
Pourseif et al., BioImpacts. 2025;15:33072
doi: 10.34172/bi.33072
https://bi.tbzmed.ac.ir/

The role of bioinformatics algorithms in modern biopharmaceutical 
design: Progress, challenges, and future perspectives
Mohammad Mostafa Pourseif1,2,3,4* ID , Seyed Ali Baradaran Hosseini1,5, Seyed Hossein Khoshraftar1,6, Yadollah Omidi7 ID

1Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
2Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
3Engineered Biomaterial Research Center (EBRC), Khazar University, Baku, Azerbaijan
4Health Science and Technology Park, Tabriz University of Medical Sciences, Tabriz, Iran
5Department of Medicinal Chemistry, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
6Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
7Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort 
Lauderdale, FL, 33328, USA

From sequence to structure to function: Algorithmic 
acceleration
The biological design space is combinatorial by 
nature; billions of possible variants emerge from even 
a small protein scaffold. Traditional high-throughput 
experimentation, while powerful, remains costly, time-
consuming, and limited in scope. Algorithms close this 
gap through (i) sequence-structure prediction e.g., deep-
learning (DL) structural models e.g., D-I-TASSER,1 
(ii) molecular docking and interaction scoring,1 (iii) 
stability and solubility estimation under pharmaceutical 
constraints, (iv) immunogenicity and epitope assessments 
for therapeutic safety.2

The fusion of physics-based simulation with machine 
learning (ML) models allows us to traverse sequence 
landscapes with unprecedented accuracy. What once 
required a year of iterative assays can now occur in days 
through in silico screening.

AI-driven design: beyond predicting, toward inventing 
biology
Generative models such as variational autoencoders,3 
diffusion models,4 and protein language models,5 
have marked a significant shift in how biological 
design is approached. We no longer design by manual 
mutation; instead, we co-design with machines that 
learn evolutionary constraints and suggest novel 
therapeutic candidates. As practical examples, it should 
be mentioned that bioinformatics algorithms are actively 
driving real-world innovation across diverse classes 
of biopharmaceuticals. For instance, generative and 
predictive models are reshaping enzyme engineering by 
identifying mutations that improve catalytic efficiency 
in industrial and therapeutic pathways. In antibody 
development, DL–based affinity maturation can optimize 
both antigen-binding kinetics and manufacturability 
profiles early in the discovery pipeline, minimizing 
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Abstract
Bioinformatics algorithms empowered by artificial intelligence (AI), machine learning (ML), 
and deep learning (DL) are revolutionizing biopharmaceutical design and development. These 
methods accelerate discovery through rapid in silico prediction of protein structure, function, 
and immunogenicity, reducing experimental cost and time. Generative and hybrid frameworks, 
especially those combining AI with physics-informed neural networks (PINNs), enable 
interpretable, mechanism-aware modeling for enzyme kinetics and protein engineering. Multi-
omics integration and graph-based network algorithms support systems-level understanding 
of therapeutic targets. Despite remarkable progress, challenges persist, including limited data 
for novel modalities, interpretability gaps, and computational scalability. Recent advances such 
as AlphaFold 3, OpenFold, and NeuralPlexer, alongside evolving FDA and EMA guidelines for 
AI-derived therapeutics, are helping bridge innovation and clinical translation. The future of 
drug discovery will rely on synergistic human–algorithm collaboration to ensure responsible, 
reproducible, and clinically relevant biopharmaceutical innovation.
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downstream redesign cycles. Vaccine design also benefits 
significantly from immunoinformatics frameworks 
capable of predicting conserved,6 multi-epitope antigens 
against rapidly evolving pathogens, thereby accelerating 
the transition from genomic surveillance to clinical 
candidate bio-drugs.7

Likewise, computational humanization and 
immunogenicity de-risking strategies assist in tailoring 
therapeutic proteins to patient-specific contexts, 
effectively reducing attrition caused by adverse immune 
responses.8 This ongoing transition from predictive 
analysis to algorithmic creativity represents one of the 
most notable advances in therapeutic bioinformatics to 
date. Looking forward, emerging hybrid frameworks 
that couple generative AI with physics-informed neural 
networks (PINNs) are poised to further enhance model 
accuracy and mechanistic interpretability, particularly 
in enzyme kinetics and catalytic pathway prediction.9 
By embedding physical conservation laws within 
generative architectures, these hybrid systems overcome 
the limitations of purely data-driven models and enable 
more robust extrapolation to novel biochemical contexts. 
Recent applications of PINNs in biocatalysis and protein 
dynamics modeling have demonstrated improved 
reaction rate estimation and thermodynamic consistency 
compared to traditional ML approaches,10 positioning 
such methods as a promising direction for next-generation 
bioinformatics algorithms.

