IL-6, VEGF, MMPs) and aids immune 
evasion, collectively fostering progression of tumor.53,54 

Current investigations have confirmed the impact 
of ncRNAs, especially miRNAs, on the polarization of 
macrophages.55-59 Notably, the bidirectional exchange of 
intercellular exosomes containing miRNAs, especially 
between tumor cells and TAMs, has recently emerged as a 
critical mediator of this process.60,61 
M1 polarization
Recent research highlights the capacity of specific miRNAs 
derived from tumor cells to induce the differentiation 
of M1 macrophages. In this context, hepatocellular 
carcinoma (HCC) has been a focal point of investigation. 
Li et al62 showed that miR-98 is downregulated in HCC-
associated TAMs, and its overexpression promotes 
polarization of M2-to-M1, decreasing invasion and EMT 
in HCC cells. Similarly, targeted delivery of miR-99b to 
TAMs induced M1 polarization via the mTOR/NF-κB 
pathway and suppressed M2 differentiation by inhibiting 
mTOR/IRF4, enhancing anti-tumor immunity in the 
TME.63 Additionally, HCC cells with overexpressed miR-
144/miR-451a cluster exhibited a distinct macrophage 

polarization shift in TAMs towards the M1 phenotype, 
which was mediated by regulating the expression of 
macrophage migration inhibitory factor (MIF) and 
hepatocyte growth factor (HGF).64

It was shown that downregulated miR-148a expression 
in SW480 colorectal cancer (CRC) cells has the ability to 
induce THP-1 cell differentiation to M2 subtype and reduce 
macrophage infiltration. However, induced expression of 
miR-148a promoted the differentiation of THP-1 cells 
to M1 phenotype via targeting signal regulatory protein 
α (SIRPα), which further induced apoptosis in SW480 
cells.65 Previous research has identified miR-302a as a key 
player in the regulation of M1 macrophage polarization 
in glioma tumors. JMJD1C, a histone demethylase, affects 
macrophage polarization by regulating the miR-302a/N6-
adenosine-methyltransferase 70kDa subunit (METTL3)/
suppressor of cytokine signaling 2 (SOCS2) pathways in 
glioblastoma. In fact, by miR-302a overexpression, M1 
polarization was induced, and glioma progression was 
suppressed.66 In a study on mouse breast cancer (BC) 
model by Moradi-Chaleshtori et al,67 it was found that 
4T1 BC cell-extracted exosomes containing miR-33 have 
the ability to shift M2 to M1 subtype, in such a way that 
they got the potential to suppress 4T1 cells growth and 
progression. Recently, Yang et al68 revealed that pancreatic 
ductal adenocarcinoma (PDAC) samples had low levels 
of miR-506, which, upon restoration, was able to reorient 
M2 macrophages towards an M1 phenotype by targeting 
STAT3. This regulatory pathway facilitated the infiltration 
of CTLs in TME and enhanced the response to anti-
programmed cell death protein 1 (PD-1) immunotherapy. 
Investigation about prostate cancer showed that exosomes 
containing miR-203 induce the polarization of M1 
macrophages and suppress the progression of prostate 
cancer tumor cells69 (Table 2, Fig. 2).
M2 polarization
In addition to miRNAs involved in M1 polarization, 
studies have elucidated the pivotal role of specific miRNAs 
in inducing the differentiation of M2 macrophages and 
promoting tumor progression. miR-934 present within 
the exosomes derived from CRC cell lines induced M2 
polarization via phosphatase and tensin homolog (PTEN)/
phosphoinositide 3-kinases (PI3K)/protein kinase B 
(PKB) signaling pathway, which in turn promoted CRC 
liver metastasis (CRLM) via chemokine CXCL-13/ 
CXCR5/NF-κB/p65/miR-934 positive feedback loop.70 
Yin et al71 investigated miRNA profiles within exosomes 
derived from CRC cells. They found that miR-21-5p 
and miR-200a modulate the polarization of M1 to M2 
macrophages and even their PD-L1 expression via PTEN/
AKT and SOCS1/STAT1 pathways. Additionally, they 
noticed that this polarization to the M2 subtype made 
an immunosuppressive TME and promoted tumor 
progression. Another study regarding CRC showed that 
miR-145 within CRC cell-derived exosomes affected 
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the expression of histone deacetylase 11 and induced 
polarization of THP-1 cells to the M2 subtype. Moreover, 
polarized M2 macrophages helped CRC cells grow and 
tumor enlargement.72

miR-3591-3p was found to be highly present in both 
cerebrospinal fluid (CSF) and exosomes derived from 

glioma cells, which promoted M2 polarization and tumor 
progression.73 Regarding lung adenocarcinoma, it was 
shown that miR-19b-3p within lung adenocarcinoma-
derived exosomes induced polarization of TAMs to 
M2 cells via positive effects on STAT3 and LINC00273 
in THP-1 cells.74 Additionally, miR-181b showed an 

Table 2. miRNAs and M1 polarization in the context of cancer

miRNA Model Intervention/
Expression TAMs Outcomes Ref.

miR-98 Human miR-98 mimic/inhibitor 
transfected into TAMs

PBMCs-derived 
monocytes

Induced expression of miR-98:
•	 Suppressed HCC cell migration, invasion, and EMT

62

miR-99b Mouse
miR-98 agomir/
antagomir transfected 
to TAMs

BM-derived
macrophages of HCC-
bearing
mice

Induced expression of miR-99:
•	 Improved M1 polarization, phagocytosis, and antigen 

presentation via targeting mTOR/IRF4 expression
•	 Increased CD8 + T cells, and decreased MDSCs and Treg cells
•	 Inhibited tumor growth

63

miR-144
miR-451a

Human HCC and para-tumor 
tissues

TAMs within tumor 
tissues

Induced expression of miR-14/miR-451a:
•	 Facilitated M1 polarization via targeting HGF and MIF
•	 Improved CD8 + T cells and reduced Tregs infiltrating
•	 Increased anti-tumor cytokines and molecules

64

Mouse miR-144/miR-451a 
transfected to HCC cells

BM-derived
macrophages

Induced expression of miR-14/miR-451a:
•	 Facilitated M1 polarization via targeting HGF and MIF
•	 Reduced tumor weight
•	 Repressed tumor angiogenesis
•	 Improved survival

miR-148a

Human
miR-148a mimic/
inhibitor transfected to 
macrophages

THP-1 cell line-derived
macrophages

Induced expression of miR-148a:
•	 Facilitated M1 polarization via targeting SIRPα

65

Mouse
miR-148a mimic/
inhibitor transfected to 
macrophages

THP-1 cell line-derived
macrophages

Induced expression of miR-148a:
•	 Reduced M2 infiltration and subcutaneous tumorigenesis
•	 Induced tumor cell apoptosis

miR-302a

Human JMJD1C transfected 
Glioma cell lines CD14 + PBMCs

Induced expression of miR-302-a:
•	 Facilitated M1 polarization via targeting METTL3/SOCS2
•	 Suppressed tumor growth

66

Mouse JMJD1C transfected to 
Glioma cell line

CD11b + TAMs within 
tumor tissues

Induced expression of miR-302-a:
•	 Reduced tumor cell proliferation
•	 Reduced tumor volume and weight

miR-33 Mouse BC cells-derived 
exosomes

Peritoneal 
macrophages

Induced expression of miR-33:
•	 Converted M2 to M1 phenotype
•	 Reduced proliferation, invasion, and migration of BC cells

67

miR-506 Mouse
miR-506 mimic 
was injected 
intraperitoneally

-

Induced expression of miR-506:
•	 Reduced M2/M1 ratio
•	 Reduced tumor size and weight
•	 Improved survival
•	 Improved CTLs and reduced Tregs infiltrating
•	 Improved response to anti-PD-1 therapy

68

miR-203

Human

prostate cancer cell 
line-derived exosomes
miR-203 agomir/
antagomir transfected 
to macrophages and 
prostate cancer cell line

Human macrophages

Induced expression of miR-203:
•	 Suppressed prostate cancer cell proliferation, migration, 

and invasion
•	 Induced prostate cancer cell apoptosis 69

Mouse
miR-203 agomir/
antagomir transfected 
to TAMs

prostate cancer 
-bearing
mice

Induced expression of miR-203:
•	 Inhibited the tumor growth

Abbreviations: miR: microRNA, TAMs: Tumor-associated macrophages, PBMCs: peripheral blood mononuclear cells, HCC: hepatocellular carcinoma, 
EMT: epithelial-mesenchymal transition, BM: bone marrow, mTOR: the mammalian target of rapamycin, IRF4: interferon regulatory factor 4, MDSCs: 
myeloid-derived suppressor cells, Tregs: regulatory T cells, HGF: hepatocyte growth factor, MIF: macrophage migration inhibitory factor, SIRPα: signal 
regulatory protein α, METTL3: N6-adenosine-methyltransferase 70kDa subunit, SOCS2: suppressor of cytokine signaling 2, BC: breast cancer; CTLs: 
cytotoxic T cells, PD-1: programmed cell death protein 1.
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overexpression in non-small cell lung cancer (NSCLC) 
patients' serum and NSCLC cells-derived exosomes, 
which induced M2 polarization through the JAK2/STAT3 
pathway and promoted NSCLC progression.75

In a study regarding BC, Ma et al. found that miR-
182 knockout in mice and macrophages hinders the 
development of M2-like TAMs and tumor progression. 
Through TGF-β secretion, BC cells induced the 
expression of miR-182 in TAMs, which targeted TLR4 
and suppressing NF-κB shifted TAMs to the M2 subtype.76 
Another study revealed that exosomes derived from 
MDA-MB-231 cells, enriched with miR-138-5p, altered 
the differentiation of THP-1 cells towards an M2-like 
phenotype by modulating KDM6B (Lysine Demethylase 
6B) expression. This resulted in the enhanced metastatic 
potential of BC cells to the lung77 (Table 3).

