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Introduction
Solid tumors, as a class of complex diseases, are 
characterized by their unique hallmarks, including: 
anomalous initiation and development through 
altered genotype and phenotype, self-organization and 
adaptation, collective specific behavior with molecular 
networks and irregular pattern formation and dynamism 

within tumor microenvironment (TME). Such traits 
result in an uncontrolled process of cell growth, division, 
metastasis and progression. 

The cancer cells, in comparison with normal cells, exhibit 
distinctive physiopathology, including: (a) autonomous 
mechanisms of cell growth, (b) divergence from the factors 
involved in growth inhibition, (c) evasion from anoikis, 
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Article Info Abstract
Introduction: Cancer is an intricate disorder/
dysfunction of cells that can be defined as a genetic 
heterogeneity in human disease. Therefore, it 
is characterized by several adaptive complex 
hallmarks. Among them, the pH dysregulation 
appears as a symbol of aberrant functions 
within the tumor microenvironment (TME). 
In comparison with normal tissues, in the solid 
tumors, we face with an irregular acidification 
and alkalinization of the extracellular and 
intracellular fluids. 
Methods: In this study, we comprehensively 
discussed the most recent reports on the 
hallmarks of solid tumors to provide deep 
insights upon the molecular machineries involved in the pH dysregulation of solid tumors and 
their impacts on the initiation and progression of cancer. 
Results: The dysregulation of pH in solid tumors is fundamentally related to the Warburg effect 
and hypoxia, leading to expression of a number of molecular machineries, including: NHE1, H+ 
pump V-ATPase, CA-9, CA-12, MCT-1, GLUT-1. Activation of proton exchangers and transporters 
(PETs) gives rise to formation of TME. This condition favors the cancer cells to evade from the 
anoikis and apoptosis, granting them aggressive and metastasis phenotype, as well as resistance to 
chemotherapy and radiation therapy. This review aimed to discuss the key molecular changes of 
tumor cells in terms of bio-energetics and  cancer metabolism in relation with pH dysregulation. 
During this phenomenon, the intra- and extracellular metabolites are altered and/or disrupted. 
Such molecular alterations provide molecular hallmarks for direct targeting of the PETs by potent 
relevant inhibitors in combination with conventional cancer therapies as ultimate therapy against 
solid tumors. 
Conclusion: Taken all, along with other treatment strategies, targeting the key molecular 
machineries related to intra- and extracellular metabolisms within the TME is proposed as a novel 
strategy to inhibit or block PETs that are involved in the pH dysregulation of solid tumors. 
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entombed within the TME as a crucial part of the cancer 
puzzle. In this review, we will discuss the TME and its role 
in cancer development and the factors involved in the pH 
dysregulation. Further, the relationship between the pH 
dysregulation and some key molecular machineries such 
as NHE1, H+-ATPases, CA9 and CA12 are articulated in 
terms of their association with invasion, metastasis, and 
drug resistance. At the end of each section, we will focus 
on some genetic changes that can be occurred in the TME 
on the molecular machineries such as NHE1, H+-ATPases, 
CA9 and CA12. 

Tumor microenvironment
Intricate interacting network between the cancerous 
and non-cancerous cells often lead to formation of a 
permissive milieu called tumor microenvironment. From 
pathological perspective, the TME include blood vessels, 
bone marrow-derived inflammatory cell, signaling 
molecules, extracellular matrix (ECM) and lymphocytes.13 
As shown in Fig. 1, the cells involved with TME are 
recognized by various cell-specific molecular markers 
often expressed on the cell surface.14 

Based upon the Warburg effect, tumor cells tend to 
be anaerobic glycolytic pathway even in the presence of 
oxygen, and hence produce lactate. This is important in 
the acidic TME, as well as contribution to the homeostasis 
and the immune defense system. From a holistic point 
of view,  lactate production may contribute in several 
functions, including: (a) evasion of cancer cells from 
immunosurveillance of the immune system, (b) alteration 
of the metabolism processes in the stromal cells function 
such as T cells, (c) increase of the inflammation mediated 
IL-17 production by T cells and macrophages, (d) 
inhibition of the activity of dendritic cells (DCs), (e) 
enhanced mobility of tumor cells, (f) prevention of the 
monocyte migration and cytokine extrication, and (g) 
initiation of angiogenesis and tumor vascularization 

immunosurveillance and apoptosis, (d) evolutionary 
regulation of growth, (e) invasiveness and metastatic 
colonization. These characteristics are manifested 
through genetic and epigenetic changes.1,2 The initiation 
of cancer is deemed to be linked with the hypoxia and 
irregular metabolism in energetic pathway, in particular 
glucose, resulting in production of acidic byproducts. 
Such dysregulation of pH within the cancer cells and 
TME, in comparison with the normal cells, seems to be 
one of the main causes for the metastasis, drug resistance, 
and the recurrence of the disease after the course(s) of 
treatment. The normal cells have intracellular pH (pHi) 
of ~ 7.2, but in cancer cells, it is about 7.4. Further, in the 
normal cells extracellular pH (pHe) is approximately 7.4, 
while in cancer cells it reduces to 6.7-7.1.3 Therefore, any 
changes in the activity and/or expression of membrane ion 
pumps and proton transfers may lead to a lower pHe and 
higher pHi. All these occur because the cancer cells can 
significantly increase the functional expression of several 
key molecular machineries, including: Na+–H+ exchanger 
(NHE1), H+-ATPases, carbonic anhydrase IX (CA IX) and 
carbonic anhydrase XII (CA XII).1,4-7

Based on scientific praxis, a number of theories have 
been coined to explain the unique behavior of cancer cells. 
Some of studies have shown that the hypoxia, Warburg 
effect and aberrant metabolism play central roles in the 
pH dysregulation and also progression and metastasis of 
cancer cells.8-10 In 1880s, Steven Paget articulated the "seed 
and soil" notion. Based on this theory, environment (soil) 
is necessary for the tumor cells (seed).11,12 In this concept, 
however, there still remain some key questions. How 
exactly cancer cells can escape from the immune system 
and apoptosis? What are the main causes of their resistance 
to chemotherapy? In fact, answering all these questions 
can improve the missing link(s) between the actual 
mechanisms of cancer progression and pharmacotherapy 
strategies. The right answers to these questions may be 

Fig. 1. Schematic representation of tumor microenvironment. NK-cell: natural killer cell, CAF: cancer associated-fibroblast.
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by induction of factors such as IL-8, NF-κB and VEGF/
VEGF-A via HIF-1.15

Tumor microenvironment facilitates tumor invasion
Metastasis of cancer cells is a complex process that is 
associated with key serial events, including: (i) epithelial 
-mesenchymal transition (EMT), (ii) excitation of 
angiogenesis, (iii) invasion of cancer cells from the 
basal membrane into the lymphatic or blood vessel, (iv) 
extravasation of cancer cells from the blood or lymphatic 
vessel ,and finally (v) formation of new growing colonies 
in a far-away site.1 

Inflammation appears to be a main factor in 
tumorigenesis. Surprisingly, the markers inflammatory 
mediators that promote cancer development are cancer 
fighting T cells, DCs, macrophages, natural killer (NK) 
cells and tumor-infiltrating cells.8,16,17 Previous studies 
have shown that the high level of cytokines such as 
interleukins (Ils), in particular Il-1, Il-6 and Il-8, are 
correlated with tumor progression, invasion, mobility 
and metastasis. Tumor-infiltrated immune cells produce 
several cytokines in favor of MET, including: TGF-β, 
TNF-α and Il-1B.18 Cancer-associated fibroblasts (CAFs) 
are part of TME, that is the cause of tumor progression 
through production of Il-6.19 Several cell survival 
signaling pathways mediated through Il-6 have so far been 
identified. Some of these pathways include PI3K/AKT, 
Ras/Raf/MEK-ERK1/2, JAK/STAT3, SHP2/RAFTK, and 
Src-family tyrosine kinase pathways.20 Further, the TME is 
composed of various types of cells whose interactions with 
TGF- β appear to be diverse. This complex environment 
is created during cancer initiation, progression and 
metastasis within the TME. The TGF-β can inhibit the 
angiogenesis in the early-stage of cancer, but not very 
effective at the cancer progression stages. Efficiency of 
TGF-β based responses is highly dependent on the cell 
type and potential genetic changes on the TGF-β receptors 
and/or ligands. The TGF-β signaling pathways are related 
to activation of downstream targets such as TAK1, MAPK, 
Ras, Rho A, PP2A and SMAD.21 It has been found that the 
TNF-α, not only involved in the MET induction in cancer 
cells, but also associated with an invasive phenotype of 
mammary epithelial cells and finally cancer metastasis. 
In the epithelial cells, TNF-α binds to its receptor with 
high efficiency. This connection can activate NF-κB 
transcription factor, and subsequently regulates the 
expression of some genes involved in MET and invasion. 
The NF-κB indirectly affects the Snail-like proteins. These 
proteins act as a key inhibitor in E-cadherin transcription. 
Besides, the NF-κB increases the expression of hepatocyte 
growth factor (HGF) ligand/receptor. The HGF secrets 
from the primary mesenchymal cells, such as cancer 
associated fibroblasts, and it is involved in planning and 
regulating cancer cell invasive growth.22

