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Introduction
Much attention has recently been paid to a new group 
of effective cancer genes, so-called cancer/testis genes. 
Cancer-testis antigens (CTAs) are a group of tumor-
related antigens (Ags) (e.g., NY-ESO-1, SSX1, HOM-
TES-85, TSGA10, AKAP4, ODF4, PIWIL2, and RHOXF2), 
which are profoundly overexpressed in the testis and 
different tumor sites, while they show limited expression 
in the normal cells/tissues.1-4 It has been shown that the 

expression of these Ags is controlled epigenetically.5 
TSGA10 is a newly identified member of this gene family, 
which contributes to the cell division, differentiation, 
and migration.6 It is expressed in the testis during the 
progressive stages of embryogenesis, spermatogenesis, 
and also in some solid tumors such as breast cancer.7 It 
has been proposed that TSGA10 plays a key role in the 
proliferating and survival of the breast cancer cells.  The 
TSGA10 gene encodes a soluble protein, which is not a 
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Abstract
Introduction: Testis-specific gene antigen 
10 (TSGA10) is a less-known gene, which 
is involved in the vague biological paths 
of different cancers. Here, we investigated 
the TSGA10 expression using different 
concentrations of glucose under hypoxia and 
also its interaction with the hypoxia-inducible 
factor 1 (HIF-1). 
Methods: The breast cancer MDA-MB-231 
and MCF-7 cells were cultured with different 
concentrations of glucose (5.5, 11.0 and 25.0 
mM) under normoxia/hypoxia for 24, 48, and 72 hours and examined for the HIF-1α expression 
and cell migration by Western blotting and scratch assays. The qPCR was employed to analyze 
the expression of TSGA10. Three-dimensional (3D) structure and the energy minimization of 
the interacting domain of TSGA10 were performed by MODELLER v9.17 and Swiss-PDB viewer 
v4.1.0/UCSF Chimera v1.11. The UCSF Chimera v1.13.1 and Hex  6.0 were used for the molecular 
docking simulation. The Cytoscape v3.7.1 and STRING v11.0 were used for protein-protein 
interaction (PPI) network analysis. The HIF-1a related hypoxia pathways were obtained from 
BioModels database and reconstructed in CellDesigner v4.4.2.
Results: The increased expression of TSGA10 was found to be significantly associated with the 
reduced metastasis in the MDA-MB-231 cells, while an inverse relationship was seen between the 
TSGA10 mRNA level and cellular migration but not in the MCF-7 cells. The C-terminal domain 
of TSGA10 interacted with HIF-1α with high affinity, resulting in PPI network with 10 key nodes 
(HIF-1α, VEGFA, HSP90AA1, AKT1, ARNT, TP53, TSGA10, VHL, JUN, and EGFR).
Conclusions: Collectively, TSGA10 functional expression alters under the hyper-/hypo-glycemia 
and hypoxia, which indicates its importance as a candidate bio-target for the cancer therapy.
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bioinformatic tools. We also capitalized on the docking- 
and network-based analysis to assess the binding affinity 
and interactions between TSGA10 and HIF-1α and the 
other interactive oncoproteins in the related PPI network. 
We also introduced redesigned signaling pathways related 
to TSGA10 and HIF-1α for both normoxia and hypoxia 
conditions.

Materials and methods
Cell culture
Human breast cancer cell lines (MDA-MB-231and MCF-
7) were purchased from the Iranian National Cell Bank 
(Pasteur Institute, Tehran, Iran). Cells were cultured in 
RPMI 1640 medium (Gibco, Thermo Fisher Scientific 
Corp., Waltham, MA, USA) containing 10% (v/v) fetal 
calf serum (Thermo Fisher Scientific Corp., Waltham, 
MA, USA) and 1% penicillin/streptomycin (Invitrogen, 
Thermo Fisher Scientific Corp., Waltham, MA, USA). 
Cells were maintained as monolayer cultures at 37ºC in 
a humidified 5% CO2 atmosphere, and cultivated using 
different concentrations of glucose (5.5, 11, and 25 mM) 
and under hypoxia (1% O2) to mimic the TME conditions. 
For the induction of hypoxia, the cultivated cells were 
incubated with CoCl2.

27

Protein extraction and western blotting
For the extraction of the total protein, the cultivated cells 
were lysed using the lysis buffer [50 mM Tris (pH 7.4), 
1% Triton X-100, 1% sodium 125 deoxycholate, 0.1% 
SDS, 150 mM NaCl, 1.0 mM EDTA, 1.0 mM Na3VO4, 
and inhibitor cocktail tablets]. A designated equal 
amount of the total proteins extracted from different 
treatments was resolved on a sodium dodecyl sulfate-
polyacrylamide gel (i.e., 7.5%, 12.5% polyacrylamide gels) 
electrophoresis (SDS-PAGE) and transferred onto the 
nitrocellulose membrane (Bio-Rad, Hercules, CA, USA). 
The membranes were incubated with the primary rabbit 
monoclonal anti-HIF-1α from Life Technology Invitrogen 
(Thermo Fisher Scientific Corp., Waltham, MA, USA). 
Then, they were overlaid with the secondary polyclonal 
goat anti-rabbit antibodies (Abcam, Cambridge, UK). The 
protein bands were visualized using a chemiluminescence 
system (Millipore, Burlington, MA, USA).