Regarding the relationship between miRNAs and the 

differentiation of M2a, M2b, M2c, and M2d cells in cancer, 
no studies have been conducted to date, and existing 
findings are restricted to normal physiological conditions. 
Furthermore, using next-generation sequencing (NGS), 
Jiménez et al reported that M2a-polarized macrophage 
has a high expression of miR-500a-5p and miR-502-3p, 
as well as reduced level of miR-181-5p. Additionally, they 
showed that the M2c subtype has a high level of miR-21-
5p, miR-22-3p, and miR-146b-5p, while miR-200a-3p and 
miR-339-3p expression were decreased.78 Additionally, 
there is evidence linking miR-222 to the differentiation 
of M2b macrophages.79 Collectively, these findings 
suggest a clear relationship between the regulatory 
effects of miRNAs and the polarization of M2 subtypes. 
However, these studies are predominantly conducted 
under normal physiological conditions. Further research 
is warranted to investigate how miRNAs influence M2 

Fig. 2. Interplay between miRNAs and Macrophages in TME. Abbreviations: TME: tumor microenvironment, ECM: extracellular matrix, miRNA: microRNA, 
TAN: tumor-associated neutrophils, NK cell: natural killer cell, Treg: T regulatory cell, DC: dendritic cell, CAF: cancer-associated fibroblast, MDSC:  myeloid-
derived suppressor cells, CTL: cytotoxic T cells, MQ: macrophage, HCC: hepatocellular carcinoma, TAM: tumor-associated macrophages, MIF: macrophage 
migration inhibitory factor, HGF: hepatocyte growth factor, CRC: colorectal cancer, BC: breast cancer, PC: prostate cancer, NSCLC: non-small cell lung 
cancer, GC: gastric cancer, TNBC: triple-negative breast cancer, PGC-1α: peroxisome proliferator‑activated receptor γ coactivator‑1α, CRLM: CRC liver 
metastasis, PDAC: pancreatic ductal adenocarcinoma, NPC: nasopharyngeal carcinoma.
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Table 3. miRNAs and M2 polarization in the context of cancer

miRNA Model Intervention/ Expression TAMs Outcomes Ref.

miR-934

Human
CRC cell lines-derived exosomes
miR-934 mimic/inhibitor transfected 
to macrophages and CRC cell lines

THP-1 cell line/BM-derived
Macrophages

Induced expression of miR-934:
•	 Facilitated M2 polarization via targeting 

PI3K/PKB
•	 Promoted migration and invasion 70

Mouse
CRC cell lines treated with condition 
media of THP-1 and miR-934 mimic/
inhibitor transfected CRC cell lines

THP-1 cell line-derived
macrophages

Induced expression of miR-934:
•	 Induced premetastatic niche formation
•	 Promoted invasion and liver metastasis 

via CXCL13/CXCR5/NFκB/p65 axis

miR-21-5p 
miR-200a

Human

CRC cell lines-derived exosomes
miR-21-5p miR-200a mimic/inhibitor 
transfected to macrophages and CRC 
cell lines

THP-1 cell line-derived
macrophages

Induced expression of miR-21-5p miR-200a:
•	 Facilitated M2 polarization
•	 Induced PD-L1 expression
•	 Decreased CD8 + T cell activity

71

Mouse Exosomes containing high miR-21-5p 
miR-200a expression Peritoneal macrophages

Induced expression of miR-21-5p miR-200a:
•	 Facilitated M2 polarization and PD-L1 

expression
•	 Decreased CD8 + T cell infiltration
•	 Increased tumor growth

miR-145

Human
miR-145 mimic/antagomir-
transfected CRC cell lines-derived 
exosomes

THP-1 or
NOMO-1 cell lines-derived
macrophages

Induced expression of miR-145:
•	 Facilitated M2 polarization via targeting 

HDAC11
•	 Increased tumor growth and volume 72

Mouse
Co-injection of miR-145 mimic/
antagomir-transfected macrophages 
to CRC cell–xenografted mice

THP-1 or
NOMO-1 cell lines-derived
macrophages

Induced expression of miR-145:
•	 Promoted tumor growth

miR-3591-3p

Human
Glioma cell lines-derived exosomes
miR-3591-3p mimic/inhibitor 
transfected to macrophages

THP-1 cell line-derived
macrophages

Induced expression of miR-3591-3p:
•	 Facilitated M2 polarization via targeting 

CBLB
•	 Increased macrophage infiltration
•	 Promoted glioma invasion and 

migration
73

Mouse miR-3591-3p transfected to 
macrophages

THP-1 cell line-derived
macrophages

Induced expression of miR-3591-3p:
•	 Increased tumor size
•	 Reduced overall survival

miR-19b-3p

Human

lung adenocarcinoma cell-derived 
exosomes
miR-19-3p mimic/inhibitor 
transfected to macrophages

THP-1 cell line-derived
macrophages

Induced expression of miR-19-3p:
•	 Facilitated M2 polarization

74

Mouse

Coinjection of miR-19-3p mimic/
inhibitor-transfected macrophages 
to lung adenocarcinoma cell–
xenografted mice

THP-1 cell line-derived
macrophages

Induced expression of miR-19-3p:
•	 Promoted lung adenocarcinoma cell 

invasion and migration

miR-181b Human NSCLC cell-derived exosomes THP-1 cell line-derived
macrophages

Induced expression of miR-181b:
•	 Facilitated M2 polarization via targeting 

JAK2/STAT3 axis
•	 Promoted NSCLC cell proliferation, 

migration, and invasion.

75

miR-182

Human miR-182 mimics transfected to 
macrophages

U937 and THP-1 cell lines-
derived
macrophages

Induced expression of miR-181b:
•	 Facilitated M2 polarization via targeting 

TLR4/NF-κB axis
•	 Promoted BC cell tumor sphere 

formation and escaping T-cell 
cytotoxicity

76

Mouse BC conditioned medium
BM-derived macrophages 
from miR-182 KO
mice

Induced expression of miR-181b:
•	 Suppressed tumor cell proliferation and 

tumor sphere formation

miR-138-5p
Human

BC cell lines-derived exosomes
miR-138-5p mimics transfected to 
macrophages

THP-1 cell line-derived
macrophages

Induced expression of miR-138-5b:
•	 Facilitated M2 polarization via targeting 

KDM6B
•	 Promoted THP-1 cell proliferation

77

Mouse BC cell lines-derived exosomes Raw264.7 cell line-derived
macrophages

Induced expression of miR-138-5b:
•	 Promoted lung metastasis

Abbreviations: miRNA: microRNA, CRC: colorectal cancer, TAMs: tumor-associated macrophages, BM: bone marrow, CXCL13: C-X-C motif chemokine 
ligand 13, CXCR5: C-X-C motif chemokine receptor 5, NFκB: nuclear factor kappa B, PD-L1: programmed death-ligand 1, HDAC11: histone deacetylase 
11, CBLB: Casitas B-lineage lymphoma-B, NSCLC: non-small cell lung cancer, JAK2: Janus kinase 2, STAT3: signal transducer and activator of transcription 
3, TLR4: Toll-like receptor 4, NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells, BC: breast cancer, KDM6B: lysine demethylase 6B.
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subtype polarization within the TME, where factors such 
as hypoxia, metabolic changes, and cytokine gradients are 
likely to modulate their effects (Fig. 2).
Tumor growth and metastasis
As previously mentioned, miRNAs have been found to 
play a crucial role in shaping the function of TAMs in the 
TME, allowing them to acquire novel phenotypes that 
either promote or suppress tumor cell growth, progression, 
migration, and invasion. Based on the available findings 
and evidence, altered expression of miRNAs, whether 
inside macrophages (indirectly) or through exosome 
delivery to tumor cells (directly), could affect tumor cell 
progression or suppression. In the following sections, the 
miRNAs derived from tumor cells and macrophages and 
the effects they have on each other are discussed.
a. Tumor-derived miRNAs
It was shown that miR-149 was downregulated in triple-
negative breast cancer (TNBC) cells, and its altered 
expression has a relation with macrophage infiltration 
and tumor progression. miR-149 overexpression in TNBC 
cells suppressed BC cells' communication with THP-1 
cells and impaired their polarization to M2 phenotype 
by targeting the CSF1/EGF/AREG axis.80 Additionally, 
miR-148b-3p was overexpressed in exosomes produced 
by BC cells, which led to the reprogramming of 
TAMs to M2 macrophages and thereby promoted BC 
progression via tuberous sclerosis complex2 (TSC2) 
targeting and induction of the mTORC1 pathway.81 
As mentioned before, miR-138-5p present in BC cell-
derived exosomes induced M2 polarization and BC cell 
metastasis.77 Furthermore, overexpression of miR-191-5p 
in BC cells and their secreted exosomes and its delivery 
to macrophages affected their polarization to the M2 
subtype via targeting the SOCS3 expression, promoting 
BC cell invasion and migration.82 Moreover, 4T1 BC cells-
derived exosomes containing miR-33 affected the shift 
of M2 to M1, suppressing BC growth and metastasis.67 
Another study regarding BC revealed the inhibitory 
effect of BC cells on miR‑382 expression in TAMs, 
where peroxisome proliferator‑activated receptor γ 
coactivator‑1α (PGC‑1α), as its target, showed increased 
expression and induced M2 polarization. Afterward, these 
M2 cells promoted BC cell metastasis and EMT.83