Metastatic cancer cells are the main cause of 
cancer death. These can simply occur during the pH 
dysregulation, and GTPase CDC42 is one of the key 
requirements for the increase of pHi. Although CDC42 

activity is not dependent on the physiological pH 
changes, several guanine nucleotide exchange factors 
(GEFs), such as GEF Dbl's Big Sister, are concerned in 
CDC42 motivation. These proteins are activated and 
released across the plasma membrane at pHi over 7.2. 
Moreover, higher pHi and lower pHe act as an enhancer 
in invasion and metastasis via other mechanisms. For 
instance, due to the opening of aquaporin-type water 
channels, which can lead to amoeboid movement, the 
invadopodia is formed and then induce the protease 
activities that lead to degradation of ECM by enzymes 
such as matrix metalloproteinase.2 Recently Martin and 
colleagues mathematically predicted that the rate of 
tumor invasiveness does not increase consistently with 
pHe decrease. In this work, several parameters were 
considered such as the interaction between cancer cells, 
stromal cells, cell death and decomposition processes of 
ECM. This simulation model represented that the onset of 
the formation of acidic extracellular milieu, can initially 
increase the cell invasion and then lead to stromal cells 
death.23 

As reported previously, the pH dysregulation in TME 
induces a set of critical functions which can in return 
trigger progress and invasion of tumor cells. Warburg 
effect and aberrant glucose metabolism in cancer cells 
can result in production of protons and the other acidic 
metabolites that these conditions increase intracellular pH. 
After this change, the cancer cells use plasma membrane 
ionic pumps to maintain the intracellular pH. Such pH 
change is one of the main pathological characteristics of 
solid tumors that can lead to intracellular and extracellular 
fluids alkalinization and acidification, respectively.1 These 
changes can be considered from several aspects, including:
(i) pH changes that can modulate numerous protein 

regulating complex cell functions, 
(ii) despite existence of several proteins involved in 

such phenomena, only a limited number of these 
proteins could only be used as a pH sensor. Therefore, 
regulatory proteins are selected based on the 
physiological changes in pHi and pHe, and

(iii)  the pH dysregulation, along with the other regulatory 
mechanisms, can be effectively involved in post-
translational protein modifications.2

An increase in the pHi can result in induction of positive 
signals for cellular proliferation, and promotion of cellular 
survival by controlling apoptosis. Cell proliferation is 
associated with several pH-dependent mechanisms. 
Intracellular pH higher than 7.2 can stimulate growth 
factors and transit the cell cycle toward the S phase. 
This seems to be the main cause for progression of the 
cell cycle through G2/M phase. In contrast, pHi lower 
than 7.2 can transit the cells into the G2/M phase by 
the cyclin-dependent kinase 1-cyclin B. Therefore, pH-
dependent regulating activity of CDK1-cyclin B could be 
a conservative mechanism for entering cellular division 
into the mitosis and meiosis.24,25 It should be stated that 
the acidic pH imposes important structural changes in the 
pro-apoptotic protein BAX to improve its insertion into 



Asgharzadeh et al

BioImpacts, 2017, 7(2), 115-133118

the peripheral mitochondrial membrane to make the holes 
that can enhance the membrane permeability and releases 
cytochrome-c and various pro-apoptotic proteins into the 
cytosol. Hereafter, activation of caspase by cytochrome-c 
in the cytosol is more efficient at a pHi of about 6.8.24

Tumor hypoxia is important for TME, because the 
tumor-associated macrophages (TAMs) are part of the 
TME accumulation in the necrosis and hypoxia segments. 
As a result, it releases hypoxia-induced chemo-attractants 
such as endothelin(s), endothelial monocyte activating 
polypeptide II (EMAP2) and vascular endothelial growth 
factor (VEGF). TAMs contribute to the migration, 
invasion and metastasis of malignant cells, in large part 
through Ils such as Il-10 low and Il-12. Further, adipocytes 
within the TME provide fatty acids as a fuel source for the 
cancer cells, and as a result contribute to metastasis.14 

It should be also noted that the non-cellular parts of 
TME play important regulatory roles in the progression 
of cancer. These parts include biomolecules involved in 
the formation of ECM as well as physical and chemical 
parameters such as oxygen tension, pH, interstitial pressure, 
and fluid flux.26,27 The ECM density is an important factor 
in tumor cells aggressive phenotype. For example, the 
density of the breast cancer tissue is associated with the 
phenotype of cancer more than 30%, while BCR1 and 
BCR2 mutations have only a 5% role in the breast cancer.28,29 
An increase in tissue stiffness appears to enhance cancer 
development through altering focal adhesions, integrin 
signaling, Rho/Rho-associated protein kinase (ROCK) 
pathway activation, and actomyosin- and cytoskeletal-
dependent cell contractility.30 Within the TME, all cellular 
secretions can be considered as non-cellular entities. 
The ECM-related biomolecules (e.g., collagens, elastin, 
proteoglycans, hyaluronan, glycoproteins), degrading 
enzyme and soluble factors (e.g., cytokines, growth factor 
and chemokines) are involved in the formation of TME.31,32 
It seems that the overexpression of ECM-degrading 
enzymes such as matrix metalloproteinases (MMPs) can 
increase the tumorigenesis. For example, in ovarian cancer, 
MMP-2 and MMP-9 have been shown to associate with 
cancer metastasis.33,34 In addition to MMPs, other ECM 
proteins, such as "a disintegrin and metalloproteinase" 
(ADAM), are important in the development of tumors. 
Of these proteins, ADAM with thrombospondin motifs 
(ADAMTS) were shown to be involved in the remodeling 
of ECM in tumourigenesis.35-37 Further, the lysyl oxidase 
(LOX) enzymes and transglutaminases are main molecules 
in tumor progression.38,39 Integrins are cell membrane 
adhesion molecules that are highly contributed in the 
development of tumors. For example, in prostate cancer, 
the overexpression of metastatic αvβ6 integrin was shown 
to upregulate MMP-2, which in return can promote cancer 
cell-mediated program of osteolysis through degradation 
of matrix.40 Studies have shown that hyaluronan plays an 
imperative role in the development of various types of 
cancers, such as prostate, breast and ovarian cancers. This 
biomolecule, by activating CD44 and RHAMM (receptor 
for hyaluronan-mediated motility), was shown to mediate 

some important signaling pathways to favor the cancer 
progression, including: NFκB and mitogen-activated 
protein kinase (MAPK) pathways.41-43 A group of ECM-
related biomolecules, so-called matricellular proteins, were 
shown to contribute in the modulation of ECM, including: 
tenascin C (TN-C), SPARC (secreted pro-protein, acidic 
and rich in cysteine), thrombospondin-1 and−2 and 
osteopontin.44,45 Although these biomolecules do not 
directly involved in the formation of cell construction 
substances, they often participate in modulation of cell-
matrix interactions. Of these, TN-C was shown to play 
a key role in invasiveness of tumor cells.46 Now, in fact, 
there exist compelling evidence upon specific interactions 
between ECM molecules and cancer cells within the TME 
in service or disservice of cancer progression.47,48

Drug resistance related to TME
Emergence of resistance to chemotherapy by cancer cells 
is major issue in clinical oncology, resulting in failure 
of treatment and possible relapse of disease. Various 
factors are involved in attaining such resistance against 
chemotherapy, immunotherapy and radiotherapy, 
including: epigenetic changes, genetic mutations, aberrant 
functions within TME, structural components of the 
stroma, the inter- and/or cross-communication of cancer 
cells with each other and other elements of TME, hypoxia 
condition and tumor cells pH.49-54 