Scratch assay
MDA-MB-231 and MCF-7 cells were cultivated to reach 
the full confluency. Then, they were scratched by the 
tip of the crystal pipettes and washed twice with PBS to 
remove the cell debris and the floating cells. The cells were 
then treated with different concentrations of glucose (5.5, 
11, and 25 mM) under hypoxic condition (1% and 20% 
O2) for 8 h (MDA-MB-231) and 24 h (MCF-7). Images 
were captured at different time points after the treatment 
to mark and assess the changes in the migration of 
phenotypically modified MDA-MB-231 and MCF-7 cells. 
The cell distance was measured by an open source image 

membrane protein.8, 9 It is expressed in small amounts 
in the undifferentiated embryonic stem cells. On the 
other hand, during entering a cell into the mitosis phase, 
the TSGA10 level is increased up to 6-fold, indicating 
its role in the cell division process.10  In a number of 
studies, the expression of TSGA10 gene was shown 
to be low in the normal cells,11,12 while its expression 
appears to be high, therefore this molecular marker 
is considered as a candidate tumor suppressor gene. 
Tumor microenvironment (TME) is a heterogeneous 
milieu composed of several types of cancerous and non-
cancerous cells,13,14 and shows unique characteristics, 
including anomalous metabolism of energetic pathways 
(e.g., glucose) together with irregular metabolisms of 
amino acids (e.g., L-tryptophan), pH dysregulation, and 
hypoxia.15,16 The main reason for the pH dysregulation 
in TME is the increased glycolysis rather than oxidative 
phosphorylation (the so-called Warburg effect).15 
According to this pathobiological phenomenon, the 
intracellular pH (pHi) is increased from ~ 7.2 to about 7.4, 
and extracellular pH (pHe) is reduced from approximately 
7.4 to ~ 6.7-7.1.17 Further, hypoxia-inducible factor 
1-alpha (HIF-1α) is one of the important transcription 
factors (TFs) that intervene with several critical cellular 
functions during hypoxia, including cellular responses 
to the hypoxia, glycolytic cycle, angiogenesis, migration, 
invasion, and metastasis of malignant cells.15,16,18 In this 
case, HIF-1α acts as an architecture in some cellular 
signaling pathways, including (i) PI3K/AKT and MAPK, 
(ii) reduction of the function of tumor-suppressor genes 
(e.g., VHL, PTEN, and CDKN2A), and in contrast, (iii) 
increasing the activity of some oncogenes (e.g., RAS, SRC, 
BCR-ABL, TWIST1, and MET).19-21 Furthermore, recent 
researches have indicated that TSGA10 has a high affinity 
to interact with HIF-1α.22 However, the precise role of 
TSGA10 in different normal and cancer cells is not still 
fully identified. Thus, this gene seems to be an interesting 
candidate biomarker for further investigations. 

The use of in silico computational analysis and systems 
biology provides a robust simulation workspace for 
biologists on more accurate detection of the physical 
interactions between various bio-elements (e.g., TFs) and 
their regulatory relationships within different biological 
pathways.23 Among these, protein-protein interaction 
(PPI) networks can serve to decrypt and predict the 
less-known biological paths and functions.24,25 It should 
be noted that the PPI networks can grant attractive 
topological features relative to the specific physical 
contacts between TSGA10 and the other proteins involved 
in the breast cancer.26 For this reason, we first investigated 
the potential effects of hyperglycemia/hypoglycemia/
hypoxia on TSGA10 expression in the breast cancer MDA-
MB-231 cells and also pursued the metastasis process 
in relation with this gene in vitro. Second, we studied 
the biochemical features, 3D structure, and subcellular 
localization of TSGA10 and HIF-1α using various 
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processing software, ImageJ (National Institutes of Health, 
Bethesda, MD, USA). Each independent experiment was 
performed in replicates. 

Real time-PCR
Total RNA was extracted using Trizol reagent (Invitrogen, 
Thermo Fisher Scientific Corp., Waltham, MA, USA). 
Reverse transcription-PCR was performed with M-MLV 
(Promega, Madison, WI, USA) following a standard 
protocol [65°C for 5 minutes (oligonucleotide, random 
hexamers, 10 mM  dnTPs)], followed by 25°C for 10 
minutes, 42 °C for 60 minutes and 70°C for 10 minutes 
(RNase inhibitor, M-MLV, 5X buffer and H2O). The 
cDNA (1 μL) from each sample was used with SYBR 
Green in a thermo-cycler (Bio-Rad, Hercules, CA, USA) 
to perform the real-time PCR in a total volume of 20 μL. 
Thermal cycling condition was as follows: 1 cycle at 94°C 
for 10 minutes, 40 cycles at 95°C for 15 seconds, 58°C 
(depending on the gene) for 30 seconds, and 72°C for 
25 seconds. The primers used were as follows: TSGA10 
5'-CAACGGCACATGCTATTCTCC-3' (forward), 
5'-CCACAGTGCTTATGGTTTCCTTC-3' (reverse); 
GAPDH 5'-AAGCTCATTTCCTGGTATGACAACG-3' 
(forward), 5'-TCTTCCTCTTGTGCTCTTGCTGG-3' 
(reverse). The relative fold change in mRNA expression 
was calculated using the 2-ΔΔCt method. Average of ΔCt 
values was normalized with Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) as the control. The reactions 
were performed in triplicates.

Statistical analysis
In this study, at least three independent experiments 
were conducted. The data are presented as means ± SD. 
The data were evaluated by one-way analysis of variance 
(ANOVA) followed by a multiple comparison post hoc 
Tukey test (Graph Pad software, version 6.0, Inc., La 
Jolla, CA, USA). A P value less than 0.05 was considered 
statistically significant. Each point/column represents the 
mean value ± SD (n=3) (*P< 0.05, ** P<0.01).

Homology modeling, validation, and energy minimization
The possible physical interaction between TSGA10 and 
HIF-1α was evaluated based on the literature search.22 The 
PPI was simulated computationally using the molecular 
docking methods. The 134-amino acid domain of TSGA10 
(556-689) participated in this protein-protein interaction 
was modeled using MODELLER v4.0 software.28 The 3D 
structure of HIF-1α was obtained from the Protein Data 
Bank (PDB ID: 1H2M). The quality of structure modeling 
was assessed based on the ProSA z-score, Verify3D and 
ERRAT web-servers.29-31 The stereochemical accuracy of 
the models was also analyzed based on the psi/phi Torsion 
angles through the Ramachandran’s plot using RAMPAGE 
server.32 The Swiss-PDB viewer v4.1.0 software was 
employed for the energy minimization of models.33

Molecular docking
The C-terminal domain of TSGA10 was structurally 
minimized and prepared for the docking through the 
Dock Prep tool of UCSF Chimera v1.11 program.34 In 
this step, four main tasks were done, including (i) deleting 
water molecules, (ii) repairing truncated side chains, (iii) 
adding hydrogen atoms, and (iv) assigning partial atomic 
charges.35 The molecular docking process was performed 
using the Hex v8.0.0 software as described previously.36 
The docking result was analyzed and visualized using 
LigPlot+ v1.4.5,37 and UCSF Chimera v1.11 programs.

