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Artificial intelligence–guided nanoparticle design for advanced 
targeted drug delivery
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After nearly 15 years of experience as a 
pharmaceutical nanotechnology researcher and 
journal editor, I have realized that emergent 

sciences are not accomplished through imagination. 
The integration of these sciences, in conjunction with 
the emergence of smart instruments, results in valuable 
and practical discoveries for researchers. I have always 
been curious about the potential of pharmaceutical 
nanotechnology and artificial intelligence (AI) to 
revolutionize the field of modern science, given the 
emergence of AI in the past decade. Suppose that smart 
drug delivery systems, which are based on nanoparticles 
(NPs) with unique features in terms of shape, size, surface 
charge, and surface manipulation, are freely roaming 
inside the body and delivering the drug precisely to the 
disease site.1,2 This not only optimizes the drug dose but 
also reduces the off-target side effects of the drug in healthy 
organs. Although the final designed systems have never 
performed precisely, researchers have consistently tried 
to construct such a smart system.3 In this editorial, I aim 
to provide a concise overview of the critical components 
of NPs design that directly influence their fate in the body. 
Additionally, I will elucidate the role of AI in the final 
defect-free design of these drug delivery systems, which is 
based on the structural properties of NPs. In the interim, 
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Abstract
This editorial aimed to explore the critical role of artificial intelligence (AI) in accurately 
predicting the structural design of nanoparticles (NPs) during targeted therapy of diseases. Based 
on experience, it is always surprising that perfect control of NP properties—including size, zeta 
potential, type, and surface modifications—using smart tools, will be more critical for optimal 
outcomes than trial and error. It is envisioned that the AI will change the game by predicting 
NPs' behavior, optimizing formulations, and speeding up clinical trials via the use of supervised 
learning, deep neural networks, graph neural networks, and generative models. In this context, 
various AI have led to an increase in drug loading efficiency and mRNA medication delivery. 
To achieve personalized therapy using NPs, however, issues including data quality, model 
interpretability, ethical frameworks, and multidisciplinary cooperation should be resolved. To 
enhance human knowledge and facilitate safer and more precise advancements in healthcare, this 
editorial urges the proper integration of AI in pharmaceutical/medical nanotechnology.
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Imagine that the next stage of autonomous singularity will 
happen in nanomedicine, which comprises autonomous labs 
and places where robotic platforms continually alter NPs designs 
via AI commands and the use of reinforcement learning on real-
time biological input.

Highlighted Note

I will explain the current and prospective constraints of 
this integration.

In nanomedicine, there exist nanoparticles whose 
physicochemical properties have a large impact on what 
happens to them biologically.4 From the hundreds of 
papers published each year, one thing is clear: design, 
not chance, is what makes things work. Think about 
what kind of particle it is. Gold and other metallic NPs 
are widely used as contrast agents in magnetic resonance 
imaging (MRI), but if they are not made properly, they 
can cause side effects.5 Polymeric particles, such as 
PLGA, on the other hand, cause sustained release, while 
liposomes have enabled the development of mRNA 
vaccines.6 Hybrid formulations may also include the best 
parts of each of these groups. The size of the particles 
is just as essential and has a big effect on biological 
processes. NPs that are less than 50 nm in size may get 
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through physiological barriers like the blood-brain 
barrier. NPs that are more than 200 nm in size are 
quickly removed from the body by the liver and spleen.7 
Surface charge and Zeta potential, which describe the 
electrical charge on the surface of particles, have a big 
consequence on how stable they are and how they spread 
throughout the body. Negatively charged particles 
(between -30 and -50 mV) are less likely to aggregate and 
therefore greater biological half-life. Positively charged 
particles ( + 30 mV), on the other hand, easily attach to 
cell membranes but cause toxicity and may be detected by 
the immune system by opsonization and formation of a 
protein corona.8

Functionalization of the surface of NPs with chemical 
or biological moieties, such as polyethylene glycol (PEG), 
folic acid, and an antibody, makes it more specialized and 
decreases opsonization. PEG coats increase the biological 
half-life of NPs in the body by keeping them from being 
cleared by the immune system. Targeting ligands, such 
as anti-HER2 antibodies, help NPs directly target cancer 
cells. These changes on the surface of the NPs decide 
whether they can get across the biological barrier (e.g., 
escaping from the rheological barriers of endothelial cells, 
crossing to blood-brain barrier, crossing mucosal barriers 
to go to the lung, or getting out of endosomal entrapment 
after being taken up by cells).1,9 On the other hand, the 
increased permeability and retention (EPR) effect in the 
endothelial cells of solid tumors may be utilized for the 
design of appropriate NPs with optimized size and shape 
for targeted accumulation of NPs in the site of solid 
tumors. Therefore, designs that aren't well optimized 
might cause off-target deposition and side effects.10