The interaction between tumor cells and their 
microenvironment is very important in emergence of 
drug-resistance. It has been shown that insulin-like 
growth factor I (IGF-I) protects colon cancer cells against 
several cytotoxic factors.55 The apoptotic response in 
small-cell lung cancer chemotherapy was shown by the 
inhibition of integrins through detrimental impacts 
on DNA.52 Under hypoxia tumor condition, hypoxia-
inducible factors (HIFs) as a transcription factor was 
shown to elicit the expression of several genes involved in 
the survival and angiogenesis of solid tumor.53,56 Tumor 
hypoxia conditions can also disrupt the protein foldings 
in the endoplasmic reticulum,57 which may favor cancer 
cells in attaining drug-resistance by targeting elements 
such astopoisomerase ΙΙ.58 The traits of TME such as 
irregularly non-integrated tumor microvasculature, highly 
pressurized tumor interstitial fluid, and dysregulated pH 
appear to be involved in drug-resistance properties of 
cancer cells.1,59,60 In fact, the penetration and absorption 
of anticancer drugs (e.g., vinblastine, doxorubicin, 
vincristine, mitoxantrone, paclitaxel) were shown to be 
altered in the acidic TME.61,62

TME-mediated resistance can be initiated by several 
cells and some key structural components of the stroma, 
which are not limited to endothelia, fibroblasts, pericytes, 
neutrophils, macrophages, integrin and collagen.63, 64 
Moreover, there exist several other extracellular factors 
that are involved in drug resistance, including: cytokines, 
proteases and growth factors.65,66 While the drug resistance 
in cancer cells is regulated by various mechanisms, this 
phenomenon may increase the EMT as a direct effect 
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through an array of molecules derived from TME. This 
mechanism occurs by activation of intracellular networks 
linked with epidermal growth factor (EGF)/EGF receptor 
(EGFR), hepatocyte growth factor/c-met, Wnt/beta-
catenin axes and multiple cytokine/chemokine-mediated 
pathways.67-69 

Besides, solid tumors possess different strategies to 
utilize cancer stem cells (CSCs) and mesenchymal stem 
cells (MSCs). For example, breast tumors release monocyte 
chemotactic protein-1 and prostate tumors secrete 
CXCL16.70,71 Likewise, MSCs can release polyunsaturated 
fatty acids, 12-oxo-5,8,10-heptadecatrienoic acid and 
hexadeca-4,7,10,13-tetraenoic acid which stimulate the 
resistance to many chemotherapeutic agents.72 Recently, 
studies have shown that cancer-associated fibroblasts 
(CAFs) are able to secrete the collagen type-2, and hence 
reduce the absorption of chemotherapy, resulting in 
inevitable drug resistance.73

Genetic and epigenetic changes in TME
To date, some de novo information has been obtained by 
genomics, epigenetics, transcriptomics, proteomics and 
metabolomics, which can be used in our combat against 
initiation and development of solid tumors.74 DNA 
methylation is a chemical modification in the structure of 
DNA that can lead to chromatin structural remodeling/
transformation, gene availability and expression. In 
mammals, DNA methylation happens at 70% of cytosine-
guanine (CpG) rich regions. Recently, it has been found 
that DNA methylation profile may involve with initiation 
of the TME and progression of cancer. DNA methylation 
can influence the performance of different areas of the 
DNA such as promoter, silencer, enhancer and non-
coding RNAs. Bisulfite sequencing and methyl-CpG-
binding domain (MBD, or MethylCap-Seq) can be used 
to identify the methylated areas of DNA. Several studies 
have shown that, in the breast cancer, the promoter of 
some key genes are hypomethylated, including: insulin-
like growth factor (IGF), multidrug resistance (MDR1) 
and metastasis promoting protease genes. By contrast, 
genes prompters involved in the DNA repair, apoptosis, 
metastasis, control of proliferation and angiogenesis 
are hypermethylated in cancer. For example, cyclin-
dependent kinase inhibitor 2A (p16), O6-methylguanine 
DNA methyltransferase (MGMT), MutL homolog 
1 (MLH1), retinoic acid receptor beta (RAR-β), Ras 
association domain-containing protein 1(RASSF1A) and 
phosphatase and tensin homolog (PTEN) epitomize these 
elements.75 Histone modifications and DNA methylation 
have been observed in CAFs in various types of cancers, 
including: gastric and pancreatic cancer. It has been found 
that CYP19 and CXorf12 genes are hypermethylated in 
breast adipose fibroblasts (BAFs) and CAFs, respectively. 
Histone H3K27 methylation in breast cancer is associated 
with aggressive phenotype.18

Alteration in microRNAs in TME
Micro RNAs are considered as biomarkers of different 

cancer types. New studies indicated that miRNAs 
influence the metastasis phenomena, in large part through 
interactions with different elements of TME. Especially, 
miR-210 is secreted by metastatic breast cancer cells and 
transferred to epithelial cells which lead to increase in 
cells migration and angiogenesis. The miRNAs can be 
transmitted between cells. For example, miR-223 released 
by TAMs are activated by IL-4 and transferred to the breast 
cancer cells, which are able to promote the tumor invasion 
and metastasis. The transmission mechanisms of miRNAs 
between cell types seems to be one of the mechanisms 
involved in metastasis within TME.76 In the breast cancer, 
the miR-21 is overexpressed, resulting in upregulation of 
TGF-β. While the upregulation of miR-31 in the CAFs 
breast cancer disturbs the ability of CAFs to stimulate the 
cancer cell invasion and migration, the downregulation of 
miR-15 and miR-16 in prostate cancer CAFs lead to an 
enhanced tumor growth and progression. This latter effect 
seems to be mediated by reduced post-transcriptional 
modification of Fgf-2, resulting in promotion of 
metastasis.19 Thus, microRNAs are considered as small 
non-coding RNA molecules that can control the inhibition 
or progression of cancer as well as many other pathogenic 
diseases. Of these systems, TGF-β interacts with SMADs, 
and hence, mutations and deletions in these areas are 
important in cancer. In prostate and colon cancer, 18q21 
gene locus which encode SMADs 2 and 4 are most often 
mutated or deleted. SMAD4 mutations are rare, but can 
be found in breast cancer. Further, SMAD2 mutation has 
been recognized in lung, colon and head and neck cancer. 
Lack of SMAD3 expression in choriocarcinoma cells is 
associated with the downregulation of tissue inhibitor 
of metalloproteinases (TIMP-1), which may increase 
the activity of protein metalloproteinase - important for 
tumor invasion.21

Na+/H+ exchanger 1 (NHE1)
The pH change in the cancerous cells, in comparison 
with the normal tissue, seems to be common in most 
solid tumors. In fact, they show some similar phenotypic 
properties in terms of pH dysregulation, which includes 
some common key metabolic changes. Such alterations 
seem (i) to promote acid-producing pathways, (ii) to 
activate the oncogenic signals, (iii) to induce and develop 
the hypoxia, and (iv) to alter the functional expression of 
some key molecular transporters involved in the regulation 
of pH. Despite these changes, most of studies have focused 
on the clinical importance of proton transporters, in 
particular NHE1 and V-ATPase. Factors that promote the 
cellular pH or enhance the functional expression of NHE1 
leading to an increased pHi and carcinogenicity include 
viruses (e.g., human papilloma virus), persistent hypoxia 
and HIF, oncogenes and viral proteins, p53 defect, growth 
factors, hormones, and chemicals carcinogenic and 
genomic products.77

Structure and function of NHE1
Changes in the functional expression of plasma membrane 
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ionic pumps and also transmitters which facilitates the 
distribution of H+ in the extracellular fluid may result in 
stabilized increased the pHi and decreases the pHe. One 
of the plasma membrane ionic pumps with enhanced 
functional expression is NHE1. The human NHE1 gene 
is a member of a gene family that is also called solute 
carrier 9 (SLC9). The NHE gene family is pH regulator 
of the cytoplasm and intracellular organelles. There are 
9 different genes locus (NHE1-9 or /SLC9A1-9) in the 
human genome for the NHE gene family while some 
related pseudogenes have also been identified in human 
genome. These genes encode proteins that have 25 to 
75% similarity with each other.78 The human NHE1 
(Fig. 2) is an integral membrane protein and encoded by 
SLC9A1 gene, which is composed of 815 amino acids, and 
comprises two domains:
(i) a hydrophobic N-terminal membrane domain which 

contains amino acids 1 to 500 and show a secondary 
structure with 12 transmembrane spans, to which the 
NHE1 transport activity is attributed, and 

(ii) a domain embracing 501 to 815 amino acids 
constituting the cytoplasmic domain (C-terminus 
tail) that is fundamental for the NHE1 regulation.