Cellular localization
Intracellular and extracellular localization of TSGA10 
and HIF-1α and the main domain of TSGA10, which 
participates in the physical interaction with HIF-1α, 
were retrieved from the UniProtKB database. The gene 
ontology tool of the DAVID database was also used for 
the analysis of the cellular component (CC) ontology.38

Functional enrichment analysis
The functional annotation was performed using the 
“Database for Annotation, Visualization and Integrated 
Discovery” (DAVID) web-server.38 The biological 
pathways and functional clustering annotation for the 
hub-related proteins in the PPI network was retrieved from 
the DAVID database. A corrected P-value less than 0.05 
was set as the threshold for the functional classification 
enrichment analysis.

PPI network analysis
The proteins for possible physical interactions with 
TSGA10 and HIF-1α were downloaded from the 
STRING database v10.5,39 and imported to the Cytoscape 
v3.6.0 for the visualization and analysis. The network 
statistical significance was measured using the Network 
Analyzer tool of the Cytoscape.40 The PPI network was 
regenerated using 57 proteins that were related to the 
adjacent biological processes. Further, the PPI network 
was generated based on the medium confidence score of 
0.40 and for exploring the network data, in which all the 
interaction source parameters were selected, including 
text-mining, experiments, databases, co-expression, 
neighborhood, gene fusion, and co-occurrence. The 
topological centralities of the PPI network such as 
betweenness centrality, connectivity degree of nodes, the 
network diameter (the maximum of the shortest path 
lengths), the shortest path lengths between two nodes 
and the mean path length (the average of the shortest 
path lengths) were analyzed using the Network Analyzer 
plugin of Cytoscape. The CytoHubba plugin in Cytoscape 
was used for the prediction of important nodes (or hub 
proteins), and jActiveModule tool was used for the module 
detection in the PPI network.41 Highly interconnected 
sub-graphs (clusters) in the PPI network were identified 
using MCODE algorithm.42 The MCODE, as a graph 
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clustering tool, was used based on the finding parameters, 
including (i) degree cutoff of 2.0, (ii) node score cutoff of 
0.2, (iii) K-core of 2.0, and (iv) maximum depth of 100.

Signaling pathways reconstruction
The signaling pathway in relation to TSGA10 and HIF-
1α and under the normoxic and hypoxic conditions was 
manually reconstructed based on the PPI network analysis 
and also the BioModels and KEGG pathway database. The 
signaling pathway visualization in the form of a graphical 
environment was carried out via the CellDesigner v4.4 
program.43

Results
It seems that the profile of TSGA10 expression is an 
important factor in the initiation and development of 
breast cancer. Its expression in 17 cancer types is shown in 
Fig. S1 (see Supplementary file 1).

Hypoxia promotes migration in the MDA-MB-231 cells 
Cell migration was an evaluation criterion for the 
metastatic potential of cancer cells. To further evaluate 
how hypoxia and glucose concentration might promote 
the MDA-MB-231 and MCF-7 cells migration in vitro, we 
capitalized on the scratch assay. The confluent monolayer 
of cultivated cells was scratched carefully. As shown in 
Figs. 1 and 2, the cells were cultivated using two different 
conditions of glucose and oxygen concentrations, 

including the use of 5.5, 11, or 25 mM glucose either 
under normoxic 20% O2 condition (panel A) or hypoxic 
1% O2 condition (panel B) for 8 hours (MDA-MB-231 
cells) and 24 hours (MCF-7 cells). Hypoxia condition 
resulted in increased level of HIF-1 (Figs. 1 and 2C). The 
MDA-MB-231 cells under normoxic conditions showed 
significant increases in the migration with the increased 
concentration of glucose in a dose-dependent manner (5.5 
mM<11 mM<25 mM). The hypoxic cells, however, showed 
decreased migration in presence of high concentrations 
of glucose (5.5 mM>11 mM>25 mM) (Fig. 1D). Scratch 
assay results for MCF-7 cells did not differ significantly 
in different concentrations of glucose, normoxia, and 
hypoxia  after 24 hours  (5.5 mM<11 mM<25 mM) (Fig. 
2D). These results indicated that hypoxia and low glucose 
treatment of high-metastatic breast cancer MDA-MB-231 
cells improved their proliferation and motility abilities, 
while in such situations, low-metastatic breast cancer 
MCF-7 cells exhibited reversible behavior. It seems that 
MCF-7 cells are not responsive to the hypoxia as much 
as MDA-MB-231 cells. These results highlight the 
importance of the hypoxia as an important factor in the 
breast cancer metastasis.

Migration conditions reduce TSGA10 gene expression in 
MDA-MB-231 cells
The cultured MDA-MB-231 and MCF-7 cells treated with 
different concentrations of glucose and under hypoxic 