Systems-level design and multimodal data integration
Biopharmaceutical function is inherently multilayered. 
It implies that the linear sequence defines the structure, 
structure informs function, and ultimately cellular 
and immunological contexts determine therapeutic 
outcomes. To address this complexity, modern 
computational pipelines employ multi-omics integration 
algorithms such as feature-selection models that fuse 
transcriptomics, proteomics, and tumor-neoantigen 
profiles to prioritize more druggable and clinically 
actionable targets. Additionally, graph-based network 
inference techniques,11 including protein interaction 
adaptive graph convolutional network (e.g., PF-AGCN12) 
and immune repertoire network modeling (e.g., NAIR13), 
help to decipher how therapeutic proteins interfere with 
cell signaling cascades or evade immune activation. 
Importantly, these algorithmic predictions do not remain 
static; adaptive ML frameworks, such as reinforcement 
learning-guided optimization or Bayesian active learning, 
iteratively update their models throughout in silico design–
build–test cycles, as fresh biochemical and biophysical 
data are incorporated into the evaluation of therapeutic 
candidates. By converging heterogeneous biological 
layers into a unified computational interpretation, these 
methods yield far more reliable forecasts of clinical 
performance and manufacturability, enabling the early 

elimination of weak candidates well before costly pre-
clinical development.

Manufacturability and developability: The often-ignored 
algorithmic frontier
Despite functional breakthroughs, an engineered 
therapeutic must still be (i) expressible at scale, (ii) 
stable during purification and storage, (iii) low-
viscosity and aggregation-resistant in formulation, 
(iv) non-immunogenic in population-level diversity. 
Bioinformatics algorithms, for example, protein stability 
prediction using AlphaFold-Multimer14 or sequence 
optimization with RosettaDesign,15 increasingly 
incorporate such bioprocessability metrics early in the 
design stage. This prevents late-stage failures and aligns 
innovation with industrial feasibility.

Challenges: where algorithmic optimism meets biological 
reality
Despite great progress, several pressing limitations 
remain. First, sparse ground-truth data continues to 
restrict the reliability of AI-driven models, particularly 
in emerging therapeutic modalities such as bispecific 
antibodies,16 gene-editing enzymes,17 and de novo 
protein scaffolds,18 Unlike natural proteins with decades 
of accumulated structural, kinetic, and safety data, 
experimental annotations for these engineered entities are 
scarce, making models prone to overfitting and reduced 
real-world validity. This challenge is especially noted in 
enzyme engineering studies where only a tiny fraction of 
the mutational landscape has experimentally validated 
fitness measurements.

Second, interpretability and biophysical rigor remain 
critical barriers to clinical translation. Black-box neural 
networks may generate high-performing predictions, 
yet without mechanistic transparency regarding 
molecular stability, immunogenicity, or binding 
pathways, regulatory frameworks cannot confidently 
endorse algorithm-derived candidates for human 
use. Recent protein and antibody design pipelines19 
suggest that models incorporating explicit structural or 
thermodynamic constraints, for example diffusion-based, 
physics-informed frameworks such as RFdiffusion18 can 
outperform purely sequence-based language models such 
as evolutionary scale modeling (ESM) on several structure, 
binding, and developability benchmarks.20 Because 
these physics-informed models expose epitope:paratope 
interactions and stability features that map onto 
established biophysical criteria, they are also argued to 
be more amenable than purely statistical predictors to 
regulatory review and downstream manufacturability 
assessment.