Regarding gastrointestinal cancer, gastric cancer 
(GC)-derived exosomes overexpressing miR‑519a‑3p 
displayed a vital role in promoting angiogenesis, leading 
to GC liver metastasis (GC-LM) via affecting intrahepatic 
macrophages. It was shown that delivering highly 
expressed miR‑519a‑3p within these exosomes targeted 
the DUSP2‑MAPK/ERK pathway in macrophages, 
inducing their polarization to the M2 subtype and 
production of angiogenic factors in the liver.84 Moreover, 
GC-derived exosomes enriched in let-7g-5p were 
shown to mediate macrophage M2 polarization that is 
linked to tumor-promoting immunosuppression and 

tumor progression and SERPINE1 was identified as the 
main mediator responsible for let-7g-5p loading into 
exosomes. When taken up by macrophages, let-7g-5p 
stimulates a metabolic and functional transition to the 
M2 phenotype which enhances the pro-tumorigenic 
milieu. Moreover, this study defines a new mechanism for 
tumor cells to utilize exosomal microRNAs to reprogram 
immune cells, which have the possibility of being future 
therapeutic targets, to inhibit tumor-promoting immune 
modulation.85 Transferring of miR-106b-5p within 
exosomes derived from EMT-CRC cells induced M2 
polarization via affecting PI3K/AKT/mTOR pathway 
and finally decreasing programmed cell death protein 
4 (PDCD4) expression within macrophages, which in 
turn helped induction of immunosuppressive TME 
and promotion of tumor progression.86 miR-203a-3p 
showed an upregulation within CRC plasma samples and 
cell line exosomes, where its delivery to TAMs affected 
their polarization to the M2 subtype through PTEN 
regulation and PI3K/Akt signaling pathway activation, 
leading to colorectal liver metastasis.87 miR-372-5p was 
found to be highly expressed in exosomes released by 
CRC and influenced macrophage polarization towards 
the M2 subtype via modulating the PTEN/AKT signaling 
pathway. Subsequently, CXCL12 chemokine production 
and secretion by these M2 macrophages promoted the 
stemness, metastasis, and EMT of CRC cells.88 Reports 
indicate that the CXCL12/CXCR4 axis plays a role in 
the pathogenesis of various human disorders, including 
infectious diseases, autoimmune diseases, and cancer.89-94 
Exosomes derived from umbilical cord mesenchymal stem 
cells enriched with miR-1827 showed a prominent relation 
with hindering the colorectal liver metastasis process 
and suppressing M2 polarization via targeting succinate 
receptor 1 (SUCNR1), in which this effect, in turn, 
inhibited CRC progression.95 One study demonstrated that 
miR-200b-3p, present in exosomes derived from HCC, 
influenced the conversion of M0 macrophages to M2 by 
regulating the production of IL-4 cytokines and activating 
the JAK/STAT signaling pathway, ultimately contributing 
to enhanced HCC metastasis.96 It was shown that miR-
548t-5p within PDAC cells affected IL-33 expression, 
which improved macrophage infiltration and M2 
polarization. In the following, induced M2 cells improved 
PDAC cell migration and invasion.97 Overexpression of 
miR-770 within NSCLC-derived exosomes suppressed 
the polarization of M2 macrophages through modulating 
mitogen-activated protein kinase 1 (MAP3K1) and 
thereby barricading NSCLC cells invasion, migration, 
and EMT in vitro and in vivo.98 Zhang et al. studied 
nasopharyngeal carcinoma-derived exosomes' miRNA 
profile and found that tumor-suppressor miR-6750 has an 
inhibitory effect on nasopharyngeal carcinoma metastasis 
and angiogenesis through inducing M1 macrophages and 
targeting mannose 6-phosphate receptor (M6PR)/ERK/
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MAPK/P38MAPK axis. Macrophages, as mediator cells, 
also showed a crucial role in delivering these exosomes 
to human umbilical vein endothelial cells (HUVECs) and 
then modulating pre-metastatic niche formation.99

b. Macrophage-derived miRNAs
Investigating macrophages involved in the progression of 
PDAC revealed the crucial role of TAMs-derived exosomal 
miR-202-5p and miR-142-5p, affecting PTEN and 
thereby promoting tumor cell invasion and metastasis.100 
Moreover, TAM-derived exosomes containing miR-
501-3p affected PDAC cell formation, invasion, and 
metastasis via TGF-β signaling pathway activation.101 
Regarding renal cell carcinoma (RCC), it was shown 
that increased expression of hypoxia-inducible factor 
1-alpha (HIF-1α) led to the upregulation of miR-193a-
5p in macrophages, which in turn triggered the release 
of exosomes containing this miRNA. These exosomes 
were then taken up by RCC cells, where they influenced 
the expression of tissue inhibitor of metalloproteinases 2 
(TIMP2), thereby contributing to the progression of the 
cancer cells.102 In another study, overexpression of miR-
342-3p was found both in RCC cells and M2-derived 
exosomes, in which transferring of M2-derived miR-342-
3p to RCC cells promoted tumor cell progression through 
regulation of NEDD4L (The E3 ubiquitin ligase), PI3K/
AKT/mTOR signaling pathway, and finally Centrosomal 
protein of 55 kDa (CEP55) expression, respectively.103 
Concerning gastrointestinal cancer, it was shown that M2 
macrophages in the TME promoted GC cell proliferation 
and progression via miR-487a present in GC-derived 
exosomes, regulating TIA-1 (T-cell intracellular antigen 
1) gene expression. Additionally, miR-223 overexpression 
within macrophage-derived exosomes and its transfer to 
GC cells induced tumor cell invasion, migration, and 
EMT through the regulation of the PTEN-PI3K/AKT 
pathway.104 Investigation regarding the anti-tumoral effect 
of traditional Chinese medicine called Jianpi Yangzheng 
Xiaozheng decoction (JPYZXZ) ended up revealing 
the tumor-promoting effect of miR-513b-5p present 
in TAMs-derived exosomes. Zhang et al105 showed that 
transferring miR-513b-5p within exosomes to GC cells 
activated the AKT/mTOR signaling pathway via PTEN 
suppression and ultimately induced GC cell invasion and 
metastasis. Mi et al106 revealed the regulatory effect of 
lncRNA AFAP1-AS1 on miR-26a expression in esophageal 
cancer. They revealed that transferring M2-derived 
exosomes with increased levels of lncRNA AFAP1-AS1, 
and decreased levels of miR-26a contributed to enhanced 
esophageal cancer cell invasiveness, migration, and lung 
metastasis. Regarding lung cancer and miRNAs present 
in exosomes derived from M1 macrophages, recently 
Peng et al107 reported that transferring of miR-let-7b-5p 
within M1-derived exosomes showed tumor-suppressing 
effects on lung cancer cells through its regulatory effects 
on G protein subunit gamma 5 (GNG5).

Therapy resistance
Studies conducted in recent years on chemotherapy 
drug resistance indicate that TAM-derived miRNAs 
influence the development of resistance in tumor cells. 
M2 polarization and co-culturing their exosomes with 
GC cells revealed that miR-21 plays a crucial role in the 
development of cisplatin resistance by regulating the 
PTEN/PI3K/AKT signaling pathway.108 A confirmatory 
study on ovarian cancer demonstrated that the up-
regulation of miR-21 was not only involved in M2 
polarization but also contributed to the induction of 
cisplatin chemoresistance through miR-21 delivery 
within exosomes derived from M2 macrophages.109 
Hypoxic conditions in the TME of ovarian cancer were 
shown to increase macrophage infiltration and TAM 
polarization that secreted exosomes enriched with 
miR-223. The transfer of these exosomes from TAMs 
to ovarian cancer cells promoted resistance to cisplatin 
through the PTEN-PI3K/AKT pathway.110 Another study 
demonstrated that exosomal miRNA-223 derived from 
M2 macrophages can enhance doxorubicin resistance in 
GC cells by modulating the expression of the F-box and 
WD repeat domain-containing 7 (FBXW7) protein.111 
miR-3679-5 is the other exosomal miRNA derived from 
M2 macrophages, in which transferring miR-3679-
5 to lung cancer cells induced metabolic changes and 
developed resistance to cisplatin via the regulatory effect 
on the NEDD4L/c-Myc axis 112. Furthermore, induction of 
mouse M2 macrophages and investigation of their related 
exosomes revealed that up-regulation of miR-222-3p 
promoted chemoresistance to gemcitabine in pancreatic 
cancer cells through targeting TSC1 expression and PI3K/
AKT/mTOR pathway activation113 (Figs. 2 and 3).

MDSCs
Multiple studies have highlighted the significance of 
miRNAs in tumor progression and metastasis, where 
they exert their influence by regulating the development, 
maturation, and functional activity of MDSCs. These 
miRNAs can be derived from MDSCs and also produced 
by tumor cells and transferred to MDSCs via extracellular 
vesicles (EVs) and exosomes to carry out their function. 
These regulatory effects eventually influence tumor 
growth, metastasis, and angiogenesis.

miRNAs in cancer cells primarily utilize EVs and 
exosomes to modulate tumor growth and manipulate 
the behavior of MDSCs, including their production, 
aggregation, and activity. The solid TME is often 
characterized by hypoxic conditions, which are believed 
to impact the biogenesis and release of tumor-derived 
exosomes. Guo et al found that glioma cells affect MDSCs 
through exosomes. Hypoxia-induced expression of miR-
10a and miR-21 in exosomes derived from glioma activate 
and differentiate MDSCs by targeting retinoic acid-related 
orphan receptor α (RORα)/IκBα/NF-κB and PTEN/PI3K/
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AKT, respectively.114 This group's other study discovered 
that low oxygen levels increased the expression of miR-
29a and miR-92a, which activated the proliferation and 
function of MDSCs by targeting high-mobility group box 
transcription factor 1 (Hbp1) and protein kinase cAMP-
dependent type I regulatory subunit alpha (Prkar1a), 
respectively.115 Hypoxia also raised miR-1246 levels in 
glioma-derived exosomes through stimulating miR-1246 
transcription and selective packaging by overexpression 
of POU class 5 homeobox 1 (POU5F1) and heterogeneous 
nuclear ribonucleoprotein A1 (hnRNPA1). Exosomal 
miR-1246 regulates MDSC differentiation and activation 
via DUSP3/ ERK-dependent manner. In glioma patients, 
elevated exosomal miR-1246 expression was strongly 
associated with poor survival and increased tumor 

recurrence.116 Li et al. demonstrated that a low-oxygen 
environment triggered oral squamous cell carcinoma cells 
to release exosomes containing miR-21, which in turn 
amplified the immune-suppressing effects of MDSCs by 
modulating the miR-21/PTEN/PD-L1 pathway.117 SOCS 
and protein inhibitor of activated STAT (PIAS) family 
members operate as key regulators in the JAK/STAT 
signaling pathway, acting to counterbalance its activity by 
forming a negative feedback loop.118 Jiang et al. discovered 
that exosomes released by tumors contained miRNAs 
miR-9 and miR-181a, which interacted with SOCS3 
and PIAS3 to activate the JAK/STAT signaling pathway. 
This led to the development and expansion of early-
stage MDSCs, promoting their accumulation. Moreover, 
when these miRNAs are transmitted to MDSCs, they can 