Fig. 1.  Effects of glucose concentrations and hypoxia on the MDA-MB-231 cell migration. Panels A and B represent the effects of different 
concentrations of glucose (5.5, 11, and 25 mM) under the normoxic (A) and hypoxic (B) conditions on the cell migration. (C) Western blot analysis 
of HIF-1 alpha in the MDA-MB-231 cells treated with different concentrations of glucose under the normoxia and hypoxia after 8 hours. Panel D 
shows the effects of the normoxia (A) and hypoxia (B) on the migration of MDA-MB-231 cells treated with different concentrations of glucose. N: 
Normoxia; H: Hypoxia.
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conditions for 24, 48 and 72 hours were investigated for 
the expression of TSGA10 mRNA by real-time PCR. The 
over-expression of TSGA10 mRNA in comparison with 
the untreated control MDA-MB-231and MCF-7 cells was 
observed in the MDA-MB-231 and MCF-7 cells treated 
with different concentrations of glucose under normoxia 
or hypoxia (Fig. 3). In comparison with the untreated 
control cells, we witnessed that 24-hour hypoxia and high 
glucose (25 mM) increased the expression of TSGA10 
mRNA in the MDA-MB-231 cells. However, after 48 and 
72 hours, the expression of TSGA10 was increased with 
glucose under normoxia (Fig. 3). The cells treated with 25 
mM glucose under the normoxic conditions showed the 
highest expression after 48 hours, which was significantly 
reduced after 72 hours. Similarly, the cells treated with 25 
mM glucose under hypoxic condition showed markedly 
high expression of TSGA10 mRNA after 24 hours, which 
was reduced afterward indicating a radical change in 
the expression of the gene under high glucose level 
and hypoxia. To compare between the low- and high-
metastatic tumor cells, we examined the expression of 
TSGA10 mRNA in MCF-7 cells. Despite showing similar 
trends, the MCF-7 cells showed a higher adaptation to 
the hypoxia and low glucose concentration over the time 
since the level of TSGA10 expression in such conditions 
showed a slight increase. Given the increased expression 
of TSGA10 mRNA in the MDA-MB-231 cells, it can be 
concluded that this gene might act as an inhibitor of the 
metastasis and migration of cancer cells.

Three-dimensional structure modeling, validation, and 
energy minimization 
Based on the UniProtKB database, the residue of TSGA10 
(556-689) was identified as a key C-terminal domain 
that can closely interact with the alpha subunit of HIF-
1 protein. Three-dimensional (3D) structure of this 
domain is shown in Fig. 3A. The energy minimization 
value of the modeled TSGA10 was about – 8972.120 kJ/
mol. This numerical analysis decreased free energy of the 
modeled protein and improved its physical status.44 The 
EasyModeller provided two modeling validation scores of 
GA431 and DOPE, in which the model with high accuracy 
shows a GA341 score of ~1.0 while the model with higher 
negative DOPE scores is considered as a stable structure.44 
The assessed values of GA341 and DOPE scores of the 
modeled TSGA10 were 1.0, and -14228.651 kcal/mole, 
respectively. Table 1 represents some other estimated 
validation values, including ProSA z-score, ERRAT, 
Verify3D, and Ramachandran plot.

Binding affinity between TSGA10 and HIF-1α
The docking energy value between the HIF-1α and 
TSGA10 domain was about -698.69 kcal/mol. The 
molecular interactions between the binding site of HIF-1α 
and TSGA10 domain are shown as 3D and 2D in Figs. 4C 
and 5, respectively.

As shown in Fig. 5, thirteen residues of HIF-1α 
(i.e., Gly155, Gly86, Gly88, Val154, Asn151, Thr149, Thr183, 
Met325, Thr302, Ala317, and Lys324) were involved in the 

Fig. 2. Effects of glucose concentrations and hypoxia on the MCF-7 cell migration. Panels A and B represent the effects of different concentrations 
of glucose (5.5, 11, and 25 mM) under the normoxic (A) and hypoxic (B) conditions on the cell migration. (C) Western blot analysis of HIF-1 alpha 
in the MCF-7 cells treated with different concentrations of glucose under the normoxia and hypoxia after 24 hours. Panel D shows the effects of the 
normoxia (A) and hypoxia (B) on the migration of MCF-7 cells treated with different concentrations of glucose. N: Normoxia; H: Hypoxia.
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hydrophobic interactions with the TSGA10 domain. 
Further, eleven residues of HIF-1α (i.e., Gln82, Asn87, 
Thr153, Asp152, Gln181, Tyr102, Lys298, Ser184, Gln314, Asn321, 
and Arg320) participated in the hydrogen bonding with the 
TSGA10 domain. The average length of hydrogen bonds 
between the docked proteins was about 2.91 Å.

Prediction of subcellular localization
Subcellular localization of the TSGA10 and HIF-1α 
proteins are reported based on the database annotation 
(UniProtKB, Ensembl, GOC, CAFA, BHF-UCL, MGI, and 
HPA). These proteins showed a wide variety of adjacent 
subcellular localizations (Fig. 6). In this regard, based on 
the predicted confidence scores (0-5), the TSGA10 protein 
is mainly localized in the cell nucleus, and the HIF-1α is 
mainly localized in the nucleus and cytoplasm.

PPI network topological analysis
Topological and functional enrichment analysis of the 
generated PPI network was performed by means of the 

Network Analyzer plugin of Cytoscape that provided 
network radius and diameter (Table 2). In the PPI 
network, the average degree of each node and average 
of local clustering coefficient was calculated as 13.6 and 
0.67, respectively. The degree distribution and clustering 
coefficient plots in the constructed PPI network were as 
a power law, therefore the network can be referred to as a 
scale-free network (Figs. S2 and S3).

In Table 3, the top ten most connected nodes (hubs) 
are ranked based on different scoring algorithms of 
CytoHubba plugin. The consensus hubs into the PPI 
network are separately indicated. The MCC method 
provides a more accurate predicting performance than the 
other algorithms.41 Integration of nine topological scoring 
approaches was used for the precise selection of the best 
hubs in this scale-free network.

The consensus hubs (CoHbs) can play a central role in 
the network clustering that reveals the active sub-networks 
(module) as they are involved in the crucial cellular 
functions into the PPI network. Moreover, deletion of 

Fig. 3. The TSGA10 mRNA expression in the MDA-MB-231 and MCF-7 cells. Baseline TSGA10 mRNA expression levels in breast cancer subtypes 
of MDA-MB-231 and MCF-7 were evaluated by real-time PCR. Extracting total RNA and normalized to GAPDH mRNA expression levels in (A) 24 
hours, (B) 48 hours, and (C) 72 hours for MDA-MB-231 and (D) 24 hours, (E) 48 hours, and (F) 72 hours for MCF-7. The data show mean values 
± SD. The one-way ANOVA was used for the statistical analysis. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, and **** P ≤ 0.0001.