The N-terminal domain of NHE1 exchanges 
intracellular H+ with extracellular Na+. This molecular 
exchanger protects cells from the acidification and 
regulates pHi.

79 Moreover, human NHE1 is involved in 
some important biological and physiological activities of 
cells, including: regulation of intracellular pH, acid-base 
electrolyte control, homeostasis, adhesion, migration 
and proliferation.78 Studies have shown that early stage 
transformation by oncogene(s) in normal cells occurs 
along with NHE1 activity, and then the cytosolic 
alkalinization happens in consistent correlation with the 
occurrence of glycolysis. In addition, it has been shown 
that such alkalinization stimulates a set of transformation 
markers such as an increase in the growth rate, substrate-
independent growth, and growth factor(s)-independent 
growth. 

The intracellular pH determines that how cells obtain 
their energy, in which an alkalinized pHi stimulates 

an anaerobic glycolysis, while an acidic pH provokes 
an oxidative phosphorylation process. Such molecular 
storms caused by the activation of NHE1 decrease with 
its inhibition leading to suppression of tumor progression, 
in large part by acidifying the intracellular fluid of cancer 
cells.77

Further, it should be noted that the tissue distribution 
and intracellular position of NHEs varry markedly. Recent 
studies have identified a variety of plasma membrane 
NHEs and several organelle-based isoforms with similar 
functions in mammalian physiology. NHE1 exists 
abundantly in various types of cells, which is found as an 
extended member. Although it is placed on the cell surface, 
its functional presences at different domains in various cell 
types reflects its diverse functions. For example, NHE1 in 
fibroblasts is localized at the boundary of lamellipodia, 
the basolateral membrane of epithelia, and the disks and 
t-tubules of cardiac.80-82 It is believed that NHE1 performs 
two important functions. First, it is the chief alkalinizing 
mechanism in various types of cells to protect cells against 
the harmful effects of increased acidity. If the production 
of acidic metabolites increases, the H+-derived from the 
related metabolic pathways via different secretory routes 
are intensified and remain unchecked. Hence, to maintain 
the acid-base balance in the cytoplasm, it plays a central 
role along with bicarbonate-transporting systems such as, 
Na+-HCO3- co-transporters, Na+-dependent HCO3-/Cl- 
exchangers and Cl-/HCO3-exchangers. Second, it provides 
a channel for the traverse of Na+, which is paired with Cl¯ 
and absorbs H2O necessary to maintain the cell volume at 
a steady state level. As a result, the cytoplasmic contents 
is modulated by a sharp rise in extracellular osmolality. 
In many specialized secretive cell types, for example the 
acinar cells of the parotid and sublingual glands, the 
activation of NHE1 is also necessary for the secretion of 
derived fluids. Change in the activity of NHEs is related to 
the pathogenesis of several diseases, such as hypertension, 
congenital secretive diarrhea, diabetes, and tissue harm 
affected by ischemia/reperfusion.78

The phosphorylation alteration of basic amino acids 
in C-terminal and the reaction with intracellular lipids 
and proteins can regulate the NHE1 activities (Fig. 3).83 
Transport activity of NHE1 is changed by regulators 
through altering affinity to intracellular H+, in which it is 
activated in alkaline pHi.

84 
The approximate binding sites of regulatory proteins 

and cofactors which bind to NHE1 in breast cancer 
cells are shown in Table 1. A number of protein kinases 
are involved in the regulation of NHE1, protein kinase 
p160ROCK facilitates the assembly of actin stress fibers 
through RhoA which leads to the activation of fibroblastic 
NHE1.85 Angiotensin II stimulates the NHE1 through 
ERK phosphorylation, which depends on p38MAPK. 
Therefore, the phosphorylation of NHE1 at residues T718, 
S723, S726, and S729 seem to regulate the apoptosis as reported 
previously for the pro-B cells.86 Protein kinase B (Akt) 
plays a key role in phosphorylation of S648, and inhibits 
the activity of NHE1 in myocardial cells, perhaps by 

Fig. 2. Three-dimensional representation of the modeled human 
NHE1. The  membrane-spanning protein, NHE1, was modeled by 
means of  Chimera software. Subcellular localization of different 
domains of the protein is predicted via Uniprot database.
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interfering with CaM binding. In other cell types, although 
Akt phosphorylation leads to the activation of NHE1, 
and plays a key role in the survival, growth, and perhaps 
metastasis. In the phosphorylation of NHE, some other 
protein kinases are involved through various mechanisms 
such as Ca2+/calmodulin-dependent kinase (CaMKII) and 
Nck-interacting kinase (NIK) mechanisms.4

Studies have shown that the activity of NHE1 in 
the breast cancer leads to acidification of extracellular 
microenvironment. This process facilitates the  
degradation ECM by protease and increases the invasion 
and metastasis.4 Fibroblast cells with mutated NHE1 

show lower pHi as compared to the NHE1 of wild type 
cells. In such circumstances, the expression of enzymes 
related to the glycogenesis reduces 3-4 times, which  
include fructose-1,6-bisphosphatase, galactokinase 
and phosphorylase kinase. Besides, the concentration 
of lactate dehydrogenase (LDH) is reduced, which is 
an enzyme crucial for the Warburg effect.1 There are 
several key inhibitors and protein kinases that justify the 
activity of NHE1. These regulators can be considered 
as interesting molecular target for pharmacotherapy of 
cancer, (e.g., ErbB2).96 The NHE1 has a critical role in 
chronic and acute myeloid leukemia differentiation. The 

Fig. 3. The main residues at the human NHE1 3D structure. A) Phenylalanine (F) 161 has a main role for covering the channel pore. B) 
Serine (S) 703 can be modified to phosphoserine, in this form it is ready for binding to 14-3-3 adaptor protein. C) The site of interaction 
between NHE1 and calcineurin homologous protein II (CHP2). D) The actin-binding site between ERM (ezrin, radixin and moesin) proteins 
and NHE1.

Table 1. Summarizing NHE1 regulation by proteins, cofactors, and protein kinases

Regulators Mechanism of action Biding site(s) Ref.

Calmodulin (CaM) Binding to a high- and low-affinity, blocks an auto-inhibitory site, 
consequently activating NHE1

From AAs 636 to 700 79

Calcineurin homologous protein 
(CHP)

(i) CHP1: NHE1 activity and its stabilization and localization to the 
plasma membrane
(ii) CHP2: overexpressed in tumor cells; it is protective against serum 
deprivation–induced cell death by enhancing pHi and promoted 
proliferation of tumor cells
(iii) CHP3: promote maturation and cell surface stability

518 to 537 87-89, 90

phosphatidylinositol 4,5-
biphosphate (PIP2)

Depletion of PIP2 results
in ATP-dependent inhibition of NHE1

513, 520, 556 and 564 91

Carbonic anhydrase II (CAII) Catalyzing the production of HCO3
- and H+ from the hydration of CO2 790 to 802 92

Actin-binding ERM Proper localization of NHE1 to the plasma membrane and maintaining 
cell shape

552 and 560 93

Heat shock protein 70 (Hsp70) Binding to NHE1 and possible play a role in protein folding Unknown site 94

14–3-3 adaptor protein Binding to NHE1 when it is phosphorylated at S703. Thereby NHE1 has 
activate by protecting S703 from dephosphorylation

703 95

Several protein kinases NHE1 stimulation and activation 85
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simultaneous pharmacological inhibition of P38 MAPK 
and NHE1 under hypoxia significantly suppresses the 
expression of C/EBP. These results show the hypoxia-
induced K562 differentiation by inhibiting NHE1, in large 
part due to upregulation of C/EBPα through p38 MAPK 
signaling pathway. This suggests that the inhibition of 
NHE1 in hypoxic microenvironment could be considered 
as possible treatment for the leukaemic disease.97 