Third, generalization across biological contexts is far 
from guaranteed. A therapeutic protein optimized in 
silico, for example, for high binding affinity in a specific 
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host cell line, may exhibit drastically different properties 
in vivo due to variations in glycosylation, immune 
response, proteolysis, or microbiome interaction. Studies 
in mRNA vaccine optimization highlight this gap,21-23 
where constructs showing strong predicted translation 
efficiency occasionally underperform in diverse patient 
populations with distinct innate immune sensitivities.24 
Notably, early mRNA vaccine development efforts such 
as BioNTech’s initial trials demonstrated that aggressive 
codon optimization, while computationally favorable, 
could unexpectedly reduce protein expression or alter 
immune activation profiles, underscoring the need for 
experimentally guided sequence refinement alongside 
algorithmic design. Recent advances such as the 
LinearDesign algorithm25 illustrate how jointly optimizing 
codon usage and structural stability can overcome such 
pitfalls, achieving markedly improved half-life and 
translation efficiency compared to traditional codon-
optimization benchmarks.

Fourth, computational scalability is still a practical 
constraint. High-fidelity simulation methods such as 
long-timescale molecular dynamics or mixed quantum 
mechanics/molecular mechanics (QM/MM) calculations 
offer deeper insight into conformational behavior and 
catalytic mechanisms but remain compute-intensive, 
limiting their feasibility in early discovery cycles where 
thousands of variants must be evaluated.26 Nevertheless, 
recent advances in structure prediction and molecular 
modeling such as AlphaFold 3,27 OpenFold,28 and 
NeuralPlexer,29 have begun to alleviate these constraints 
by achieving near–QM-level accuracy with markedly 
improved scalability, enabling broader in silico screening 
and iterative design at reduced computational cost.

Ethical and biosecurity considerations demand 
parallel innovation in model governance. The same 
generative design tools capable of discovering novel 
antitumor cytokines or antibody therapeutics can, 
in theory, be misappropriated to engineer highly 
virulent proteins or evade immunological detection. 
Accordingly, leading organizations are now advocating 
standardized transparency, access control, and safety 
guardrails to ensure that algorithmic advancements in 
biopharmaceuticals remain aligned with global health 
priorities.

From a translational and regulatory standpoint, 
agencies such as the U.S. Food and Drug Administration 
(FDA) and the European Medicines Agency (EMA) 
have begun articulating frameworks for the oversight 
of AI/ML-derived therapeutics, as highlighted in the 
FDA 2025 discussion paper on artificial intelligence in 
drug development. These initiatives emphasize the need 
for traceability, algorithmic interpretability, and model 
lifecycle management. Incorporating these governance 
principles into algorithmic pipelines can not only 
facilitate regulatory approval but also strengthen clinical 

confidence in AI-driven discovery, bridging the current 
divide between innovation and implementation.

Looking ahead: Human-algorithm collaboration
The future of biopharmaceutical innovation will be 
shaped by a paradigm in which human expertise and 
algorithmic intelligence operate as co-architects rather 
than counterparts. Cross-disciplinary fluency is no longer 
a desirable skill but an operational necessity: researchers 
must simultaneously wield advanced computational 
literacy, encompassing algorithm design, biostatistical 
robustness, and model reliability and deep molecular 
and pharmacological insight to contextualize predictions 
within biological and clinical reality. The role of 
computation is not to replace biological experimentation, 
but to transform it into an iterative, data-driven feedback 
system.

In this emerging framework, experimental measurements 
continuously recalibrate ML models; those models, in turn, 
generate novel design hypotheses and prioritize candidates 
with the highest prospects for therapeutic success; 
subsequent targeted validation enriches the collective 
knowledge base, further improving algorithmic accuracy. 
Such a closed-loop design–build–test–learn ecosystem, 
powered by scalable simulation, adaptive learning, and 
mechanistic interpretation, will catalyze more rapid and 
precise development of next-generation therapeutics. 
Ultimately, the most transformative breakthroughs will 
come from seamlessly integrating human intuition with 
computational optimization, where algorithms become 
intelligent partners in discovering and engineering the 
medicines of tomorrow.

Conclusion
Bioinformatics algorithms have evolved into strategic 
engines of therapeutic discovery, compressing timelines, 
reducing costs, and unlocking biological territories once 
inaccessible to experimental science alone. Yet, as we 
stand at this inflection point, we must maintain rigor, 
transparency, and interdisciplinary alignment to ensure 
responsible, clinically impactful innovation. The future 
of biopharmaceutical design will belong to those who not 
only understand biology and computation independently, 
but can engineer the interface between them.
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