Table 1. The modeling validation assays using different online web-servers

Methods Assay scheme Score Range
ProSA-web Modeling verification by calculating an overall quality Z-score - 3.45 NPS*

ERRAT (%) The overall quality for non-bounded atomic interactions 91.65 >50%
VERIFY3D (%) The number of residues having an average 3D/1D score above 2.0 72.00 >80%
RAMPAGE (%) The residues within the allowed region in psi/phi Ramachandran plot 98.60 >90%

* Native protein size (NPS): This criterion checks the z-score of the target structure whether is within the range of scores typically identified for the 
native proteins of similar size.
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Fig. 4. Molecular docking between the HIF-1α and the main domain of TSGA10 protein. (A) Three-dimensional (3D) structure of the C-terminal 
domain of TSGA10 protein. The structure was modeled using the EasyModeller software. (B) The 3D structure of HIF-1α (PDB ID: 1H2M). (C) 
The intramolecular docking between HIF-1α and the C-terminal domain of TSGA10. The molecular interactions (hydrogen and hydrophobic bonds) 
between the HIF-1α and TSGA10 domain are displayed as orange and white colors, respectively. (D) Docking between the HIF-1α and TSGA10 
domain is shown as a surface representation. The protein structures were visualized using the UCSF Chimera program.

Fig. 5. Two-dimensional plot of the intramolecular interactions between the TSGA10 domain (556 - 689) and HIF-1α. The hydrogen bonds (green dotted lines) 
and the hydrophobic contacts (red spline curves) are shown in the diagram. The legend is observable in the plot. The hydrophobic contacts are numbered in 
the plot and the hydrogen bonds are marked with the orange arrows.



Asgharzadeh et al

BioImpacts, 2019, 9(3), 145-159152

the CoHbs may destroy the PPI network, leading to the 
basic disorders in the cellular homeostasis. In Fig. 7, the 
topology of CoHbs is visible based on their score.

Network clustering analysis
For the detection of the network clusters, we used the 
MCODE plugin that is taken from the Cytoscape. The 

Fig. 6. Subcellular localization of TSGA10 and HIF-1α proteins. (A) The TSGA10 protein is mainly localized in the nucleus. (B) The HIF-1α 
protein is localized in the cytoplasm. Data, with the confidence scores of 0 to 5, were obtained from the COMPARTMENTS web-source. 
ER: Endoplasmic reticulum.

Table 2. The topological parameters of the constructed PPI network

Topology parameters Amount

Number of nodes 57
Network density 0.242

Network heterogeneity 0.636

Isolated nodes 0

Number of self-loops 0

Multi-edge node pairs 0

Clustering coefficient 0.635

Connected components 1

Network diameter 4

Network radius 2

Network centralization 0.470

Shortest paths 3192

Average number of neighbors 13.579
Characteristic path length 2.053

Table 3. The list of top 10 hubs obtained by employing the nine different types of scoring algorithms of CytoHubba plugin

Rank
Scoring method

Consensusa

Betweenness MNC Bottleneck Radiality EcCentricity MCC Stress Closeness Degree
1 HIF-1α HIF1- α HIF-1α HIF-1α TSGA10 VEGFA HSP90AA1 HIF-1α HIF-1α HIF-1α
2 HSP90AA1 VEGFA VEGFA VEGFA TEKT3 HIF-1α HIF-1α VEGFA VEGFA VEGFA

3 TSGA10 ARNT HSP90AA1 ARNT LOC81691 TP53 AKT1 ARNT ARNT HSP90AA1

4 AKT1 AKT1 TSGA10 HSP90AA1 SPAG6 AKT1 VEGFA HSP90AA1 HSP90AA1 AKT1

5 ARNT HSP90AA1 APP AKT1 TUBA3C JUN ARNT AKT1 AKT1 ARNT

6 VEGFA TP53 TP53 TP53 BACE1 EP300 TSGA10 TP53 TP53 TP53

7 TUPA3C VHL SPAG6 JUN HIF-1α EGFR APP VHL VHL TSGA10

8 SPAG6 JUN TUBB4B EGFR CXCR4 CDKN1A VHL JUN JUN VHL

9 APP EGFR AKT1 VHL ADM MDM2 NOTCH1 EGFR EGFR JUN
10 VHL EPO FLT1 EP300 BHLHE41 HSP90AA1 TP53 EP300 EPO EGFR

MNC: maximum neighborhood component; MCC: maximal clique centrality. 
a The final consensus protein hubs are ranked as 1 (as the highest) to 10 (the lowest).

result of MCODE revealed three main network clusters 
(Fig. 8).

In addition, the CoHbs were imported to the functional 
annotation clustering tool of DAVID for the analysis 
of biological pathways, molecular function (MF), and 
biological process (BP) of TSGA10, HIF-1α. Table 4 
represents the selected top three clusters with more 
enrichment score and a P-value less than 0.05. In the 
third cluster, TSGA10 and HIF-1α were located in the 
same cluster and showed the same keyword (nucleus and 
phosphoprotein).

Annotation of the functional modules
In this part, the modularity feature of the constructed 
PPI network was applied for identifying the coordinated 
biological functions or processes of TSGA10 and HIF-1α. 
In the current work, the PPIs were analyzed by using the 
molecular docking (Fig. 4), and the network modularity 
analysis (Fig. 9). In the PPI network, we detected three 
large modules and two small modules by applying the 
network module finding algorithm jActiveModule. 
The interesting point in these functional modules is the 
simultaneous presence of both HIF-1α and TSGA10 
in the extracted modules. These finding proposed an 
interpretable physical interaction between HIF-1α and 



Expression and impacts of TSGA10 in breast cancer

BioImpacts, 2019, 9(3), 145-159 153

TSGA10, and also manifested the key role of this protein 
pairs into the functional modules. The cellular component 
(CC), molecular function (MF), and biological process 
(BP) ontology of the topological large modules help us 
to understand the interactions between all the proteins 
into the functional modules. The data about the CC, MF, 
and BP ontology are provided in Tables S1, S2, and S3, 
respectively.

Moreover, the nodes of each large module were 
mapped based on the sequence feature and the use of the 
DAVID online tool to find the functional categories. The 
functional category of each node in the modules is listed 
in Table S4. In this functional enrichment analysis, it was 
annotated that there is a significant physical interaction 
between TSGA10 and HIF-1α (Table S4).

