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Introduction
The statistic reports by the World Health Organization 
(WHO) reveal that from 2012, stroke is the second leading 
cause of death in the world. The most prevalent type of 
stroke is an ischemic stroke which is usually caused by a 
blood clot or a stenosis in a brain artery. Both the blood 
clot and stenosis interrupt the normal blood flow in a brain 
artery. Thus, some brain cells face the lack of oxygen and 
nutrients and begin to die. Ischemic stroke mostly occurs 
in the middle cerebral arteries (MCAs) and their branches. 
Fig. 1 shows MCAs symmetrically bifurcated from the 
circle of Willis. This circular anatomical connectivity 
between the brain arteries is located at the base of the 
brain and is the main distributor of oxygenated blood 
throughout the cerebral mass. Blood comes into the circle 
of Willis through two symmetric internal carotid arteries 
(ICAs) and also 2 symmetric vertebral arteries (VAs) 
which are joined each other at the basilar artery (BA). 
Blood symmetrically leaves the circle through 2 MCAs, 2 

anterior cerebral arteries, and 2 posterior cerebral arteries 
(PCAs).

Computational fluid dynamics (CFD) has become a 
worthy tool in the investigation on hemodynamics in the 
cerebral arteries. It plays an important role in the better 
understanding of the physical mechanisms which govern 
the formation and progression of disorders, for instance, 
the aneurysms, atherogenesis, and atherosclerosis in 
the brain arteries. The governing equations of cerebral 
hemodynamics are the Navier–Stokes equations in 
which the blood flow through a brain artery or a cerebral 
arterial network is considered incompressible and 
viscous. Numerous researchers have conducted numerical 
simulations on the cerebral hemodynamics. Valencia 
and Solis1 by using the finite element method studied 
numerically the three dimensional, unsteady, and laminar 
flow of the Newtonian blood under the physiologically 
realistic pulsatile conditions in a saccular cerebral 
aneurysm formed exactly where the BA is bifurcated to 
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Abstract
Introduction: The middle cerebral artery 
(MCA) is one of the three major paired arteries 
that supply the blood to the cerebrum. In the 
present study, the three-dimensional (3D)  
blood flow in the left MCA was numerically 
simulated by using the medical imaging.
Methods: The arterial geometry was obtained 
by applying the CT angiography of the 
MCA of a 75-year-old man. The blood flow 
was assumed to be laminar and unsteady. 
Numerical simulations were done by commercial software package COMSOL Multiphysics 5.2. In 
this software, the Galerkin’s finite element method was applied to solve the governing equations.
Results: It was found that the results obtained for the Newtonian and non-Newtonian models of 
blood do not differ from each other significantly. Thus, the Newtonian model for blood flow in the 
MCA is acceptable. Also, the most susceptible region of the MCA for Atherosclerosis was detected.
Conclusion: It can be concluded that the application of the Newtonian model for the blood flowing 
in the MCA is acceptable. Also, atherosclerosis has the potential to occur at the middle of a branch 
of the MCA which has the highest geometrical curvature.
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and pressure fields, in a saccular cerebral aneurysm 
formed exactly where 2 PCAs are bifurcated from the 
BA to join the circle of Willis. In their research, the three 
dimensional, unsteady, laminar, and pulsating Newtonian 
blood flow was simulated. Reorowicz et al6 conducted three 
dimensional CFD simulations by applying the commercial 
software package ANSYS CFX for the three different 
arterial anatomies of the circle of Willis. They employed 
the SST k-ω turbulence model, a modified power low 
model for the non-Newtonian blood, and also the realistic 
pulsatile boundary conditions for the unsteady flow in 
their work. Nam et al7 used the microfluidic approach for 
the circle of Willis and then simulated it numerically by 
the commercial CFD package COMSOL Multiphysics. 
They focused on the influence of morphology of the 
circle of Willis on the formation and growth of a cerebral 
aneurysm in it. The 3 dimensional, steady, and laminar 
flow of the Newtonian blood was considered in their 
study. Tazraei et al8 investigated numerically on the blood-
hammer phenomenon in the PCAs. They performed 
their simulations for the two dimensional, unsteady, and 
laminar blood flow. In their work, both the Newtonian 
model and the non-Newtonian Carreau model were used 
for the blood and the governing equations were solved by 
using an enhanced characteristics CFD scheme. Chnafa 
et al9 introduced an improved reduced-order model for 
the three dimensional, steady, and pulsating Newtonian 
blood flow through the cerebral arterial networks. By 
considering the database of three dimensional CFD 
models for the saccular cerebral aneurysm formed on an 
MCA, they tested the aptitude of their model.