Fig 3. Interplay between tumor cells and macrophages in the TME mediated by miRNAs. The schematic illustrates the bidirectional interaction between 
tumor cells and macrophages via EVs carrying miRNAs in the TME. miRNAs regulate key signaling pathways, such as PI3K/AKT/mTOR, MAPK/ERK, 
JAK-STAT, and PTEN, modulating macrophage polarization into pro-inflammatory M1 or anti-inflammatory M2 phenotypes. M2 macrophages promote 
tumor progression, including proliferation, EMT and metastasis, angiogenesis, cancer stemness, and chemoresistance. Additionally, TAMs release EV-
derived miRNAs, further enhancing tumor cell malignancy and therapy resistance. Abbreviations: EV: extracellular vesicle, EMT: epithelial-to-mesenchymal 
transition, TAM: tumor-associated macrophage, PI3K: phosphoinositide 3-kinases, mTOR: mammalian target of rapamycin, PTEN: phosphatase and tensin 
homolog, SOCS: suppressor of cytokine signaling, PGC‑1α: peroxisome proliferator‑activated receptor γ coactivator‑1α, TGF: Transforming growth factor, 
TIMP2: tissue inhibitor of metalloproteinases 2, M6PR: mannose 6-phosphate receptor, VEGF: vascular endothelial growth factor, FBXW7: F-box and WD 
repeat domain-containing 7.
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suppress T-cell expansion, trigger T-cell apoptosis, and 
enhance tumor growth by facilitating MDSC infiltration 
in vivo.119 Bruns et al reported that chronic lymphocytic 
leukemia (CLL) cell-derived exosomes containing miR-
155 promote MDSC activation and accumulation, which 
suppresses T-cell activation and induces suppressive 
Treg; however, vitamin D therapy inhibits this process.120 
miRNAs, particularly miR-107, contained within 
exosomes secreted by immune cells can be internalized 
by MDSCs. This leads to a decrease in the expression 
of DICER1 and PTEN genes within MDSCs, resulting 
in enhanced cell proliferation and activation, as well 
as increased production of Arginase-1, a key enzyme 
involved in immunosuppressive activity.121 In the context 
of pancreatic cancer, Basso et al. reported that PDAC-
secreted exosomes containing miR-494-3p and miR-1260 
mediated the suppressive function of MDSCs by boosting 
intracellular calcium fluxes in a Smad4-dependent way.122

Exosomes produced by MDSCs have been proven in 
studies to transport miRNAs and affect tumor metastasis. 
miR-143-3p in Granulocytic-MDSC (G-MDSC)-derived 
exosomes increased lung cancer cell proliferation by 
suppressing the integral membrane protein 2B (ITM2B) 
transcription and stimulating the PI3K/Akt signaling 
pathway.123

Research has demonstrated that miRNA in MDSCs 
can influence their behavior and developmental 
trajectory. CCAAT/enhancer binding protein (C/EBP), 
which includes transcription factors plays a crucial 
role in regulating cell cycle progression and cellular 
differentiation in various cell types. C/EBPα is one of 
the family members that controls the balance of cell 
proliferation and differentiation. Activation of C/EBPα 
promotes differentiation while inhibiting proliferation 
of target cells.124 miR-486 targets C/EBPα, and their 
expression is inversely linked. In lung cancer, miR-486 
was found to be highly expressed in tumor-induced 
monocytic MDSCs (TM-MDSCs), and elevated miR-
486 levels enhanced cell proliferation and inhibited 
apoptosis of TM-MDSCs.125 miR-6991-3p reduces 
the MDSCs proliferation and activation in the TME. 
miR66991-3p directly targets galectin-9, a recently 
discovered immunological checkpoint and activator of 
STAT3. Hence, miR-6991-3p has been found to act as a 
negative regulator of STAT3 activation.126,127 Runt-related 
transcription factor 1 (RUNX1) a key member of the 
RUNX family of transcription factors, plays a crucial role 
in regulating the development and function of MDSC.128 
Tian et al. discovered that miR-9 reduces RUNX1 
expression by targeting its 3'UTR. Overexpression of 
miR-9 suppresses MDSC differentiation into a mature 
myeloid cell, increases their immunosuppressive activity, 
and hence promotes tumor formation.129 miR-30a is 
known to activate the JAK/STAT pathway by targeting 
SOCS3, promoting the formation of MDSCs in B-cell 

lymphoma. Xu et al discovered that miR-30a, which 
is highly expressed in MDSCs from mice with B-cell 
lymphoma, directly targets the 3′UTR of the SOCS3 gene. 
This leads to increased levels of Arginase-1, IL-10, and 
ROS, hence promoting MDSC differentiation, infiltration, 
suppressive capabilities, and tumor advancement.130 Some 
miRNAs exhibit dual regulatory effects. miR-155, for 
example, has dual regulatory effects and can operate as 
both an oncogene and a tumor suppressor depending on 
the cellular environment and target genes. SOCS1, one of 
the members of the SOCS family, has an important role in 
the negative regulation of the JAK/STAT pathway.131 Chen 
et al found that miR-155 regulates MDSCs by directly 
targeting SOCS1, which eliminates SOCS1-mediated 
regulation on the JAK/STAT pathway, leading to MDSC 
accumulation and immunosuppressive function.132 In line 
with these findings, Li et al. found that in an animal model 
of lung cancer, the co-expression of miR-155 and miR-
21 enhances the proliferation and immunosuppressive 
capacity of MDSCs by simultaneously targeting SHIP-
1 and PTEN, ultimately resulting in excessive STAT3 
activation.133 On the contrary, Wang et al. provided 
evidence that MDSCs that lack miR-155 exhibit enhanced 
immunosuppressive function and are more effective 
at facilitating the growth of solid tumors. Their results 
revealed that HIF-1α, which is directly affected by miR-
155, was upregulated in MDSCs with miR-155 deficiency, 
increasing the expression of chemokine ligands and 
accelerating MDSC migration into the tumor.134

Tumor-derived cytokines and inflammatory factors 
are thought to impact MDSC. Tumor-derived GM-
CSF stimulates the expression of miR-200c in MDSCs, 
which are recruited to the TME. miR-200c enhances 
MDSC proliferation and immunosuppressive function by 
inhibiting FOG2 and PTEN, thereby activating the PI3K/
Akt pathway.135 Liu et al observed that tumoral cell-derived 
TGF-β1 upregulates miR-494 in tumor-related MDSCs. 
miR-494 decreases PTEN expression, which enhances 
MDSC infiltration into the tumor site mediated via 
CXCR4. Moreover, PTEN downregulation stimulates the 
PI3K/Akt pathway, which changes the intrinsic apoptotic/
survival signal, thus contributing to the accumulation of 
MDSCs in tumor tissues136 (Table 4, Fig. 4).

DCs
In the context of antigen presentation, DCs are regarded as 
the most professional antigen-presenting cells within the 
human body.137 DCs play a pivotal role in linking the innate 
and adaptive immune systems, efficiently activating naive 
T cells, and upholding the central aspect of anti-tumor 
immunity.137 Nevertheless, the appropriate function of 
DCs is compromised by tumor-related miRNAs.138 The 
transfer of miR-212-3p from pancreatic cancer-derived 
exosomes to DCs leads to reduced expression of RFXAP. 
This decrease in RFXAP results in a downregulation of 
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Table 4. miRNA/MDSC interplay in the context of cancer

miRNA Model Intervention/ Expression MDSCs Outcomes Ref.

miR-10a and 
miR-21 Mouse Glioma cell lines derived 

exosomes Mouse MDSCs

Hypoxic conditions enhance the expansion and 
immunosuppressive function of MDSCs through 
the miR-10a/ RORα/IκBα/NF-κB and miR-21/ 
PTEN/PI3K/AKT pathways

114

miR-29a and 
miR-92a Mouse Glioma cell lines derived 

exosomes Mouse MDSCs

Hypoxic conditions upregulate the expression 
of miR-29a and miR-92a, which enhance the 
proliferation and immunosuppressive activity of 
MDSCs by targeting Hbp1 and Prkar1a

115

miR-1246 Human Glioma patients PBMC-derived 
MDSCs

Hypoxic conditions increase miR-1246 levels in 
glioma-derived exosomes, which in turn drives 
the differentiation and activation of MDSCs

116

miR-21

Mouse
miR-21 in SCC-VII (mouse 
squamous cell carcinoma cell 
line)-derived exosomes

Mouse splenic 
MDSCs Hypoxic conditions enhance the suppressive 

effect of MDSCs on γδ T cells through a miR-21/
PTEN/PD-L1 axis.

117

Human miR-21 in Cal-27 cells-
derived exosomes

PBMC-derived 
MDSCs

miR-9 and 
miR-181a

Mouse
miR-9 and miR-181a mimics 
or inhibitors transfected into 
eMDSCs

Mouse eMDSCs 
(CD11b + Gr1−) Promote eMDSCs expansion and development by 

activation of the JAK/STAT signaling pathway via 
inhibiting SOCS3 and PIAS3

119

Human
miR-9 and miR-181a mimics 
or inhibitors transfected into 
eMDSCs

Human eMDSCs

miR-155 CLL patients miR-155 in CLL cell-derived 
exosomes

PBMC-derived 
MDSCs promote MDSC activation and accumulation 120

miR-107 Human Gastric cancer and gastric 
cell lines-derived exosomes

PBMC-derived 
MDSCs

Induce the expansion and activation of MDSCs by 
targeting DICER1 and PTEN

121

miR-494-3p 
and miR-1260

pancreatic 
cancer cell 
lines

miR-494-3p and miR-1260 in 
PDAC-derived exosomes

PBMC-derived 
MDSCs

Enhance expansion and immunosuppressive 
function of MDSCs by boosting intracellular 
calcium fluxes in a Smad4-dependent manner

122

miR-143-3p Lung cancer G-MDSC-derived exosomes G-MDSCs Increase proliferation of lung cancer cells by 
targeting ITM2B

123

miR-486 Mouse miR-486 in tumor-induced 
M-MDSCs

Mouse 
CD11b + Gr1 + Ly6G−

Ly6Chi/ + MDSCs 
(M-MDSCs)

Promote proliferation and inhibit apoptosis of 
M-MDSCs by targeting C/EBPα

125

miR-6991-3p Mouse
miR-6991-3p mimic and 
antagomir transfected into 
MDSCs

Mouse-derived 
MDSCs Suppress the expansion and activation of MDSCs 126

miR-9 Mouse

miR-9 mimics or antagomirs 
transfected into MDSCs 
isolated from spleens of 
tumor-bearing mice

Mouse MDSCs
Inhibit the differentiation and enhance 
immunosuppressive activity of MDSCs by 
targeting RUNX1