Fig. 7. The PPI network of TSGA10 and HIF-1α proteins. About 57 proteins were found to be in the near relationship with the TSGA10 and HIF-1α 
proteins. The highly connected nodes (protein hubs) are identified using CytoHubba plugin, which are visible as a spectrum of colors from red (HIF-
1α, as the highest rank hub) to lime (EGFR, as the lowest rank hub). The network was built based on the STRING database using the Cytoscape 
v3.6.0 software. PPI: Protein-protein interaction.

Fig. 8. The significant clusters in the protein-protein interaction network. The red node represents the CoHbs with three clusters. The edge shows 
the interactions among the proteins.
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Table 4. List of functional clusters with a co-occurrence meaning the biological pathways common between the THCNs

Annotation cluster 1

Enrichment score 5.91

Category Term P-value Count Genes

KEGG_PATHWAY Renal cell carcinoma 3.45E-09 6 ARNT, JUN, VHL, HIF-1α, VEGFA, AKT1, 

BIOCARTA Hypoxia-Inducible Factor in the cardiovascular 
system 3.62E-09 6 ARNT, HSP90AA1, JUN, VHL, HIF-1α, VEGFA

KEGG_PATHWAY HIF-1α signaling pathway 2.80E-08 6 ARNT, VHL, HIF-1α, VEGFA, EGFR, AKT1

GOTERM_BP_DIRECT
Regulation of transcription from RNA 
polymerase II promoter in response to 
hypoxia (GO:0061418)

3.46E-07 4 ARNT, VHL, HIF-1α, VEGFA

GOTERM_BP_DIRECT
Positive regulation of vascular endothelial 
growth factor receptor signaling pathway 
(GO:0030949)

3.05E-05 3 ARNT, HIF-1α, VEGFA

BIOCARTA VEGF, Hypoxia, and Angiogenesis 3.30E-04 4 ARNT, VHL, HIF-1α, VEGFA

GOTERM_BP_DIRECT Response to hypoxia (GO:0001666) 0.004 3 ARNT, HIF-1α, VEGFA

Annotation cluster 2

Enrichment score: 4.43

Category Term P-value Count Genes

GOTERM_BP_DIRECT Positive regulation of endothelial cell 
proliferation (GO:0001938) 3.24E-08 5 ARNT, JUN, HIF-1α, VEGFA, AKT1

GOTERM_BP_DIRECT Outflow tract morphogenesis (GO:0003151) 0.0003 3 JUN, HIF-1α, VEGFA

GOTERM_BP_DIRECT Angiogenesis (GO:0001525) 0.006 3 JUN, HIF-1α, VEGFA

Annotation cluster 3

Enrichment score: 3.16

Category Term P-value Count Genes

KEGG_PATHWAY Pathways in cancer (hsa05200) 1.02E-10 9 TP53, ARNT, HSP90AA1, JUN, VHL, HIF-1α, 
VEGFA, EGFR, AKT1

GOTERM_MF_DIRECT Enzyme binding (GO:0019899) 3.42E-07 6 TP53, JUN, VHL, HIF-1α, EGFR, AKT1

UP_KEYWORDS Ubl conjugation 3.68E-04 6 TP53, HSP90AA1, JUN, HIF-1α, EGFR, AKT1

GOTERM_CC_DIRECT Nucleoplasm (GO:0005654) 6.99E-04 7 TP53, ARNT, HSP90AA1, JUN, VHL, HIF-1α, 
AKT1

UP_KEYWORDS Nucleus 0.0016 8 TP53, ARNT, JUN, VHL, HIF-1α, TSGA10, 
EGFR, AKT1

GOTERM_CC_DIRECT Nucleus (GO:0005634) 0.004 8 TP53, ARNT, HSP90AA1, JUN, VHL, HIF-1α, 
EGFR, AKT1

UP_KEYWORDS Acetylation 0.009 6 TP53, ARNT, HSP90AA1, JUN, HIF-1α, AKT1

GOTERM_CC_DIRECT Cytosol (GO:0005829) 0.013 6 TP53, HSP90AA1, JUN, VHL, HIF-1α, AKT1

UP_KEYWORDS Phosphoprotein 0.025 8 TP53, ARNT, HSP90AA1, JUN, HIF-1α, 
TSGA10, EGFR, AKT1

BP: biological process; MF: molecular function; CC: cellular component. GO: Gene ontology.

Rebuilding the signaling pathways 
Based on our findings, there are several crucial paths, 
including PI3/AKT/mTOR as well as HIF-1α activation 
(in hypoxia) and inhibition (in normoxia). Based on the 
docking data, as well as the network and the functional 
enrichment analyses, we reconstructed the HIF-1α 
signaling pathway with adding the TSGA10 protein as 
an inhibitory factor in the formation of HIF-1α/P300/
CBP transcription complex. Fig. 10 represents the main 
cellular events that occur subsequent to hypoxia and 
HIF-1α activation (e.g., angiogenesis, pH dysregulation, 
cell migration, and metastasis), normoxia (ubiquitin-

mediated HIF-1α complex degradation) and TSGA10 
activation (e.g., inhibition the HIF-1α/HIF-1β/P300-CBP 
complex activation).

Discussion
To date, it has been recognized that malignancies, in 
particular, solid tumors, possess a unique energetic 
metabolism profile, upon which they are able to regulate 
their growth and progression, in large part based on 
the aberrant usage of glucose and oxygen.45 In the 
nutrient starvation and oxygen constraints, the cancer 
cells compete with normal cells for the vital elements. 
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Distribution of produced metabolites will be irregular 
due to the high number of cells in the tumor mass, while 
pH dysregulation will occur within the TME. In such 
circumstances, cancer cells release the primary factors that 
are involved in the angiogenesis, which in turn, guarantee 
the survival and uncontrolled proliferation of the 

cancerous cells. On the other hand, various bio-elements 
involved in the regulation of intracellular pH (pHi) are 
activated to modulate the pHi alterations. Phenotypically, 
such phenomena result in the alkalinization of cancer 
cells cytoplasm, extracellular acidification, and activation 
of extracellular matrix-degrading enzymes.16, 46 Here, for 

Fig. 9. Highly interconnected proteins in the PPI network visible as functional modules. The PPI network comprised of three large modules and two 
small modules (contained four proteins). The large modules represent a significant direct physical interaction between TSGA10 and HIF-1α. The 
red nodes represent CoHbs.