It seems that the hemodynamics in the cerebral arteries 
recently has been less investigated numerically in the 
literature comparing to it in the cardiovascular arteries.10-20 
It implies that the numerical information on the cerebral 
hemodynamics is still drastically lacking. This encouraged 
us to conduct the present research to show the noticeable 
capability of CFD in providing great details for the diagnosis 
and treatment of cerebral disorders. Furthermore, since 
some researchers employed the Newtonian model for the 
blood in the cerebral hemodynamics in the circle of Willis 
and some other researchers applied the non-Newtonian 
model for it, then this disparity in their attitude to blood 
flowing in the Circle of Willis was another motivation 
for our study to numerically show which one of these 
models is actually better. This paper aimed to focus on the 
unsteady, laminar, and three-dimensional (3D) blood flow 
through an MCA.

Materials and Methods
Anatomical modeling
The 3D model of MCA has been constructed passing 
consecutive three steps. At the first step by using the 
CT angiography, the geometrical image of an MCA of 
a 75-year-old man with the inner diameter of 5 mm 

join the circle of Willis. To understand better the role of 
different factors contributing to the initiation, growth, 
and rupture of a saccular cerebral aneurysm formed where 
the MACs are bifurcated from the circle of Willis, such 
as the hemodynamic characteristics and the bifurcation 
morphology, Torii et al2 by using the Deforming-Spatial-
Domain/Stabilized Space-Time (DSD/SST) method 
studied numerically the three dimensional, unsteady, 
and laminar Newtonian blood flow with the pulsatile 
boundary conditions in the aforementioned aneurysm. 
Jozwik and Obidowski3 by taking into consideration the 
conceivable difference in the inner diameter of the left and 
right vertebral arteries before joining together to form the 
BA investigated numerically on the three dimensional, 
unsteady, and turbulent non-Newtonian blood flow 
through them. In their study, the physiologically realistic 
pulsatile velocity and pressure at the inlet and outlet 
boundaries were approximated with a Fourier series and 
the turbulence model of SST k-ω was adopted. By using 
the Gambit and Fluent commercial software packages, 
Muller et al4 studied numerically the three dimensional, 
laminar, and unsteady Newtonian blood flow inside 
a saccular cerebral aneurysm formed on the anterior 
communicating artery (ACA) (see Fig. 1) under the 
pulsatile boundary conditions. To capture the geometry 
of ACA, a medical imaging technique was applied to 
their work. Qiu et al5 by utilizing the commercial CFD 
package ANSYS Fluent studied numerically the effects 
of a high-porosity mesh (HPM) implanted stent on the 
hemodynamic characteristics, for example, the velocity 

Fig. 1. Schematic representation of circle of Willis.
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was captured. Then, this image was segmented by the 
commercial software package MIMICS followed by the 
creation of 3D image. At the final, the model which is the 
3D output of the image processing was constructed by the 
modeling commercial software package CATIA.

Governing equations
The incompressible blood flow through the MCA was 
assumed to be three dimensional, unsteady, laminar, and 
viscous. So, its governing equations for the conservation 
of mass and momentum are written as follows:

. 0V∇ =
 

                                                                       Eq. (1)
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where 𝜇𝜇0 = 0.00568Pa.s, 𝜇𝜇∞ = 0.00345Pa.s, 𝑛𝑛 = 0.3568, 𝜆𝜆 = 3.313s and the constant density of blood 
equals 1048kg/m3. 
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hemodynamics in it. 
To verify the independence of simulations from the grid, eight grids with varied number of elements were 
constructed. Fig. 2 shows the maximum velocity of blood at the apex of the main bifurcation of MCA at 
the peak systole for these grids. It is seen that the independence of simulations from the grid has been 
achieved for a grid with 37019 tetrahedral elements. This grid was used for the MCA. 
With cooperation of the aforementioned 75-year-old man, the velocity profile at the apex of the main 
bifurcation of his MCA was obtained by Doppler ultrasound test. Also the inlet velocity profile, obtained 
by this way, was applied at the inlet of the MCA which has been represented in Fig. 3. At the outlet of 
MCA, the constant pressure equal to 1440 Pa was applied. The no-slip boundary conditions were utilized 
at tubular wall which was assumed to be rigid. This assumption is acceptable for very narrow arteries. 
To validate the simulations, the velocity profile at the apex of the main bifurcation of MCA was 
compared with the data obtained by Doppler ultrasound test. This comparison shows a good agreement in 
Fig. 4. 
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where μ0=0.00568 Pa.s, μ0=0.00345 Pa.s, n= 3568, 
λ=3.313 s and the constant density of blood equals 1048 
kg/m3.

Numerical method and boundary conditions
In this research, the numerical simulations of the three 
dimensional, unsteady, and laminar flow of blood in an 
MCA were investigated by the commercial CFD package 
COMSOL Multiphysics 5.2 in which the unstructured 
grid was generated by the tetrahedral elements and the 
Galerkin’s finite element method was used to solve the 
governing equations. The aforementioned smooth grid 
with the appropriate number of elements was clustered in 
the vicinity of the tubular wall of the MCA in order to 
better capture the hemodynamics in it.