NHE1 inhibitor compounds
The progress and maintenance of converting pH 
gradient is directly caused by the ability of tumor cells in 
withdrawal of proton. Such proton emission depends on 
cell buffer size and is stimulated through the transporters 
and exchangers of the proton attached to the membrane, 
mainly by NHEs. This gene family has its specific 
inhibitors.77 The NHE gene family can be inhibited by 
various groups of pharmacological compounds, including: 
amiloride and its analogues, benzyolguanidinium-based 
formatives, cimetidine, clonidine and harmaline. It might 
be inhibited by imidazoline or guanidinium groups. The 
sensitivity of these compounds for NHEs are largely 
dependent upon the type of NHE, where NHE1 display 
the greatest sensitivity as compared to others with the 
following trend (NHE1≥NHE2>NHE5>NHE3>NHE4).78 
Clinical inhibition of NHE1 with potent and much more 
selective inhibitors should be taken into consideration 
to attain highly selective and potential targeting in 
cancer therapy. For example, cariporide, compound 9 T, 
2-aminophenoxazine-3-one (Phx-3) could be used.98

The first inhibitor of NHE was amiloride, which 
was shown to decrease VEGF that is an activator of 
urokinase-type plasminogen (μPA), MMPs and other 
proteases. All these molecular machineries are in favor 
of activation of the metastasis. In recent years, many 

researchers have aimed to produce potent and specific 
compounds to inhibit the activity of NHEs. In this regard, 
potential amiloride analogues have been made, including: 
ethylisopropylamiloride (EIPA), hexamethylamiloride 
(HMA) and dimethylamiloride (DMA). 

In addition to amiloride-based compounds, other 
compounds such as cariporide and eniporide have been 
used in several experiments to inhibit the activity of 
NHE1. These tests were not against cancer, but rather 
in the field of cardiological to ischaemic-reperfusion 
disservice. Finally, it has been shown that cariporide is 
beneficial to overcome drug resistance and metastasis 
process.77 Studies have shown that cariporide diminishes 
the hypoxia-dependent tumor invasion and migration in 
human tongue squamous cell carcinoma and Tca8113 cells 
by inhibiting NHE1. Also, pharmacological inhibition of 
p38 mitogen-activated protein kinase (MAPK) specifically 
inhibits the expression of C/EBPα under hypoxia 
conditions, of course, which happens after the inhibition 
of NHE1.97,99

The genetic variation and diversity 
The NHEs have been detected generally in organisms 
from prokaryotes to eukaryotes such as plants, fungi and 
animals. In prokaryotes like the Escherichia coli, there are 
two types of NHEs (NhaA and NhaB) that are employed 
in H+ gradient produced by H+-ATPase to export Na+ 
or Li+. In terms of stoichiometry, the NhaA and NhaB 
transported 1Na+:2H+ and 2Na+:3H+, respectively. 
Various eukaryotes encoding different types of NHEs, 
for example, Arabidopsis thaliana contains at least several 
NHE proteins so-called AtSOS1 or AtNHX1–6 and the 
nematode Caenorhabditis elegans encodes nine NHE-like 
proteins such as CeNHX1–9.78

Wakabayashi et al identified mutations of Tyr454 

Fig. 4. NHE1 sequence analysis in terms of probability variant(s). A and B) Some of main natural variants, C) Polymorphism at the position 
682 lead to change from asparagine (N) to lysine (K). D) The 261-length domain that is missed in NHE1 isoform 2. 
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or Arg458 in transmembrane domain 11 (TM11) that 
disrupt the plasma membrane domain expression of 
NHE1 and possibly play a role in protein folding. Their 
studies showed that mutation of Arg440 in intracellular 
loop 5 (IL5) could reduce the sensitivity of NHE1 to pHi 
sensitivity, even though, mutation in Gly amino acid 
in Gly-rich area could increase its in TM11 domain.100 
Genomic analyses of NHE1 display mutation at Phe162 
amino acid of human NHE1 that extremely decrease the 
affinity of M4 domain to Na+. In return, the mutations of 
Glu350 and Gly356 in TM9 considerably reduce the catalytic 
efficiency of the transporter without affecting other 
subsections (Fig. 4).78 Genetic change in human NHE1 is 
related to hypertension, which is clearly related to NHE1 
phosphorylation that increases the activation of MAPK 
pathway. It is suggested that the change in protein kinase 
pathway possibility results in cation homeostasis, hence 
leading to hypertension.101

Vacuolar H+ ATPases (V-ATPases)
The V-ATPases are ATP-dependent H+ pumps that show 
a great variation in the cell membrane. The proteins are 
composed of several subunits (up to 14), a transmembrane 
domain is called V0 complex and V1 complex embedded 
in the cytoplasm. The V-ATPase functions includ pH 
homeostasis, contribution in endocytosis, participation 
in activation of proteases and invasion of tumor cells. 
Furthermore, it is involved in several cellular activities   
such as angiogenesis, autophagy and also interplay with 
mTOR for amino acids sensing.98,102

Regulation and function of the V-ATPase
The V-ATPases have a wide functional expression in the 
membranes and intracellular organelles (e.g., endosomes, 
lysosomes and secretory vesicles) of numerous cells 
such as neutrophils, macrophages and sperm and tumor 
cells.103,104 The V0 complex is proton pumpers across the 
membrane and is formed by a, e, c and c'' subunits. The V1 
complex subunits are A, B, C, D, E, F and H, that organized 
into three subdomains, including: 
(i) the A3B3 cylinder (subunits A and B), which is 

involved in the hydrolysis of ATP,
(ii) the central stalk (subunits D, F and d) that returns 

energy from ATP to the complex, because the 
V-ATPase pumps use a rotary mechanism for the 
transfer of H+ in the cell membrane, and 

(iii) the peripheral stalk (subunits E, G, C and H) binds 
to the A3B3 subdomain and prevents rotation of the 
stator during ATP hydrolysis.102 

Assembly regulation of V-ATPase domains is related to 
various stimuli. In yeast, glucose depletion causes rapid 
and reversible decay of V-ATPase, which may help to 
protect the cell from ATP reserves. It is suggested assembly 
of V-ATPase is controlled by pHi, thus an increase in 
pHi results in the promoted assembly of V-ATPase. 
In mammalian cells, the V-ATPase pump assembly is 
stimulated by the activation of phosphoinositide 3-kinase 
(PI3K) enzyme and mechanistic target of rapamycin 

complex 1 (mTORC1) in dendritic cells.102

The trafficking regulation is the second main control 
system of V-ATPase pump activity. This is very important 
in regulation of proton secretion in epithelial cells in 
kidney and epididymis. In this regard, high levels of cAMP 
and an increase in the activity PKA have a positive effect, 
while AMP kinase has a negative impact. Such effects 
occur despite the fact that both positive and negative 
mechanisms use A-subunit for phosphorylation.102 
Other regulatory systems in mammalian cells can be 
referred to as heme-binding protein HRG-1 that, without 
involvement in the assembly of this pump, increases its 
activity.105 Transcription factor EB (TFEB) controls the 
expression of V-ATPase genes, that is under the control 
of mTORC1.106

The V-ATPase has an important role in intracellular 
signaling, especially in wingless/int (Wnt) and Notch 
pathways. In Wnt signaling, if V-ATPase is prohibited 
either pharmacologically or genetically, Wnt receptor on 
the cell surface (i.e., LRP6 receptor) cannot be activated. 
Further, in Notch signal, performance of the V-ATPase 
is suitable for the activation of Notch receptor. In Notch 
pathway, when the ligand binds to a cell surface receptor, 
the receptor breaks structurally, then Notch intracellular 
domain (NICD) is released and enters into the nucleus. 
However, if V-ATPase is inactivated, Notch cleavage 
through γ-secretase occurs in endosomes, and the 
liberation of NICD can be extremely reduced.102

V-ATPase and cancer
In TME, aerobic and anaerobic metabolisms of glucose 
lead to the accumulation of acid products that can strongly 
affect the cancer cells and other neighboring cells. As a 
result, the pH dysregulation in both pHi and pHe within 
TME can influence cancer cells responses such as their 
response to cytotoxic drugs. It seems that V-ATPase 
pumps contribute to the reduction of pHe and a number 
of studies suggest that V-ATPase pumps play a key role 
in tumor invasion and cancer cells response to drugs in 
breast cancer, esophageal carcinoma, lung carcinoma, 
hepatocellular and pancreatic carcinoma, oral squamous 
cell carcinoma, sarcoma and other solid tumors.98 Studies 
have shown that the inhibition of V-ATPase could increase 
the pHi in breast cancer cells, and led to the expression  of 
BNIP3 pre-apoptotic protein and cell death.107 Even short-
term inhibition of V-ATPase leads to the activation of 
cellular stress response and autophagy.108 

In mammalian cells, the V-ATPase has four isoforms 
displayed as a1–a4. The a1 and a2 isoforms, which are 
present in the membrane of intracellular organelles, have 
been diagnosed in synaptic vesicles and endosomes, 
respectively. The a3 and a4 are located in particular cells 
membrane such as osteoclast cells and renal intercalated 
cells, respectively.109,110 

Recently, it has been shown that V-ATPase contributes to 
aggressive phenotype of breast cancer cells. The V-ATPase 
inhibition by specific inhibitors (i.e., bafilomycin 
and concanamycin A) was shown to reduce invasive 
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phenotype of breast cancer MDA-MB231 cells.111 It was 
also shown to contribute to the invasion of other types of 
tumor cells. For instance, in human pancreatic, increased 
expression of V-ATPase is associated with an increase in 
cancer degree.112 Some studies have shown a relationship 
between rearrangement and arrangement of this pump in 
plasma membrane and cancer cell invasion. 