Fig. 10. The signaling pathway network of TSGA10 and HIF-1α proteins under the normoxia and hypoxia. In the cell under the normoxia, the prolyl 
hydroxylation pathway is activated and Von Hippel-Lindau tumor suppressor protein (pVHL) targets subunit α of HIF-1 protein that leads to the 
ubiquitin (Ub)-mediated HIF-1α degradation. PI3 kinase: Phosphoinositide 3-kinase; PI(4, 5)P2: Phosphatidylinositol 4,5-bisphosphate; PTEN: 
Phosphatase and tensin homolog; AKT (PKB): Protein kinase B; mTOR: mechanistic target of rapamycin; HIF-3α: hypoxia-inducible factor 3 alpha; 
CBP: CREB-binding protein; P300: histone acetyltransferase p300; HRE: hypoxia response element. The signaling pathway is reconstructed based 
on the BioModels and KEGG database and using the CellDesigner v4.4.0 in SBML format.
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the first time, we evaluated the expression of TSGA10 at 
the level of mRNA and protein under the normoxic and 
hypoxic conditions in vitro, and then computationally 
analyzed its interaction with HIF-1α as its main functional 
partner. 

Hypoxia (oxygen deficiency) is one of the main features 
of solid tumors, in which the HIF-1 as an important 
transcription factor plays a central role in the energetic 
pathways of cancer cells and hence the formation of TME. 
In fact, HIF-1 can bind to the hypoxic response elements 
(HREs), leading to the expression of the necessary genes 
to compromise with the hypoxia.47 During the hypoxia 
in TME, the ubiquitin-mediated degradation of HIF-1 
subunits are inhibited, the HIF-1 activation cascade is 
triggered, and then HIF-1 transcription complex is linked 
to the HREs. This transcription initiation complex is 
formed by the dimerization of HIF-1 subunits (HIF-1α/
HIF-1β), and then it is stabilized by binding the CBP/
P300/Ref-1 coactivators, leading to the formation of 
transcription initiation complex. As a result, several 
different pathophysiological phenotypes such as pH 
dysregulation, angiogenesis, and cell migration can 
emerge. These coactivators, along with some other factors, 
seem to facilitate the accessibility of RNA polymerase for 
high quality and quantity transcription activity of the cell.48 
The heterodimeric HIF-1 (HIF-1α/HIF-1β) has also three 
functional subunits, including (i) PER-ARNT-SIM (PAS), 
(ii) helix-loop-helix (HLH), and (iii) N- and C-terminal 
transactivation domains (C-TAD, N-TAD),49, 50 of these, 
the HLH subunit and PAS domains (A and B) contribute 
to the HIF-1 dimerization, while the transactivation 
domains are associated with the transcriptional activity 
of HIF-1, and the C-TAD is involved in the interaction 
with CBP/P300 molecules under the hypoxia.19, 51 Among 
different regulatory factors, TSGA10 seems to have a 
potential regulatory role in the activity of HIF-1α.52 On the 
basis of the functional expression of TSGA10 in the adult 
human testis, some biological functions (e.g., cell division, 
differentiation, and migration of embryonic tissues) seem 
to be attributed to its functional expression.9, 53 Further, 
it was reported that TSGA10 is overexpressed in brain 
tumors (83%), breast cancers (66%), gastrointestinal tract 
tumors (58%), as well as skin (66%) and soft tissue tumors 
(53%).54 TSGA10 interaction with HIF-1α was shown 
to prevent the nuclear localization and transcriptional 
activity of the HIF-1α.22, 55 Because of the important role of 
TSGA10 in the cell proliferation, it is supposed to be a key 
player in the survival and growth of cancer cells, which 
can also serve as a tumor marker in solid tumors such as 
breast cancer.8 Hagele and co-workers founded that there 
exists a prominent subcellular localization pattern for 
TSGA10 and HIF-1α in the tail of spermatozoa, in which 
the TSGA10 seems to prevent the nuclear localization and 
transcription activity of HIF-1α. They indicated that the 
N-terminal domain of HIF-1α can physically interact with 

the C-terminal domain of TSGA10.22 However, the impact 
of the interaction of HIF-1α with TSGA10 in progression 
or suppression of cancer seems to be unclear. Our findings 
revealed that the MDA-MB-231 and MCF-7 cells treated 
with low glucose under hypoxic condition could improve 
their proliferation and motility, indicating hypoxia as a 
key player in terms of the breast cancer metastasis (Figs. 1 
and 2). Further, TSGA10 seems to function as an inhibitor 
of metastasis and migration in the breast cancer MDA-
MB-231 cells (Fig. 3). In the current study, we also used 
molecular docking approaches to analyze the interaction 
between TSGA10 and HIF-1α. The docking energy 
(-698.69 kcal/mol), an average of hydrogen bonds (2.91 
Å), and the number of hydrophobic bonds showed that 
there is a high-affinity interaction between these proteins 
(Figs. 3 and 4). Our result is in agreement with that of 
the previously published work conducted by Mansouri 
et al.52 They showed that the C-TAD domain of HIF-1α 
has a strong binding affinity to the C-terminal domain 
of TSGA10. They also reported the inhibitory role of 
TSGA10 on the HIF-1α dimerization, at which it leads to 
the inactivation of HIF-1α through the inhibition of CBP/
P300 co-activators. Altogether, TSGA10 has an inhibitory 
effect on the cell growth, angiogenesis, migration, and 
metastasis, for which the HIF-1α seems to function as a 
provocative factor.52 While the TSGA10 is mainly localized 
in the cell nucleus, the HIF-1α seems to be abundantly 
localized in the nucleus and cytoplasm of the cells (Fig. 6), 
hence their functions differ dramatically. We reconstructed 
these biological paths using the CellDesigner software.