129

miR-30a Mouse
miR-30a mimics transfected 
into bone marrow cells of 
mice

Mouse MDSCs
Promote differentiation, infiltration, and 
immunosuppressive function of MDSCs by 
targeting SOCS3

130

miR-155 Mouse miR-155 knockout mice Mouse MDSCs Enhance the accumulation of functional MDSCs in 
the TME by targeting SOCS1

132

miR-155 and 
miR-21 Mouse

miR-155 and miR-21 mimics 
or inhibitors transfected into 
bone marrow cells of mice

Mouse MDSCs Boost expansion and immunosuppressive activity 
of MDSCs by targeting SHIP-1 and PTEN

133

miR-155 Mouse miR-155 knockout mice Mouse MDSCs miR-155 deficiency enhances the recruitment and 
immunosuppressive functions of MDSCs in TME

134

miR-200c Mouse miR-200c in tumor-
associated MDSCs Mouse MDSCs

GM-CSF induces miR-200c in tumor-associated 
MDSCs, which in turn promote the expansion 
and immune suppressive activity of MDSCs via 
targeting PTEN and FOG2

135
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MHC II expression, ultimately inducing a tolerogenic 
DC phenotype.139 It has been elucidated that miR-221 
suppresses the expression of CD86 and CD40 on DCs that 

are co-cultured with HCC cells by regulating IP10.140 The 
maturation and activation of spleen DCs were suppressed 
by the miR-133a mimic in an osteosarcoma mouse model 

miRNA Model Intervention/ Expression MDSCs Outcomes Ref.

miR-494 Mouse miR-494 in tumor-associated 
MDSCs Mouse MDSCs

TGF-β1 upregulates the expression of miR-
494, which in turn induces the accumulation 
and activity of MDSCs by targeting PTEN and 
activating the PI3K/Akt pathway

136

Abbreviations; MDSC: Myeloid-Derived Suppressor Cell, eMDSC: early-stage Myeloid-Derived Suppressor Cell, RORα: Retinoic acid-related Orphan 
Receptor α, IκBα: NF-Kappa-B Inhibitor Alpha, NF-κB: Nuclear Factor Kappa B, PTEN: Phosphatase and Tensin homolog, PI3K: Phosphoinositide 
3-kinase, Hbp1: High-mobility group box transcription factor 1, Prkar1a: Protein kinase cAMP-dependent type I regulatory subunit alpha, PBMC: 
Peripheral Blood Mononuclear Cell, PD-L1: Programmed Death-Ligand 1, JAK: Janus Kinase, STAT: Signal Transducer and Activator of Transcription, 
SOCS: Suppressor of Cytokine Signaling , TME: tumor microenvironment, PIAS3: Protein Inhibitor of Activated STAT 3, CLL: Chronic Lymphocytic 
Leukemia, PDAC: Pancreatic Ductal Adenocarcinoma, Smad4: Smad Family Member 4, ITM2B: Integral Membrane Protein 2B, C/EBPα: CCAAT/
Enhancer Binding Protein α, RUNX1: Runt-related transcription factor 1, SHIP-1: SH2-containing Inositol-5'-Phosphatase 1, FOG2: Friend Of Gata 2, 
TGF-β1: Transforming Growth Factor β1.

Table 4. Continued.

Fig 4. Interplay between miRNAs and MDSCs/DCs in TME. Abbreviations: TME: tumor microenvironment, ECM: extracellular matrix, miRNA: microRNA, 
TAN: tumor-associated neutrophils, NK cell: natural killer cell, Treg: T regulatory cell, DC: dendritic cell, CAF: cancer-associated fibroblast, MDSC:  myeloid-
derived suppressor cells, CTL: cytotoxic T cells, MQ: macrophage, HCC: hepatocellular carcinoma, STAT: signal transducer and activator of transcription, 
RUNX1: runt-related transcription factor 1, SOCS: suppressor of cytokine signaling, PTEN: phosphatase and tensin homolog, PD-L1: programmed cell 
death ligand 1, GC: gastric cancer, CLL: chronic lymphocytic leukemia, MHC: major histocompatibility complex, PDAC: pancreatic ductal adenocarcinoma, 
TLR: Toll-like receptor, TNF: tumor necrosis factor, VEGF: vascular endothelial growth factor.
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via regulating the Notch-RBP-J signaling pathway, while 
conversely, the miR-133a inhibitor was found to stimulate 
these processes.141 Studies have highlighted that the 
downregulation of c-Fos and Arginase-2, both identified 
as targets of miR-155, is critical for the maturation and 
functional capabilities of DCs.142,143 Accordingly, the 
expression levels of c-Fos and arginase-2 are increased 
in lymph node DCs of miR-155−/− breast tumor-
bearing mice, underscoring the critical role of miR-155 
expression for the efficient maturation process of DCs 
in breast cancer.144 The internalization of GC-derived 
miR-17-5p by immature DCs can impede the expression 
of maturation markers, including CD80, CD86, and 
MHC-II, and endocytosis activity of DCs stimulated by 
lipopolysaccharide, hence supporting GC progression.145 
Exosomes released by pancreatic cancer cells containing 
miR-203 can reduce the expression of TLR-4, activation of 
NF-kB signaling pathway, and production of downstream 
cytokines like TNF-α and IL-12 in DCs.146 Under hypoxic 
conditions, melanoma cells can release miR-192-5p into 
the extracellular space through a mechanism involving 
Connexin-43 (Cx43)-mediated gap junctions, which DCs 
and CTLs can then take up. The transfer of miR-192-5p 
to CTLs through this mechanism leads to the suppression 
of CTL-mediated cytotoxic activity via downregulating 
ZEB2, a transcription factor involved in the expression of 
granzyme A.147 According to Jia et al, the translation of 
the p38 (a vital member of the MAPK14 family proteins) 
gene is impaired by miR-155, leading to a decrease in 
the ability of DCs to secrete IL-12 and polarize Th1 cells. 
Consequently, this process diminishes the function of 
DCs in inducing anti-tumor immunity in an endometrial 
cancer mouse model.148 In a melanoma mice model, miR-
22 has been discovered to downregulate the p38 gene post-
transcriptionally by inhibiting mRNA translation. This 
downregulation subsequently disrupted the production of 
DC-derived IL-6 and the stimulation of Th17 cells.149 Guo 
et al have provided evidence suggesting that miR-582 and 
its target CD1B may have significant implications in the 
dysfunction of DCs and could potentially be associated 
with clinical outcomes in advanced lung adenocarcinoma 
patients.150 All of these alterations in DCs can lead to the 
escape of the tumor cells from the immune surveillance. 
On the other hand, tumor-associated miRNAs have the 
ability to manipulate DCs and exploit their plasticity in 
order to facilitate the progression of tumors. In line with 
this, Hsu et al. have found that the CXCL1, which is highly 
prevalent in DCs derived from colon cancer patients, as 
well as SW620-conditioned tumor-associated DCs, can 
promote cancer stem cell characteristics.151 

It is worth noting that CXCL1 enhances the metastatic 
capability of colon cancer cells by promoting cell migration, 
upregulating matrix metalloproteinase-7 expression, and 
inducing EMT via enhancing miR-105 in colon cancer 
cells through a paracrine mechanism.151 The presence of 

CXCL1 is associated with an increase in the expression of 
potential oncogenes in colon cancer, specifically PTHLH, 
TYRP1, FOXO1, TCF4, and ZNF880.151 The prostate 
cancer cell antigens induced the DCs to generate miR-
410-3p, which is a highly complementary counterpart 
of PC-related miR-410-5p.152 miR-410-5p can enter into 
the DCs and this internalized miR-410-5p caused the 
degradation of miR-410-3p via base pairing mechanism 
by argonaute-2, leading to the inhibition of its function 
in suppressing tumor angiogenesis.152 Pyfferoen and 
colleagues have provided evidence indicating that the 
presence of hypoxia stimulates the expression of miR-
31 in myeloid DCs.153 Accordingly, the upregulation of 
miR-31-3p in DCs results in the alteration of cellular 
morphology in lung carcinoma cells, leading to a 
decrease in sphericity and the emergence of filopodia-like 
protrusions.153 These changes in shape are characteristic 
of invasive tendencies.153 Besides, both miR-31-3p 
overexpression and exposure to hypoxia were shown to 
elevate the secretion of VEGF by DCs153 (Table S1, Fig. 4).

NK cells 
NK cells, which are the innate immune system's first line 
of defense, use their cytotoxic and immune-regulatory 
abilities to combat tumors. The observed effects result 
from the binding of specific molecules produced by 
cancerous or stressed cells to receptors on the surface of 
those cells.154 NKG2D and its ligands, two key activators, 
UL16 Binding Proteins 1–6 (ULBP1–6) and MHC class 
I chain-related proteins A and B (MICA/B), modulate 
the cytotoxic potential of NK cells against cancer cells.155 
While the overexpression of NKG2D ligands in cancer 
cells enhances the antitumor response mediated by 
NKG2D, reducing or eliminating NKG2D in mice impairs 
their ability to recognize and attack tumor cells.156,157

miRNAs play a role in regulating the capacity of NK 
cells to eradicate cancer cells. In this regard, it has been 
demonstrated that miR-20a plays a regulatory role in 
determining the sensitivity of CRC cells to NK cell-
mediated attack by targeting MICA.158 Also, it was 
reported that pterostilbene-induced reduction of miR-20a 
in prostate cancer cells may raise MICA/B expression and 
decrease TGF-β1 production, which in turn may improve 
NK cell-mediated cytotoxicity against prostate cancer 
cells and provide a viable strategy for boosting anti-PC-
immune-responses.159 Studies have demonstrated that 
miR-29b, abundantly expressed in NK cells, specifically 
regulates their function by inhibiting the activity of 
the transcription factors Eomes and Tbx21 in a mouse 
model. As a result, it has been implicated in both the 
terminal maturation and functions of NK cells as well as 
the conversion of NK progenitor cells to immature NK 
cells.160,161 The administration of miR-124 by EV had 
synergistic anti-tumor effects by decreasing M2 microglial 
polarization and limiting the development of human 
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glioblastoma cells by recruiting NK cells to the tumor.162 
According to Shi et al, in BC cell lines, overexpression of 
miR-338-3p reduced the release of ADAM17 (a disintegrin 
and metalloprotease-17). Moreover, boosting granzyme 
B, CD16, and NKG2D production in NK cells can be 
achieved through the use of anti-ADAM17 antibody 
therapy or the overexpression of miRNA-338-3p. These 
educated NK cells restricted BC cell line viability. The 
results collectively suggest that estrogen exerts a negative 
influence on miR-338-3p expression in BC cells, thereby 
favoring the survival of these cells and compromising the 
function of NK cells by upregulating ADAM17, a process 
that ultimately hampers NK cell activity.163 Pathania et al 
discovered that the miR-29 family promotes the activation 
of NK cell immune responses in neuroblastoma (NB) by 
targeting the B7-H3 checkpoint. Their findings revealed 
that deceased patients displayed a depletion of miR-
29 family members (miR-29a, miR-29b, and miR-29c), 
which had an inverse relationship with B7-H3 expression 
in NB patients. Both overexpression and knockdown 
studies showed that these miRNAs break down B7-H3 
mRNA, which increases the cytotoxicity and stimulation 
of NK cells. Moreover, experiments conducted in vivo 
showed that members of the miR-29 family cause tumor 
cell apoptosis, enhance NK cell infiltration and activation, 
and decrease tumorigenicity, macrophage infiltration, 
and microvessel density.164 A recent study revealed that 
activated MYC in cancer cells induces a signaling pathway 
involving miR-29c-3p and CD276, which enables tumor 
cells to evade immune surveillance by suppressing the 
cytotoxic activity of NK cells in various types of cancer.165 