One limitation on studying this pump is that V-ATPase 
inhibitors operate specifically and strongly, an hence 
they prohibit all the intracellular and plasma membrane 
V-ATPases. This is an important phenomenon because 
the potential role of intracellular V-ATPase is not 
considered in the discharge of the invasive factors being 
mainly growth factors and proteases.113,114 Although the 
exact mechanism of V-ATPase activity is not clear in 
the invasion of cancer cells, it is proposed to contribute 
to the acidification of pHi that is an important factor in 
the activation of proteins such as cathepsins and matrix 
metalloproteases.115,116

In colon cancer cells, TM9SF4 protein, as a member of 
the transmembrane-9 superfamily, was shown to interact 
with V-ATPase. The function of this protein has been 
reported in adhesion, phagocytosis and innate immunity. 
Further, it plays an important role in resistance to the 
5-fluorouracil (5-FU) drug and invasive phenotype of 
cancer cells. The TM9SF4 interacts with the V-ATPase 
most likely through V1H subunit. It was also reported 
that the TM9SF4 inhibition could lead to a change in 
the activity of cancer cells in association with V-ATPase 
activity reduction in protons outflow. As a result of pHi 
reduction, the extracellular pH and the pH in intracellular 
vesicles may be increased.117 

It has been proven that V-ATPase increase in the 
membrane of tumor cells is associated with metastasis. 
The V-ATPase inhibition by archazolid is related to 
anoikis pathways in the invasive cancer cells. Probably, 
archazolid inhibits V-ATPase activity with binding to 
the c-subunit in the V0 domain. Anoikis is a form of 
programed cell death which was shown to occur in the 
cells isolated from the ECM, while metastatic cancer cells 
are resistant to such phenomenon. The anoikis begins 
with two pathways, including: (i) extrinsic pathway, where 
cell death receptors are involved and caspase-8 and Bcl-2 
are the main players, and (ii) the intrinsic pathway that 
starts from mitochondria and is related to cytochrome C. 

As mentioned, V-ATPase plays an important role 
in autophagy, in which the cells detached from ECM 
stimulate autophagy as a process to evade anoikis. Hence, 
the V-ATPase inhibition can be effective in stimulating 
anoikis. Recently, a number of studies have suggested 
that endolysosomal V-ATPase are attractive targets for 
inducing anti-tumor and anti-metastasis effects, since 
its inhibition could prevent the endocytotic traffic of 
migratory signaling molecules such as Rac1 and EGF 
receptor.118 

It should be stated that the increased activity of V-ATPase 
in metastatic cells could lead to an enhanced autophagy, 
in which process lysosomes play a fundamental role(s). In 

addition, it has been shown that the inhibition of mTOR 
signaling pathway reduces autophagy. Accordingly, it can 
be an alternative mechanism to proton pump inhibitors 
because V-ATPase is part of a regulation system that 
modulates mTOR.98 

The expression of E2F1 transcription factor is increased 
in lung, breast and hepatocellular carcinomas, which is 
strongly associated with the development of the invasive 
breast and bladder cancer cells. Accordingly, there have 
been plenty of evidences that show E2F1 is associated 
with biological processes such as regulation of cell growth, 
modulation of autophagy, invasion and metastasis of 
tumor cells, even though the exact molecular mechanisms 
are yet to be fully understood. Nathalie et al discovered 
that E2F1 could contribute to the lysosomal trafficking 
and mTORC1 signaling, leading to V-ATPase regulation. 
Their studies showed that E2F1 was able to stimulate the 
movement of lysosomes in the surrounding cells, and this 
procedure is necessary for the motivation of mTORC1 
which could inhibit autophagy. E2F1 was shown to control 
the V-ATPase activity through promoting the assembly of 
V0 and V1 domain in V-ATPase complex. It was shown 
that the B-subunit of V-ATPase protein could be a suitable 
target for E2F1 transcription factor, therefore ectopic 
expression of B-subunit might enhance the activities of 
V-ATPase and mTORC1.119

Archazolid treatment or silencing of V-ATPase in 
human breast cancer SKBR3 cells was shown to inhibit the 
Rac1 activity, and reduce the metastasis of breast cancer 
by inhibiting the activity of EGFR and Rho-GTPase Rac1 
that is important for cell motility.120 Further, a correlative 
expression between homo sapiens longevity assurance 
(LASS2), Kruppel-like factor 4 (KLF4) and 1-acylglycerol-
3-phosphate O-acy ltransferase 9 (AGPAT9) were shown, 
in which the LASS2 could bind to V-ATPase C-subunit   
and hence play a role in chemoresistance. The KLF4 is 
a transcription factor and contributes in the inhibition 
of tumor formation and oncogenesis. The AGPAT9 is 
a critical enzyme, which is involved in the  conversion 
of glycerol- 3-phosphate to lysophosphatidic acid in 
the triacylglycerol synthesis pathway, was shown to 
specifically inhibit the migration, invasion and metastasis 
of breast cancer cells. Meanwhile, it has been recently 
shown that the AGPAT9 functional expression may lead 
to an increased expression of specific KLF4 gene, perhaps 
via its direct binding to the promoter region of the LASS2 
gene that could induce its expression. Eventually, LASS2 
can inhibit the functionality of V-ATPase by binding to 
its c-subunit.121 

V-ATPase inhibitors 
The acidic extracellular environment is one of the 
main features of solid tumors and the V-ATPase has 
an important role in this process. This milieu provides 
the necessary condition for tissue damage, elicits the 
activation of enzymes involved in degradation of ECM, 
creates a metastatic cell phenotype and is involved in 
many other unknown biologic processes. Therefore, the 
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employment of V-ATPase inhibitors can suppress all these 
events and increase the survival rate of cancer patients. 
The first V-ATPase inhibitor was bafilomycin that has 
a  microbial origin isolated from Streptomyces griseus. 
Another inhibitor is concanamycin that has been isolated 
from the Streptomyces neyagawaensis.122,123 

Archazolid inhibitor is similar to bafilomycin or 
concanamycin because it is able to attach to the c-subunit 
of V-ATPases. Furthermore, it has been shown that this 
compound has an important anti-tumor role both in vitro 
and in vivo.120 Archazolid is produced by Cystobacter 
violaceus and Archangium gephyra.124 Benzolactone 
enamides are another group of V-ATPases inhibitors, 
which are normally isolated from sea sponges, gram-
negative bacteria, and ascidians. Key members of the 
family of V-ATPase inhibitors include salicylihalamide A, 
apicularen A, lobatamide A, oximidine I, and cruentaren. 
In addition to the listed cases, new V-ATPases inhibitors 
continue to be discovered and added to the list, including: 
NiK12192, PPI SB 242784 and FR202126.125

The breast tumor cells treated with bafilomycin A1 were 
shown to significantly lose their migration and metastatic 
phenotype. These results might be related to the findings 
that cancer cells with low metastatic potential use HCO3

- 
and NHE1 transporter to regulate the pH, while the high-
metastatic cancer cells use of V-ATPase proton pump for 
this purpose.126 It was shown that V-ATPase inhibition by 
bafilomycin or concanamycin could induce apoptosis. In 
this context, human gastric cancer cells were evaluated 
and lysosomal pH factor was studied, with results showing 
some changes could occur in lysosomal pH. Further, it 
was found that an increase in the existence of bafilomycin 
might lead to an increase in the activity of caspase-3.127,128 
To date, several related factors between lysosomes and 
cancer have been identified. 