Experimental works, both in vitro and in vivo, are 
significant components of the conventional method for 
the formulation of NPs. In most cases, these procedures are 
both time-consuming and costly, and the outcomes often 
remain uncertain.11 Even minute alterations in the zeta 
potential or surface chemistry of NPs may have a significant 
influence on the biological functioning of the prepared NPs. 
This is where AI comes in as a useful tool. AI is capable 
of analyzing vast databases of laboratory findings, 
simulations, and clinical trials to make highly accurate 
predictions about the performance of NPs. This is in 
contrast to the traditional method of using AI as a simple 
trick. The process of bench-to-bed may be accelerated 
while simultaneously reducing the time and investment 
required for final formulation development. Generally, 
the use of AI in the process of NPs formulation has the 
potential to enhance efficiency, decrease side effects 
associated with conventional trials, and speed up 
innovation in the sector.

Adaptability is one of the most important aspects of AI 
strength. Supervised learning techniques, such as random 
forest models, can recognize patterns in many types 
of data sets that are rather complicated. For example, 

these algorithms are capable of making very accurate 
predictions about the formation of a protein corona on 
the surface of silver NPs. These models are helpful in 
the preparation of NPs that can avoid being detected by 
immune systems, in large part because of their balanced 
factors of size and surface charge.12

The links between protein corona composition/amount, 
tissue distribution, and potential toxicity of NPs are crucial 
for overcoming biological barriers in nanomedicine. 
Advanced algorithms like as XGBoost further clarify these 
interactions, which are essential for overcoming biological 
barriers.13 Besides, deep learning algorithms are very 
useful when applied to nonlinear and high-dimensional 
data sets. Utilizing deep neural networks alongside 
quantitative structure-activity relationship (QSAR) 
models enables predictions regarding the effectiveness of 
NP penetration into the tumor microenvironment, with 
a primary focus on the chemical structure of the surface, 
size, and shape of the particles.14

Importantly, graph neural networks (GNNs), which are 
used in AI-Guided Ionizable Lipid Engineering (AGILE), 
can be utilized to optimize lipid NP formulations by 
adjusting the pKa and chain length of phospholipids to 
enhance endosomal escape characteristics.15 Besides, 
scientists from Massachusetts Institute of Technology 
(MIT) tried to enhance mRNA delivery for colorectal 
cancer treatment using a COMET platform recently. 
This platform makes use of transformer-based designs 
to find successful lipid molecules from over 3,000 trial 
formulations.16 These advancements shed light on 
the significant role that AI plays an important role in 
enhancing the design and performance of NPs for use in 
medical/clinical applications.

This frontier has now been expanded to include 
generative learning as well as reinforcement learning. The 
use of generative adversarial networks (GANs) may lead 
to the development of innovative NP surface designs that 
enhance systemic delivery. Furthermore, reinforcement 
learning facilitates the gradual refinement of formulations 
to achieve deeper tumor penetration.17

NanoSafari is an AI Copilot for Biomedical 
Nanoengineering that utilizes large language models 
and data from over 20,000 articles to provide 
recommendations for delivery systems that outperform 
traditional approaches.18 Similarly, TuNa-AI uses 
different machine learning paradigms to optimize over 
1,200 NP formulations. As a result, it was able to achieve 
a 43% increase in loading efficiency for a different drug 
delivery system, such as Ventoclax.19

When these models are paired with neural ordinary 
differential equations (neural ODEs) to predict drug 
release, they may dramatically advance the discovery 
process and get the researcher closer to optimized/
customized nanomedicine. This includes anything from 
gene-guided cancer therapy to mRNA vaccinations.



Eskandani

   BioImpacts. 2025;15:33066 3

In light of these developments, I would like to remind 
the reasons why I set such a high importance on the goal 
of this journal: BioImpacts (BI) offers a unique platform 
for the concepts that will define the subsequent period of 
medical practice.

In spite of the above-mentioned developments, 
significant complications still exist. The area has 
to address concerns such as the quality of the data, 
reusing the existing data, the ethical use of AI, and the 
need for cooperation across different disciplines. Most 
importantly, the goal of investments in this field should be 
to enable human creativity via AI rather than to replace it.