Chang et al reported that treatment of NK92 cells 
with lung cancer cell line CL1-5 derived EVs or their 
transfection with miR-150-5p mimics resulted in elevated 
IL-10 expression and reduced CD226 expression, lytic 
capacity, and IFN-γ production.166 In contrast, the ability 
of hypoxic CL1-5 derived EVs to downregulate CD226 
expression was significantly attenuated by the presence 
of miR-150-5p inhibitors, which in turn augmented 
the cytotoxic activity and IFN-γ production of NK92 
cells, while suppressing IL-10 secretion.166 Exosomes 
derived from the bladder cancer cell line T24, have been 
demonstrated to contribute to the malfunction of NK 
cells by reducing their survival and their capacity to 
cytotoxically attack target cells. During this period, the 
expression of key functional receptors (NKG2D, NKp30, 
and CD226) on NK cells was significantly diminished, 
and their release of cytolytic proteins (granzyme-B and 
perforin) was also compromised by the presence of 
exosomes derived from T24 cells. The interference of 
miR-221-5p and miR-186-5p with the stability of DAP10, 
CD96, and the perforin gene mRNAs in NK cells has been 
demonstrated, and these genes may be targets for bladder 
cancer treatment.167 Hypoxia was found to decrease 
the expression of miR-1275 in NK cells as well as their 

cytotoxicity. The expression of the tumor suppressor axis 
inhibition protein (AXIN2) in NK cells is downregulated 
as a result of increased miR-1275 levels, which allows 
pancreatic cancer cells to evade the immune system.168 
B7-H3 is an immunological checkpoint molecule that 
belongs to the B7 family. It has been demonstrated that 
B7-H3 controls the peripheral immunological response 
mediated by T cells and is linked with NK cell exhaustion 
in ovarian cancer. miR-29c directly targets B7-H3 in 
vitro, increasing the anti-tumor activity of NK cells and 
preventing NK cell exhaustion.169 miR-519a-3p promotes 
resistance to apoptosis in breast cancer cells by targeting 
and downregulating TRAIL-R2, caspase-8, and caspase-7, 
reducing their response to apoptotic signals. It also 
impairs NK cell-mediated tumor killing by suppressing 
NKG2D ligands (ULBP2 and MICA) on tumor cells.170

In addition, exosomes secreted from NK cells can also 
contain different miRNAs and have important effects 
on cancers. In this regard, it has been reported that 
exosomes generated from NK cells, which include miR-
30c, were found to have dramatically reduced levels of 
miR-30c in the primary NK cells of patients with lung 
cancer. Overexpression of miR-30c increases TNF-α 
and IFN-γ production and boosts IL-2-treated NK cells' 
ability to kill lung cancer cells, suggesting its potential 
to improve NK cell cytotoxicity. Therefore, modulation 
of miR-30c expression could potentially enhance the 
cytolytic capacity of NK cells against lung cancer cells. 
These findings indicate that controlling the expression 
of miR-30c might be a potential strategy for improving 
the effectiveness of NK cell-based treatments against 
tumors.171 Another research used microarray analysis to 
investigate the miRNA composition of NK exosomes. 
Certain miRNAs, such as let-7b-5p, miR-16-5p, miR-
342-3p, miR-24-3p, and miR-92a-3p, were shown to be 
substantially expressed in NK exosomes. Furthermore, 
it was shown that by specifically targeting the cell cycle 
regulator CDK6, NK exosomes effectively enhance let-
7b-5p expression in pancreatic cancer cells and cause 
cell proliferation suppression.172 Based on another 
study, IDO1/miR-18a/NKG2D/NKG2DL axis has a key 
function in the regulation of NK cell function. IDO1 
impairs the cytotoxicity of NK cells by suppressing 
NKG2D/NKG2DLs via enhancing miR-18a.173 Pathania 
et al demonstrated that miR-15a and miR-15b may 
stimulate the activation and cytotoxicity of CD8 + T and 
NK cells against Neuroblastoma in vitro. Furthermore, 
the injection of murine cells that express miR-15a resulted 
in a decrease in tumor growth, a reduction in tumor blood 
vessels, and an increase in the activation and infiltration 
of CD8 + T and NK cells into the tumors in vivo. They 
further demonstrated that inhibiting the expression of 
PD-L1 on the cell surface by employing an anti-PD-L1 
antibody restored the CD8 + T and NK cell-mediated anti-
tumor responses elicited by miR-15a/miR-15b.174 miR-92 
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has higher levels of expression in ovarian cancer tissue as 
compared to normal cancer tissue. Transfecting miR-92 
into ovarian cancer cells resulted in an increase in cell 
proliferation. Additionally, there was an apparent increase 
in migratory capability and colony formation after miR-
92 transfection. Furthermore, the decrease in LATS2 
(Large tumor suppressor kinase 2) expression led to the 
enhanced movement of YAP1 (yes-associated protein 1) 
and the elevation of PD-L1, which subsequently inhibited 
the activity of NK cells and facilitated the apoptosis of T 
cells.175 When activated by IL-2, NK cells displayed reduced 
expression of miR-301a-3p, accompanied by increased 
production of IFN-γ and TNF-α. Overexpression of 
hsa-miR-301a-3p, however, decreased the levels of these 
cytokines and impaired NK cell cytotoxicity. Notably, 
RUNX3 was identified as a target of hsa-miR-301a-3p. By 
inhibiting NK cells' ability to fight NSCLC cells, hsa-miR-
301a-3p increased tumor development, according to in 

vivo studies.176 The overexpression of miR-130a enhanced 
the ability of NK cells to kill NSCLC cells. Further study 
revealed that miR-130a targets STAT3 and that the 
overexpression of STAT3 diminished the improvement 
in killing activity of NK cells against NSCLC cells induced 
by miR-130a. Therefore, miR-130a enhances the killing 
capacity of NK cells against NSCLC cells by targeting 
STAT3177 (Table S2, Fig. 5). One of the main obstacles to 
all cancer treatment strategies, including miRNA-based 
immunotherapy, is the heterogeneity of cancer cells. The 
acquisition of novel mutations may lead to heterogeneity 
and the formation of tumor subclones that are resistant to 
treatment.178 The capacity of cancer cells to change their 
biological state in response to therapeutic pressure, for 
example, by shifting into a quiescent state when exposed 
to drugs that kill rapidly proliferating cells, is a second 
aspect of heterogeneity.179 Tumor heterogeneity must thus 
be taken into account for improved efficacy when using 

Fig 5. Interplay between miRNAs and NK cells/TANs/γδ T cells in TME. Abbreviations: TME: tumor microenvironment, ECM: extracellular matrix, miRNA: 
microRNA, TAN: tumor-associated neutrophils, NK cell: natural killer cell, Treg: T regulatory cell, DC: dendritic cell, CAF: cancer-associated fibroblast, 
MDSC:  myeloid-derived suppressor cells, CTL: cytotoxic T cells, MQ: macrophage, NSCLC: non-small cell lung cancer, CRC: colorectal cancer, IFN: 
interferon, STAT: signal transducer and activator of transcription, GC: gastric cancer, NLRP3: NLR family pyrin domain containing 3, NGAL: Neutrophil 
Gelatinase-Associated Lipocalin, HCC: hepatocellular carcinoma.
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miRNAs as targets for altering immune cells in the TME.

Tumor-associated neutrophils 
Since neutrophils can be quickly attracted to the location 
of the immunological response, they are referred to as 
"first-line defense" cells.180 Neutrophils utilize various 
mechanisms, including phagocytosis, degranulation, and 
the formation of neutrophil extracellular traps (NETs), 
to mount a non-specific defense against pathogens 
and combat infection.180 Neutrophils have been found 
to possess immunoregulatory abilities, which involve 
the release of various substances such as cytokines and 
EVs. Significant biological consequences can result 
from even small changes in the concentration of a single 
miRNA molecule. miRNAs frequently aggregate into 
clusters, which are functional assemblages that regulate 
numerous constituents of a singular activity or individual 
constituents of interconnected pathways.181 Over 100 
distinct miRNA molecules that control gene expression 
in immune cells have been documented.182 Human 
neutrophils currently exhibit 148 miRNA molecules, 
although this count is subject to modification when 
further ones are identified.182 Research has confirmed 
that miRNA molecules regulate every phase of immune 
system cell growth and function, spanning from stem cells 
to activated effector cells involved in both acquired and 
innate immune responses.183 For example, miR-130a plays 
a key role in the early stages of neutrophil development, 
where it is highly expressed and regulates the activity of 
crucial transcription factors such as MYB (myeloblastosis 
proto-oncogene) and CBF-β (core binding factor beta 
subunit). Moreover, it has been proposed that miR-
130a may also influence the expression of proteins like 
myeloperoxidase (MPO) and proteinase 3, which are 
essential for neutrophil function.184 In addition, miR-130a 
also modulates the expression of the transcription factor 
Smad4, a key regulator of TGF-β1. Interestingly, elevated 
levels of miR-130a impede the normal progression of 
neutrophil progenitors out of the cell cycle and the 
development of secondary granule proteins, a process 
mediated by the C/EBP-ε transcription factor.185 C/EBP-ε 
is recognized as the primary factor that controls the final 
phase of neutrophil development. The synthesis of the 
secondary granule proteins lactoferrin, cathelicidin, and 
lipocalin-2 is inhibited when miR-130a is overexpressed, 
which results in the developing neutrophils with an 
immature phenotype.186 Hawez et al discovered that 
miR-155 plays a critical role in the formation of NETs 
by targeting the mRNA of peptidyl arginine deiminase 
4 (PAD4), an enzyme involved in histone citrullination 
during NETosis.187 Moreover, Chen et al, revealed that 
vascular endothelial cells (VECs) treated with oxidized 
low-density lipoprotein (ox-LDL) that contain exosome-
encapsulated miR-505 aggravate atherosclerosis via 
causing NET formation. They discovered that ox-LDL 