In short, the lysosomes have an acidic miliu which is 
controlled by V-ATPase, hence it can be considered as 
a potential therapeutic targets for cancer therapy. The 
pH in the normal cell lysosomes is about 5. However, in 
cancer cells, the pH in lysosome may be changed (e.g., 5.8 
in MCF-7 cancer cells and 6.4 in promyelocytic leukemia 
HL-60 cancer cells). The reasons for such alterations could 
be due to (i) malignancy-related changes or (ii) treatment 
with drugs (e.g., V-ATPase inhibition with bafilomycin 
A). 

Elipticin dsplays anti-tumor effects, and it is 
topoisomerase II inhibitor by DNA intercalation. Recently, 
it has been observed that treatment of the UKF-NB-4 
cells with this inhibitor might increase the expression of 
V-ATPase. Therefore, the V-ATPase activity could result 
in lysosome alkalinization and resistance of UKF-NB-
4ELLI cells to ellipticine-induced apoptosis. In this regard, 
the V-ATPase inhibition by concanamycin A might reduce 
the acidity of lysosomes in the PKSV-PR cells.129

Carbonic anhydrases
The aberrant metabolism of cancer cells may lead to the 
production of proton and carbon dioxide (CO2), which 

can be converted into carbonic acids by the carbonic 
anhydrases (CAs) - a process that occurs due to high 
consumption of glucose. Many proteins are involved in 
the metabolism of glucose such as glucose transporters 
and pH regulatory proteins. Of these, carbonic anhydrase 
family plays an important role, especially CAIX and 
CAXII. It should be noted that little change (even 0.1 
pH units) in the intracellular and extracellular pH 
could disrupt the molecular functions of solid tumor 
cells, including: ATP synthesis, enzyme functionalities, 
migration, invasiveness and metastasis. Also, different 
isoforms of extracellular proteins (e.g., fibronectin and 
tenascin) might be  generated by alternative splicing that 
may not occur in the normal cells.130

The carbonic anhydrases are zinc metalloproteinase 
enzymes which can be found among all organisms, 
including in microbes, fungi, plants, and animals.130 Five 
groups of carbonic anhydrases (α, β, γ, δ, and ζ) have 
evolved independently, among which alpha-carbonic 
anhydrases were found in the human. There are 16 isoforms 
of alpha-carbonic anhydrase in primates, 15 isoforms 
of which are common and also shared in human. They 
are classified based on their location in the cell, catalytic 
activity and response to several groups of inhibitors, as 
follows: (i) some are placed in the cell membrane (CAI, 
CAII, CAIII, CAVII and CAXIII), (ii) several are attached 
to the membrane (CAIV, CAIX, CAXII and CAXIV), 
(iii) two of them are found in the mitochondria (CAVA 
and CAVB) and (iv) secretory isoforms (CAVI), three of 
them are catalytic isoforms, so-called CA-related proteins 
(CARPs) which include CAVIII, CAX and CAXI.130-132 

The carbonic anhydrases perform a vital reaction 
in cells, that is: “CO2

+ + H2O↔HCO3
- + H+”. Also, CA 

isoforms are involved in many process and functions in 
mammals. Among the most important ones, we can point 
out the acid-base balance, release of electrolytes, bone 
resorption, calcification, lipogenesis, gluconeogenesis and 
ureagenesis in human. Further, this enzyme appears to 
contribute in photosynthesis and carbon dioxide fixation 
reaction in bacteria and plants.132,133 In human, CAs are 
present in a very wide range of tissues. In fact, they are 
present almost in most tissues, including: digestive, 
nervous and genital systems, renal, lungs, skin and others 
organs.133 In 1992, Pastoreková et al showed that CAs are 
associated with cancer. Thus, it became clear that CAIX 
and CAXII increase simultaneously in many tumor 
tissues and normal tissue could be related to the cancer 
development and progression.134

Sulphonamides, sulphamates and sulphamides are the 
main compounds for inhibition of carbonic anhydrases, 
which are able to bind to zinc ion and active site of the 
enzyme resulting in their inactivation.135 It has been over 
50 years that sulphonamides have been used as diuretics 
and antiglaucoma medicine. Now, this component is 
proposed as anticonvulsant, anti-obesity, anticancer 
and anti-pain agent.136 Various compounds have been 
designed for the inhibition of carbonic anhydrases, and 
some of them are mentioned in the following context: 
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(i) Fluorescent sulphonamides are used for imaging 
purposes and CAs are involved in tumor acidity.137 

(ii) Addition of positive and negative charges to 
sulphonamide and sulphamate enable them more 
likely to cross the cell membrane and influence the 
intracellular CAs such as CAIX and CAXII.130 

(iii) Acetazolamide inhibits all CA isoforms with a high 
capability. To date, new acetazolamide derivatives 
have been produced with much better and efficient 
functional properties than the parent drug 
acetazolamide.130 

(iv) Sugar-containing sulfonamides-sulfamates-
sulfamides are extremely hydrophilic compounds 
that cannot easily cross the cell membrane. Thus, they 
influence the extracellular CAs, including CAIX and 
CAXII.135 

(v) Coumarins, thiocoumarins and polyamines are new 
chemotypes that have CAs inhibitory properties. 
These inhibitors bind to CAs active site and do not 
have interaction with zinc ions of this enzyme.138 

(vi) Protein tyrosine kinase (PTK) inhibitors (e.g., 
imatinib and nilotinib) are also the CAs inhibitors, 

Fig. 5. Subcellular localization, transmembrane topology and sequence processing of carbonic anhydrase IX (CAIX). A) The residues from 
436 to 459 that is localized in cytoplasm. B) The residues from 38 to 414 that known as extracellular domain. C) Transmembrane segment 
of the CA9 between amino acids 415 – 435. D) The N-terminal signal peptide at the first 37 residues are denoted as signal peptide.

Fig. 6. Functional sites, disulfide bond and post-translational modifications of the carbonic anhydrase IX. A)  Zinc binding to the histidine 
226, 228 and 251 require a catalytically activity for the CA9 protein. B) Histidine 200 act as a proton acceptor that is crucial for the enzyme 
catalysis activity. C) The positions of cysteine 156 and 336 that are participated in formation of disulfide bond. D and E) the O- and N-linked 
glycosylation relating to threonine 115 and asparagine 346.
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however, they are not as effective as sulphonamides 
and coumarins.139,140

(vii)  Monoclonal antibodies such as M75 and WX-G250 
have been used.141,142 

(viii)  CA inhibitors coated gold nanoparticles have also been 
used.143

Structure and function of CAIX in tumor cells
CAIX seems to be more complex than the other isoforms 
of CAs. Unlike other isoforms that contain a polypeptide 
chain with just one domain, CAIX is a multidomain 
protein (Fig. 5). The CAIX isoform is comprised of (i) 
a short intracytosolic sector with an unknown role, (ii) 
a small transmembrane section, (iii) an extracellular 
catalytic domain, (iv) a proteoglycan like domain that 
exclusively belongs to CAIX - not seen in other isoforms - 
and is involved in cell adhesion processes, and (v) a stocky 
peptide signal. 

CAIX may be seen in the form of a dimmer, in which 
they may be connected to each other through disulfide 
bonds. Among CAs protein families, CAIX has a high 
catalytic activity. The catalytic domain of this protein 
contains zinc (Zn2+) ion as well as three histidine amino 
acids and a water molecule (Fig. 6).131

CAIX is highly expressed in a variety of different 
types of cancers, whose expression is regulated by the 
transcription factor HIF-1 and is highly inducted in the 
hypoxic condition, and also associate with the cellular 
responses to radiotherapy and chemotherapy.132 The 
transcription factor HIF-1 consists of two subunits, i.e., 
alpha (α) and beta (β). In normoxia, the unit α is connected 
to pVHL (von Hippel–Lindau tumor suppressor protein), 
and therefore prevents the assembly of two subunits of 
α and β. However, under hypoxia, pVHL is separated 
from the unit α and leads to the connection of two α 
and β subunits to each other, at which point an active 
form of HIF-1 is created. Such phenomena result in the 
functional expression of the hypoxia responsive elements 
(HREs) such as glucose transporters (GLUT-1 and 
GLUT-3), vascular endothelial growth factor (VEGF) 
and CAIX.56,134,144 Of these, CAIX contributes to the 
acidification of TME. It may also lead to the phenotype of 
metastasis. Moreover, this isoform is involved in the pH 
regulation and cellular connection in association with ion 
exchanger and Na+-HCO3- co-transporters.145-147 Studies 
have shown that CAIX expression is under the control 
of promoter methylation in the kidney cells, which is an 
epigenetic mechanism.146 