Although the integration of AI and nanomedicine is 
seeing a fast transformation in the design of drug delivery 
systems, there are still a great deal of difficulties that hinder 
this field from making complete progress. The quality of 
the data and the standardization of the data are two of 
the most significant issues. There is a significant amount 
of data on NPs in drug delivery systems that is either 
insufficient, irregular, or the product of experimental 
techniques that are inconsistent. One of the most common 
reasons why direct comparison or transfer of models 
is not possible is because of the variability in particle 
manufacturing processes, experimental settings, and 
biological models. As a consequence, even very complex 
algorithms are capable of producing findings that are 
condition-dependent or biased. Therefore, to guarantee 
repeatability and efficient training of AI, it is necessary to 
establish data repositories that are available to the public, 
of high quality, and that adhere to the principles of FAIR 
(Findable, Accessible, Interoperable, and Reusable).

The interpretability and generalizability of models are 
the other drawbacks that must be overcome. It is common 
practice to refer to deep learning and transformer-based 
systems as "black boxes," despite the fact that they are 
capable of providing quite precise predictions. In the 
absence of a comprehensive comprehension of the 
fundamental dynamics, it continues to be challenging 
to integrate the insights acquired from AI into sensible 
design principles. Therefore, it will be essential to make 
efforts to build explainable AI (XAI) and modeling that is 
based on physics to close this gap and acquire confidence 
in clinics and regulatory settings.

In comparison to the development of new technology, 
ethical and regulatory frameworks have not evolved 
as much. Questions that remain unsolved include the 
responsible use of formulations developed by AI, openness 
in data sources, and the administration of intellectual 
property for nanomaterials designed by machine 
learning. Scientists, physicians, ethicists, politicians, 
and stockholders must engage in interdisciplinary 
conversation and work together in order to build 
governance models that not only encourage innovation 
but also guarantee safety and justice.

It is envisioned that the nanomedicine industry 

is critically dependent on the integration of human 
knowledge with technological advancements, rather 
than on the replacement of human expertise. AI should 
not be used to replace human skills but rather as a tool 
to complement such skills. Increasing the speed at which 
discoveries are made while preserving the integrity of 
scientific research may be accomplished by combining 
algorithmic predictions with empirical confirmation 
via practical experiments. Imagine that the next stage of 
autonomous singularity will happen in nanomedicine, 
which comprises autonomous labs and places where 
robotic platforms continually alter NPs designs via AI 
commands and the use of reinforcement learning on real-
time biological input.

Furthermore, a new age in personalized nanomedicine 
will be accompanied by the introduction of digital 
twins, patient-specific modeling, and multi-omics data. 
Nanoparticles that are customized to a person's genetic 
and metabolic profile may be produced using AI-driven 
optimization. Therefore, it is envisioned that the therapy 
would become safer and more successful as a result. We 
must continue to invest, collaborate transparently, and 
embrace open science if we are to achieve this aim.

The researcher, therefore, should focus more on this 
aspect of science, and policymakers as well as regulators 
should continue to invest, collaborate transparently with 
researchers, and embrace open science if they are to 
achieve this aim.

In conclusion, there are both positive and negative 
aspects to the integration between AI and nanomedicine. 
While it has the potential to revolutionize health, it 
requires rigorous ethical and scientific oversight. The 
researchers must address this revolution's current 
drawbacks with responsibility and planning if they are to 
see whether it can deliver on its promise of safer, more 
intelligent, and more inclusive healthcare.

We extend this offer to our readers, who are innovators, 
scientists, and physicians. Tell us what you learned and 
what you think, please. Together, we can transform the 
potential of AI and nanomedicine into practical solutions 
for the healthcare sector. These disciplines' convergence is 
significant in addition to being fascinating. The future of 
nanomedicine will be created one intelligent/optimized/
personalized nanoparticle at a time.
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What is the current knowledge?
•	 Nanoparticle behavior in the body is strongly influenced 

by physicochemical properties such as size, zeta 
potential, surface modifications, and material type.

•	 Conventional NP formulation relies heavily on trial-
and-error experimentation, which is time-consuming, 
costly, and often yields inconsistent outcomes.

•	 AI tools are increasingly used in healthcare and drug 
delivery research, with applications ranging from data 
analysis and prediction to optimization of complex 
biological systems.

What is new here?
•	 This editorial integrates core nanoparticle design 

determinants with modern AI capabilities to illustrate 
how predictive modeling can guide formulation 
decisions.

•	 It highlights how advanced algorithms—such as GNNs, 
generative models, and transformer-based platforms—
are now being applied to optimize NP structure, stability, 
targeting, and drug release.

•	 It provides a balanced perspective by outlining the 
practical limitations, ethical considerations, and 
translational barriers that must be addressed for AI-
guided nanomedicine to advance safely.
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