treatment may trigger the NF-κB pathway, which in turn 
triggers the transcription of miR-505. The high expression 
of miR-505 encapsulated in exosomes then targeted 
and inhibited SIRT3 in neutrophils, causing an increase 
in ROS levels and neutrophil NET release.188 Tumor-
associated neutrophils (TANs) are cells that are present 
within the TME, and their roles in regulating tumor 
progression have been the focus of increasing research. 
Studies suggest that TANs have two distinct roles in this 
regard. The first type of TANs, known as N1 TANs, are 
thought to play an antitumor role, whereas N2 TANs 
promote tumor proliferation, metastasis, drug resistance, 
and recurrence by releasing various proteins, NETs, and 
lipids.189,190 

In addition, miRNAs play a key role in regulating 
the differentiation of neutrophils in various cancers. 
In this regard, a correlation has been identified 
between neutrophil-derived exosomes (Neu-Exo) 
and the advancement of lung cancer. Exosomal miR-
4466, generated by nicotine-activated N2 neutrophils, 
fosters tumor cell stemness and metastasis. Cancer-
free individuals with a smoking history have exhibited 
higher levels of exosomal miR-4466 in their serum/
urine, implying that miR-4466 could serve as a valuable 
prognostic biomarker for predicting the heightened risk 
of brain metastasis.191 miR-223-3p was found enriched in 
serum Neu-Exo and elevated in GC patients compared 
to benign gastric disease patients and healthy controls. 
Exosomal miR-223 derived from CD66b + neutrophils is 
associated with tumor progression, metastasis, and drug 
resistance and may be a potential biomarker for cancer 
diagnosis and prognosis.192 Furthermore, the miR-223 
molecule can have an effect on the process of neutrophil 
differentiation and can influence the accumulation of 
neutrophils in the lungs by regulating the production of 
CXCL2 and CCL3.193 Furthermore, exosomal miR-223 
derived from neutrophils downregulates the expression 
of components in the canonical NF-κB pathway, thus 
suppressing inflammasome activation and the production 
of inflammatory cytokines.194 Neutrophil-derived 
exosomal miR-223 also directly targets STAT1, STAT3, 
and NLRP3 and it regulates genes involved in cancer cell 
proliferation, survival, differentiation, immune evasion, 
adhesion, and migration.194 Researchers have identified a 
potential link between TANs and the microenvironment 
of CRC. A recent study analyzed the distribution of 
miRNAs in N2-type neutrophils and discovered that two 
specific miRNAs, hsa-miR-4780 and hsa-miR-3938, were 
expressed at different levels compared to other types of 
neutrophils. Further investigation revealed that these 
miRNAs regulate the expression of TUSC1 and ZNF197 
genes. It is thought that these miRNAs may play a role 
in regulating CRC invasion and metastasis by influencing 
the behavior of N2-type neutrophils.195 Additionally, 
neutrophil-derived products have been found to influence 
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tumor growth. One such product is neutrophil gelatinase-
associated lipocalin (NGAL), a small protein molecule 
involved in the interaction between epithelial and 
mesenchymal cells in tumors. The expression of NGAL in 
various types of cancer cells, including breast, endometrial, 
and pancreatic carcinomas, can be controlled by miR-138. 
In a study on pancreatic cancer cells, introducing miR-
138 led to the suppression of NGAL, which subsequently 
reduced tumor cell proliferation and metastasis.196 
The administration of miR-146a elicits a significant 
reduction in immunosuppressive neutrophil levels and a 
corresponding increase in CD8 + T cell tumor infiltration, 
which is associated with a reduction in ovarian tumor 
burden. miR-146a targets TRAF6 and IRAK1 to inhibit 
NF-κB activation and decrease neutrophil infiltration 
into tumors through CXCL1 downregulation.197 Also, 
miR301b-3p plays a crucial role in enabling TANs to 
enhance stem cell-like properties in HCC cells. Its action 
specifically boosts stem cell-like traits in HCC cells and is 
essential to the effects induced by TANs. The interaction 
between TANs and miR-301b-3p leads to the activation of 
NF-κB signaling and an increase in CXCL5 expression.198 
A recent study has made a significant discovery, revealing 
that neutrophil miRNA profiling may serve as a novel 
class of circulating biomarkers for the early detection 
of NSCLC. The research analyzed a dataset of 82 lung 
cancer patients and 73 healthy controls and identified 
two specific miRNAs (miRs-26a-2-3p and 574-3p) that 
demonstrated significant potential as diagnostic markers. 
These biomarkers showed an impressive sensitivity of 
77.8% and specificity of 78.1% in detecting NSCLC. This 
finding suggests that these circulating neutrophil miRNAs 
may hold promise as a reliable tool for identifying lung 
cancer199 (Table S3, Fig. 5).

γδ T cells
γδ T cells are a unique subset of T cells with innate-
like characteristics, characterized by the existence of 
heterodimers of T cell receptor (TCR) γ and δ.200,201 γδ 
T cells are abundant in peripheral tissues like the skin, 
lungs, and intestines. Their development in the thymus 
is unaffected by positive or negative selection. The 
unconventional innate-like T cells can quickly respond 
to infection and tumors via direct cytotoxicity and 
cytokine release after recognizing antigens in an MHC-
unrestricted manner.200 γδ T cells and αβ T cells exhibit 
distinct characteristics in their development, distribution, 
proliferation patterns, and functional activities. These 
differences are closely linked to the miRNA-based 
regulatory mechanisms. While significant progress 
has been achieved in understanding miRNA-mediated 
regulation in αβ T cells, there is still a considerable 
knowledge gap regarding the functions of miRNAs in γδ 
T cells.200

Elaborating on the function of miR-382 in regulating the 

C-FLIP/caspase-8 pathway can provide valuable insights 
into its role in γδ T cell-driven cytotoxicity against HCC. 
Research by Chen et al. revealed that miR-382 expression 
is decreased in HCC tissues and cell lines.202 Elevated 
expression of miR-382 enhanced the susceptibility of HCC 
cells to γδ T cell-mediated cytotoxicity by targeting the 
mRNA of cellular FADD-like interleukin-1β-converting 
enzyme-inhibitory protein (c-FLIP). The suppression of 
c-FLIP by miR-382 significantly facilitated the destruction 
of HCC cells by boosting caspase-8 activation during γδ 
T cell treatment.202 c-FLIP regulates apoptosis by serving 
as an endogenous inhibitor of death receptor-induced 
apoptosis through the caspase-8 pathway. It interferes 
with the activation of caspase-8, thereby preventing the 
initiation of the extrinsic apoptotic signaling cascade.203 
miR-382 reduces the inhibitory action of c-FLIP, allowing 
caspase-8 to be activated. Once activated, caspase-8 
cleaves and triggers downstream effector caspases, such 
as caspase-3, ultimately resulting in apoptosis of cancer 
cells. This mechanism highlights the therapeutic potential 
of miR-382 in enhancing the sensitivity of HCC cells to 
immune cell-mediated cytotoxicity.204 Given the need to 
investigate how miRNAs regulate circulating human γδ 
T cells, a study was conducted on healthy donors. This 
study analyzed miRNA expression patterns in peripheral 
γδ T cells. There were 14 miRNAs expressed differently 
by peripheral αβ T cells and γδ T cells. Subsequent 
investigations into these miRNAs validated that miR-
125b-5p and miR-99a-5p induce apoptosis in γδ T cells and 
suppress their activation, diminishing their cytotoxicity 
to tumor cells.205 miR-181a has been identified as a novel 
molecular regulator of functional differentiation in 
human γδ T cells. It has been demonstrated that both 
its -5p and -2-3p strands regulate T cells' differentiation 
and responsiveness towards type 1 effectors by targeting 
Map3k2 and Notch2 mRNAs. Map3k2, a kinase involved 
in the MAPK signaling pathway, plays a crucial role in 
regulating inflammatory responses. By targeting Map3k2, 
miR-181a modulates the production of pro-inflammatory 
cytokines and influences γδ T cell responses within the 
tumor microenvironment.206 Notch2, a key regulator 
in the Notch signaling pathway, is essential for T cell 
differentiation and lineage commitment. Through the 
suppression of Notch2 expression, miR-181a alters 
the functional plasticity of γδ T cells, impacting their 
anti-tumor activities.207 These regulatory mechanisms 
are finely tuned by the TME's inflammatory and 
immunosuppressive cues, highlighting the potential of 
miR-181a as a therapeutic target for modulating γδ T cell 
functions in cancer.208