To verify the independence of simulations from the 
grid, eight grids with a varied number of elements were 
constructed. Fig. 2 shows the maximum velocity of blood 
at the apex of the main bifurcation of MCA at the peak 
systole for these grids. It is seen that the independence 
of simulations from the grid has been achieved for a grid 
with 37 019 tetrahedral elements. This grid was used for 
the MCA.

With the cooperation of the aforementioned 75-year-
old man, the velocity profile at the apex of the main 

bifurcation of his MCA was obtained by Doppler 
ultrasound test. Also, the inlet velocity profile, obtained 
by this way, was applied at the inlet of the MCA which 
has been represented in Fig. 3. At the outlet of MCA, 
the constant pressure equal to 1440 Pa was applied. The 
no-slip boundary conditions were utilized at the tubular 
wall which was assumed to be rigid. This assumption is 
acceptable for very narrow arteries.

To validate the simulations, the velocity profile at the 
apex of the main bifurcation of MCA was compared 
with the data obtained by Doppler ultrasound test. This 
comparison shows a good agreement in Fig. 4.

Results
CFD simulations have become valuable tools for the 
better understanding of the human’s cerebral system, 
recently. In the present investigation, we focused on the 
hemodynamics in MCA. It was found that the blood 
achieves its maximum velocity at the apex of the main 
bifurcation at the peak systole. This maximum velocity 
is approximately 57% higher than the maximum velocity 
of blood at the same place, at the peak diastole. This is 
expected because the blood has a driving pressure created 
by the heart during the systole phase. The blood velocity 
distributions in the systole and diastole phases have been 
represented in Fig. 5. Fig. 6 depicts the blood streamlines 
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Fig. 2. The test carried out for the independence of simulations 
from the grid. The blood gets its maximum velocity at the apex of 
the main bifurcation at the peak systole.

Fig. 3. The inlet velocity profile obtained by Doppler ultrasound 
test.
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through the MCA and its branches. It was seen that the 
blood gets its minimum velocity at the middle of the 
branch (1) and its maximum velocity at the apex of the 
main bifurcation.

The volumetric flow rates have been reported in Table 
1. It is obvious that the branch (1) has the minimum flow 
rate at the peak systole among the branches (1), (2), and 
(3) which is the result of the high curvature of this branch. 
So, it seems that the formation of atherosclerotic plaques 
at the branch (1) due to the low blood velocity could be 
risky.

The effects of the rheological model of blood on the 
hemodynamics in MCA have been shown in Fig. 7 and Fig. 
8. Both Newtonian and non-Newtonian simulations were 

performed with exactly the same boundary conditions. 
These figures respectively show the pulsatile velocity and 
wall shear stress profiles at two critical cross sections of 
MCA, namely, at the apex of the main bifurcation where 
the wall shear stress is maximum and at the middle of 
the branch (1), where the wall shear stress is minimum, 
in the cardiac cycle. In these figures, the results obtained 
for the blood with the Newtonian model and the blood 
with the non-Newtonian model have been compared. 
It is clearly seen that the influence of rheological model 
of blood on the wall shear stress profiles is more than 
the velocity profiles. Also, it is clearly observed that 
the obtained results for both the Newtonian and non-
Newtonian models ensue the same pattern and there is 
not quantitatively considerable difference between them.

Conclusion
In the present numerical research, two different rheological 
models of blood have been employed to study the effect 
of them on the hemodynamics in an MCA. The arterial 
geometry was captured by applying the CT image of the 
MCA of a 75-year-old male and the pulsatile unsteady 
conditions based on Doppler ultrasound test data were 
considered.
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Fig. 4. Comparison between the velocity profile obtained by the 
numerical simulations and data obtained by Doppler ultrasound 
test at the apex of the main bifurcation of MCA over the multiple 
cardiac cycle.
 ▬: numerical simulation, ●: Doppler ultrasound test.

Fig. 5. Velocity distributions at diastole phase (left) and systole 
phase (right).

Fig. 6. Streamlines through the MCA at the peak systole.

Fig. 7. (A) Velocity profile at the apex of main bifurcation of the 
MCA. (B) Velocity profile at the middle of branch(1) of the MCA.

Table 1. Volumetric flow rate (mL/s) through the MCA and its branches

Inlet Branch(1) Branch(2) Branch(3)
3.72 0.8 1.88 1.04
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The results showed that the wall shear stress profiles 
are more influenced by the non-Newtonian model in 
comparison with the velocity profiles. This is associated 
with the fact that the magnitude of the viscous term in the 
governing equations directly is involved in the calculation 
of shear stress. Because of the negligible difference 
between the results obtained for the Newtonian and non-
Newtonian models, it is found that the assumption of 
Newtonian blood is acceptable for the case of MCA.

Furthermore, the most susceptible region in the MCA 
for atherosclerosis, which is one of the major global causes 
of death, was detected. In atherosclerosis duo to deposits 
formed on the artery wall, the cross-section of blood flow 
become narrowed. This present numerical research shows 
the capability of CFD in doing an investigation on the 
human’s cerebral system.
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