Reports have shown that inactivation of CAIX gene 
with short hairpin RNA or inhibition of catalytic domain 
activity by drug could lead to a decrease in xenograft 
tumor size. Further, CAXII mRNA levels are upregulated 
in some cancer cells such as LS174Tr and HT29. 
Overall, suppression of both CAIX and CAXII appears 
to be the reason for 85% reduction in tumor growth. 
Intriguingly, CAIX expression in cancer cells could be a 
compensatory response to reduce the damaging effects 
of acidosis and hypoxia.148-150 The use of CAIX inhibitors 

reduces proliferation of cancer cells and increases 
apoptosis in hypoxic conditions, sensitizing cancer cells 
to chemotherapy and radiotherapy.151 The membrane 
transporters, pH regulation machineries (e.g.,  CAIX) and 
hypoxia in cancer cells are mostly located in invadopodia 
areas (i.e., membranous actin-rich protrusios of the 
cells). Using the import mechanism of HCO3

- and export 
mechanism of H+, lactate and CO2 are able to facilitate 
the cell movement.152 Special conditions of solid tumors 
(i.e., low pHe, hypoxia and its molecular responses) 
allow cancer cells to show stem cell-like phenotype.153,154 
In esophageal cancer model, it was found that the 
expression of CAIX and some other genes (i.e.,  Sox-2, 
Nanog and Lin28) are related to an increase in stem cell-
like phenotype.155 Studies about breast cancer have shown 
that the expression of CAIX with stem cell-related factors 
is increased markedly.156,157 The expression of CAIX is 
related to the expression of CD44, which is a stem cell 
marker. Besides, CAIX contributes to the activation of 
EMT phenomenon in epithelial cancer cells.155,158 It has 
been shown that the overexpression CAIX is involved in 
the formation of focal adhesion in the cells.159 It associate 
with β-catenin and the separation of E-cadherin from 
cytoskeletal - a key process for the separation of cell-cell 
junction.160 Further, the activations of PI3K/Akt and FAK/
PI3K/mTOR/p70S6K pathways seem to be in association 
with CAIX.161,162

Present and future prospects 
Solid tumors display complex hallmarks. They are able to 
form a permissive microenvironment and show adaptation 
and evolution ed through functional expression of a 
number of different molecular machineries. Such traits 
make the treatment of solid tumors very hard. Although 
acid-base balance in cells is one of the main parameters 
to cellular homeostasis, unfortunately, this balance is 
disturbed in solid tumors. This is a unique characteristic of 
solid tumors, which seems to be initiated by hypoxia and 
aberrant metabolism of glucose resulting in production 
of acidic byproducts in cancerous cells. Such phenomena 
give rise to functional expression of array of functional 
proteins including transcription factors, enzymes and 
transporters. These biological elements are considered as 
potential targets, inhibition of which may provide effective 
pharmacotherapy in combination with chemotherapy 
and/or immunotherapy. Use of the proton transporter 
inhibitors as a new treatment for cancer were proposed by 
several research groups. Pouysségur group showed that use 
of these this inhibitor in combination with anti-angiogenic 
inhibitors could effectively abolish the solid tumors.77 One 
advantage of this treatment modality seems to be the 
induction of less toxicity in comparison with the traditional 
chemotherapy strategies. In fact, the main purpose of this 
method was based on acid-base balance, employing the 
forces involved in controlling pH dysregulation in cancer 
cells and tissue, resulting in  regression of tumor growth, 
prohibition of invasion and suppression of metastasis. This 
has been shown in many different human solid tumors. 
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This could be beneficial because such treatment may lead 
to the inhibition of metastasis process and neutralization 
of drug resistance, resulting in much more sensitization 
of cancer cells to chemotherapy, radiotherapy and 
immunotherapy. Cancer cells in different tissues show 
distinctive behaviors because they have different genetic 
pattern and mutations or expression . For instance, lower 
metastatic cells in breast cancer often use NHEs and 
HCO3

-- and H+- based transporting system to transfer 
proton, whereas extremely metastatic cells employ plasma 
membrane V-ATPases.163 This issue is also true about 
CAs, for example, CAII mRNA level was shown to be 
decreased in the lung and colon cancers, while the level of 
CAIX mRNA was reported to be extremely increased in 
basal and triple-negative breast cancers. Further, CAXII 
mRNA levels was shown to be substantially enhanced in 
all types of breast cancer. In accordance with these, CAIX 
and CAXII mRNA levels were reported to be increased 
in squamous cell carcinoma of the lung, but not in the 
lung adenocarcinomas.164 A variety of mechanisms are 
involved in pH-dependent cancer cells' behaviors such 
as proliferation and survival, metabolic adaptation, 
metastatic and invasion. Detection of the molecular basis 
of this phenomenon is very important in understanding 
of how pH dysregulation can influence the progression 
and metastasis of solid tumors. It is now well-known that 
an increased pHi is in favor of cancer cells proliferation, 
and it also increases the cell survival through inhibition of 
apoptosis. In such circumstances, cancer cells proliferation 
seems to be somewhat independent from the influence 
of growth factors. Further, cancer cells need high energy 
and nucleotid biosynthesis for growth and proliferation 
in comparison with normal cells. As a result, metabolic 
program changes in cancer cells, which is known as the 
Warburg effect or ‘aerobic’ glycolysis. In solid tumors, 
cancerous cells are able to modulate/remodel the ECM 
through pH dysregulation resulting in metastasis. The pHi 
increase seems to necessary for the migration of cells, while 
the pHe decrease appears to interfere with the degradation 
of ECM that favors further invasion of cancer. Researchers 
who attempt to discover pH dysregulation in solid tumors 
have focused on proton transport, while other ions may be 
involved in the cancer, including HCO3

-. However, many 
fundamental questions remain unanswered. We need to 
address how cancer cells get capability to escape from the 
immune system surveillance within TME? What are the 
holistic roles of solute transporters? How the vesicular 
enzymes behave in lower pHe? Is pH dysregulation 
involved in anoikis? How single cancer cells communicate 
with neighboring cells during metastasis? How different 
types of cells communicate with TME? And, many other 
questions.

We have previously capitalized on development 
of immunotherapies and various multifunctional 
nanomedicines to combat different types of solid 
tumors.165-182 However, it seems that ultimate therapy of 
solid tumors might need use of robust synthetic lethality 
through combination therapy via targeting different key 

What is current knowledge?
√ Cancer is characterized by several adaptive hallmarks.
√ Cancer cells are able to form permissive tumor 
microenvironment (TME).
√ Hypoxia, glycolysis and Warburg effects are the main 
causes for the formation of TME.  
√ The pH dysregulation is resultant from aberrant 
metabolism of glucose and production of acidic byproducts.
ancer cells  migration.

What is new here?
√ Dysregulated pH appears to be part of cancer hallmarks.
√ The pH dysregulation favors migration, metastasis and 
invasion of cancer cells.
√ Combined formulation of cytotoxic agents with different 
inhibitors of pH modulators in TME may provide a robust 
synthetic lethality against solid tumors.
√ The pH dysregulation machineries in TME may be 
considered as tumor molecular markers and used for cancer 
diagnosis. 
√ Targeted therapy of cancer can be done by targeting pH 
modulators.

Review Highlights

molecules involved in the dysregulation of pH, formation 
of TME, tumor vascularization, and even tumor 
metabolism. he main aim of this review was to bring about 
the importance of molecular machineries related to the 
pH dysregulation within TME and that the use of relevant 
inhibitors against key regulators of pH might suppress 
tumor progression, metastasis and further invasion. It can 
be suggested that targeting the key elements involved in 
formation of TME and pH along with other conventional 
therapies can sensitize cancer cells to combinational 
therapy and hence reduce drug resistances. This may 
improve the survival rate of cancer patients. It should be 
also noted that the cancerous cells in different part of solid 
tumors may present distinct molecular patterns in terms 
of pH dysregulation, and hence some proof-of-concept 
conforming studies on epigenetic/genetic and proteomic/
metabolomic aspects may help us to design much more 
effective treatment modalities to improve the currently 
used chemotherapy and immunotherapy. 
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