T cells are a critical part of the immune system. They 
target a wide variety of malignant cells with their cytolytic 
and inflammatory properties. In clinical trials, only 10-
33% of patients have shown objective responses. Thus, 
it is evident that to manipulate γδ T cells in clinical 
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settings, it is vital to understand the mechanisms 
involved in regulating their activation and functional 
differentiation.209 In this regard, Gordino et al observation 
revealed that an increase in γδ T cell proliferation occurred 
simultaneously with a decrease in their differentiation 
into type 1 effectors. This was due to miR-181a and miR-
196b overexpression. Additionally, miR-135b, miR-10a, 
and miR-20b were found to impede γδ T cell proliferation 
in their preliminary findings, without affecting their anti-
tumor functions. If confirmed, these findings could have 
significant implications for γδ T cell manipulation in 
cancer immunotherapy.209 Recent studies have elucidated 
how miR-146a modulates γδ T cell functions by targeting 
Nod1, an intracellular pattern recognition receptor 
involved in immune signaling. miR-146a is highly 
expressed in γδ27⁻ T cells, a subset preprogrammed 
to produce IL-17.210 This microRNA acts as a post-
transcriptional regulator, limiting the production of IFN-γ 
in these cells.211 By targeting Nod1 mRNA, miR-146a 
reduces Nod1 protein levels, thereby influencing γδ T cell 
plasticity, the ability of these cells to adapt their functional 
profile in response to environmental cues.210 Nod1 plays 
a crucial role in promoting IFN-γ production in γδ27⁻ 
T cells. In the absence of miR-146a, increased Nod1 
expression leads to the emergence of γδ T cells capable 
of producing both IL-17 and IFN-γ, indicating enhanced 
functional plasticity.211 Conversely, Nod1-deficient mice 
exhibit a lack of multifunctional IL-17⁺ IFN-γ⁺ γδ27⁻ T 
cells and show increased susceptibility to infections, such 
as Listeria monocytogenes, highlighting the importance 
of Nod1 in effective immune responses.210,212 The miR-
146a/Nod1 axis also affects crosstalk with other immune 
cells. γδ T cells influence the activation and differentiation 
of various immune cell types, including macrophages 
and DCs through modulating cytokine production.211 
For instance, the balance between IL-17 and IFN-γ 
production can shape the inflammatory milieu, altering 
the recruitment and activation of innate immune cells, 
which in turn modulate adaptive immune responses.210,212 
The co-regulation of neighboring genes is a complex 
process influenced by various factors. Researchers 
have discovered that miR-206/133b and IL-17A are 
both inducible by IL-23 signaling, implying that shared 
regulatory elements may contribute to their coordinated 
regulation. The activation of STAT3 by IL-23/p19 leads to 
direct binding of phosphorylated STAT3 to the promoters 
of IL-17A and IL-17F, suggesting that both chromatin 
remodeling and shared regulatory elements may play a 
role in the coordinated regulation of miR-206/133b and 
IL-17A.213 The recent finding highlights the intriguing 
phenomenon of co-regulation between miR-133b and 
miR-206 with the Il17a/F locus, a feature that is unique 
to T cell differentiation. Interestingly, this characteristic 
is conserved across mouse αβ and γδ T cells, as well as 
human Th17 cells. As a result, miR-133b and miR-206 

have been identified as potential biomarkers for T cells 
that produce IL-17.213 (Fig. 5)

Tumor heterogeneity significantly influences the 
miRNAs' involvement in immune regulation. For 
instance, miR-382 has been shown to sensitize HCC cells 
to γδ T cell-mediated cytotoxicity by targeting c-FLIP.202 
In breast cancer, miR-382 has been linked to tumor 
invasion by targeting distinct pathways, demonstrating 
the context-dependent nature of miRNA functions.214 
Similarly, miR-181a, which regulates γδ T cell plasticity 
through Map3k2 and Notch2 and promotes prostate 
cancer progression, demonstrates varying expression 
levels and effects in different tumor microenvironments, 
such as HCC, gastric and glioblastoma cancers.206,215-217 
miR-181a-5p is downregulated in HCC and inversely 
correlated with Egr1 expression. Functional studies reveal 
that miR-181a-5p overexpression suppresses HCC cell 
proliferation, while its suppression enhances proliferation. 
Mechanistically, miR-181a-5p directly targets Egr1, 
leading to the downregulation of the TGF-β1/Smad 
pathway.215 In gastric cancer, miR-181a acts as a negative 
regulator of autophagy in cisplatin-resistant SGC7901/
CDDP cells by targeting ATG5. Overexpression of miR-
181a enhances cisplatin sensitivity in vitro and reduces 
tumor growth in gastric cancer xenografts.216 miR-181a 
replacement in glioblastoma cells increases sensitivity to 
low-dose carmustine by promoting apoptosis, reducing 
viability, and causing cell cycle arrest. It regulates pro-
apoptotic and anti-apoptotic genes, suppresses metastasis 
via MMP-2 and Bach1 downregulation, and inhibits 
proliferation through AKT1 suppression, implicating the 
PI3K/AKT pathway.217 These differences highlight the 
importance of considering tumor-specific characteristics 
when designing miRNA-based therapies. Although the 
regulation of tumor-associated innate immune cells by 
miRNAs is the main emphasis of this study, miRNAs 
also affect adaptive immunity. For example, miR-155 
enhances T helper cell differentiation by targeting SOCS1, 
thus promoting anti-tumor immunity.218 On the other 
hand, miR-150 regulates B cell maturation and antibody 
production, indirectly influencing tumor progression.219 
Although it is still little understood, the interaction of 
miRNAs, γδ T cells, and adaptive immune cells shows 
promise for further research, particularly in the context 
of combination treatments that target both innate and 
adaptive immune responses.

Future perspectives on miRNA-based therapeutics
miRNA-based therapeutics hold a bright future in cancer 
treatment; however, translation from bench to bedside 
is still the most significant challenge, including suitable 
administration methods, stability within the body, tissue- 
and cell- specific targeting, and achieving the desired 
intracellular effects.220,221 Another complication during 
miRNA therapy is hypoxia in cancerous tissues, causing 
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downregulation of Drosha, Dicer, and AGO2, the main 
enzymes in biogenesis and proper actions of miRNAs.222 
Thus, only a limited array of miRNA therapeutics has 
progressed into clinical trials. Currently, two strategies 
mainly have been employed in miRNA therapy.223 One 
approach is miRNA restoration therapy, which uses 
synthetic oligonucleotides (miRNA mimics) to replace 
the downregulated or non-functional miRNA. The 
other approach is miRNA inhibition therapy, which 
aims to silence the overexpressed miRNA by utilizing 
antagonists (anti-miRs).223,224 The most common route 
for the administration of therapeutic miRNA is via either 
intravenous or intracutaneous injection.225 Meanwhile, 
researchers are developing new routes for administering 
miRNA-based therapies. One of these routes involves 
using a biodegradable 3D matrix containing miRNA 
therapeutics after removing the affected tissue during 
surgery.226,227 Another new approach that has attracted 
researchers' attention is the oral administration of 
plant-derived miRNAs. However, this route requires 
further exploration regarding its bioavailability and 
functionality.228 

Some modifications could potentially improve miRNA 
stability in the in vivo environments. One strategy is to 
replace the 2’-OH moieties with 2’-O-methyl (2’-O-Me) 
or 2’-fluoro (2’-F) substituents, reducing toxicity and 
increasing target binding.229 Conjugating mimics with 
cholesterol is another way to increase cellular uptakes.230 
Another approach is substituting the phosphodiester 
with phosphorothioate (PS) linkages, which cause 
evading intracellular nucleases.229 Conjugation of mimics 
and antitumor drugs is also reported as an effective 
approach; combining miR-15a and miR-194 mimics with 
Gemcitabine showed higher efficacy compared to the 
sole use of each one, both in vitro and in vivo models of 
PDAC.231 

Several clinical trials have been started focusing on 
miRNAs in various conditions. However, they could 
encounter some complications. The best instance is 
MRX34, miR-34a mimic, in a cancer treatment clinical 
trial (NCT01829971), which induced immune-related 
side effects and caused the death of four patients, 
which put an end to the trial.232,233 This miRNA was 
delivered systemically with a liposomal amphoteric 
strategy, which should be taken up by low PH cancerous 
tissue.234 However, pre-clinical experiments showed 
the deployment of this miRNA in the spleen and bone 
marrow, suggesting immune-related complication.235,236 
RG-101, an anti-miR-122 drug, was another therapeutic 
under investigation at the phase II clinical trial for treating 
chronic hepatitis C virus (HCV). Unfortunately, it has been 
terminated due to the induction of hyperbilirubinemia in 
several patients during treatment.237 

It is clear that miRNA-based therapies are still in 
the early clinical stages. Meanwhile, TRYNGOLZA, 

Lumasiran, Givosiran, Patisiran, and Inclisiran are the 
number of FDA-approved siRNA products, indicating 
the advancement in RNA-based therapies in the clinic. 
However, altering the miRNA levels in humans can result 
in physiological disruption and unknown reactions. 
Therefore, more investigation into the side effects of 
miRNAs is crucial, but it is not unlikely that miRNAs will 
receive FDA approval for clinical use in the near future.

Conclusion 
This study provides new insights into the intricate 
interactions among tumor-released miRNAs and 
the innate immune system within the TME. Unlike 
the prevalent focus on adaptive immunity in current 
literature, the manuscript highlights the dual functions 
of miRNAs in modulating immunosuppression and 
immunostimulation through innate immune cells, such 
as macrophages, dendritic cells, MDSCs, and NK cells. 
One of the main arguments made is that miRNAs play 
a context-dependent and dynamic role—some miRNAs 
promote tumor progression through M2 polarization or 
by expanding MDSCs, while others enhance anti-tumor 
responses through M1 polarization or by reactivating 
dendritic and NK cells.

Additionally, the research highlights the basic 
importance of the transport of miRNAs through 
extracellular vesicles, which allows for bidirectional 
communication between immune and tumor cells. This 
process is central to the establishment of feedback loops 
that maintain tumor-supportive microenvironments, 
thus further elucidating complexities in the framework 
of immune evasion. Notably, the comprehensive 
examination of regulatory processes mediated through 
miRNAs in diverse types of cancers presents great hopes 
for both therapy and diagnosis, particularly in regards 
to modulation of innate immune cell functions and 
bypassing drug resistance. Overall, the findings present 
opportunities for miRNA-directed strategies to transform 
the immune microenvironment within tumors and 
maximize the effectiveness of cancer immunotherapy.
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What is the current knowledge?
•	 TME shapes cancer progression through complex 

interactions with immune and stromal cells.
•	 Innate immune cells can both promote and inhibit 

tumor growth, influencing immunotherapy outcomes.
•	 Tumor-derived miRNAs regulate gene expression in 

immune cells and contribute to immune evasion and 
drug resistance.

What is new here?
•	 Our study highlights the dual roles of miRNAs in 

creating either immunosuppressive or immunogenic 
environments.

•	 The study suggests miRNA-innate immune cell 
interactions as novel targets to enhance cancer 
immunotherapy.
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