Our results in 24 hours showed that the expression of 
TSGA10 gene increases when the migration of cells is low. 
In other words, at the early stages of cancer progression, 
the TSGA10 might impose a suppressive impact. 
However, with the increase of intracellular metabolites 
and disruption of pH homeostasis, TSGA10 cannot play 
a controlling role anymore and perhaps after this stage, 
it either acts oppositely provoking the progression of 
cancer cells, or its functional expression is stopped. Due 
to the lack of data and also the paradoxical observations in 
previous reports, further studies need to be accomplished 
to address the actual impacts of TSGA10 in the progression 
of cancer. Unlike some previously reported studies,11, 12 the 
expression level of TSGA10 in most of the human cancers 
is increased in comparison with the normal cells (https://
cancergenome.nih.gov/). As we know, the level of mRNA 
cannot be considered as a measure of the protein levels. 
Therefore, to clarify the genetic function and mechanisms 
of the disease, a combination of genomics and proteomics 
experiments is expected to provide a better understanding. 
Based on our findings, an increased expression of 
TSGA10 appears to lead to a decrease in the migration 
and metastasis of cancer cells. In the high concentrations 
of glucose, in which solid tumors have good nutrients 
and grow extremely well, the expression of TSGA10 is 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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speculated to possibly prevent the aggressive phenotypes. 
Under such conditions, we also applied hypoxia to mimic 
the TME and found an increased expression of the 
TSGA10 gene. Furthermore, the PPI network analysis of 
TSGA10 and HIF-1α resulted in 57 nodes and 387 edges 
(Tables 2 and 3). Then, we clustered the network into the 
functional and topological sub-network modules (Figs. 
7, 8, and 9). In the systems-based approaches, we aimed 
to annotate the topological modules at the network level 
and by using the gene ontology enrichment analysis. In 
several studies, it has been shown that the modulation of 
PPI networks together with detection of highly connected 
hubs and interaction modules can result in possible 
detection/verification of less-known/unknown molecular 
functions, biological pathways, cellular localization, as 
well as cellular markers and antigens.56,57 Such findings 
may result in the detection of biomarkers and candidate 
antigens for the future works such as drug and vaccine 
designing,58 as well as mechanisms underlying diseases 
initiation and progression (Fig. 9). Moreover, the highly 
connected nodes have the main role in the organization 
of the bio-molecular networks.59 This type of analysis is 
on the basis of “guilt-by-association” concept. Taken all 
together, the network modulation resulted in the detection 
of three major functional modules (Fig. 9), and TSGA10 
and HIF-1α proteins located in the same modules (Fig. 
10). As reported recently, the proteins that interact with 
each other tend likely to be co-localized in the adjacent 
cellular compartments.60 Therefore, we used the GO-
based annotation of these modules, and we observed these 
proteins represented as an interacting partner. 

Conclusion
In our integrative analysis (wet- and dry-lab assays), we 
showed the expression behavior of TSGA10 in hypoxia 
and then constructed a PPI network of TSGA10 and HIF-
1α and detected its functional modules. The in vitro and 
in silico analyses clearly represented a possible functional 
association between TSGA10 and HIF-1α proteins. We 
envision that the hub nodes of these modules (HIF-
1α, ARNT, VEGFA, AKT1, TSGA10, HSP90AA1, VHL, 
and JUN) can be served as candidate biomarkers for the 
chemotherapy, vaccine, or immunotherapy interventions. 
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√ Testis-specific gene antigen 10 (TSGA10) is a less-known 
gene involved in the vague biological paths of different 
cancers.
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√ The increased expression of TSGA10 was found to be 
significantly associated with the reduced metastasis in the 
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√ TSGA10 functional expression alters under the hyper-/
hypo-glycemia and hypoxia.

Research Highlights

Authors’ contribution
MRA, JB, and YO conceptualized and designed the project. MRA, 
ME, and MMP performed the experiments. MJN and MRM provided 
scientific inputs. MRA, JB, ME, MMP, and YO interpreted the data and 
wrote the article. JB and YO finalized the article.

Supplementary Materials
Supplementary file 1 contains Figs. S1-S3 and Tables S1-S4.

References
1. Seifi-Alan M, Shamsi R, Ghafouri-Fard S, Mirfakhraie R, Zare-

Abdollahi D, Movafagh A, et al. Expression analysis of two cancer-
testis genes, FBXO39 and TDRD4, in breast cancer tissues and 
cell lines. Asian Pac J Cancer Prev 2014; 14: 6625-9. doi: 10.7314/
apjcp.2013.14.11.6625

2. Azam R, Ghafouri-Fard S, Tabrizi M, Modarressi MH, 
Ebrahimzadeh-Vesal R, Daneshvar M, et al. Lactobacillus 
acidophilus and Lactobacillus crispatus culture supernatants 
downregulate expression of cancer-testis genes in the MDA-
MB-231 cell line. Asian Pac J Cancer Prev 2014; 15: 4255-9. doi: 
10.7314/apjcp.2014.15.10.4255

3. Chen YT, Gure AO, Tsang S, Stockert E, Jager E, Knuth A, et al. 
Identification of multiple cancer/testis antigens by allogeneic 
antibody screening of a melanoma cell line library. Proc Natl Acad 
Sci U S A 1998; 95: 6919-23. doi: 10.1073/pnas.95.12.6919

4. Atanackovic D, Blum I, Cao Y, Wenzel S, Bartels K, Faltz C, et 
al. Expression of cancer-testis antigens as possible targets for 
antigen-specific immunotherapy in head and neck squamous 
cell carcinoma. Cancer Biol Ther 2006; 5: 1218-25. doi: 10.4161/
cbt.5.9.3174

5. Caballero OL, Chen YT. Cancer/testis (CT) antigens: potential 
targets for immunotherapy. Cancer Sci 2009; 100: 2014-21. 
doi:10.1111/j.1349-7006.2009.01303.x

6. Tanaka R, Ono T, Sato S, Nakada T, Koizumi F, Hasegawa K, et 
al. Over-expression of the testis-specific gene TSGA10 in cancers 
and its immunogenicity. Microbiol Immunol 2004; 48: 339-45. doi: 
10.1111/j.1348-0421.2004.tb03515.x

7. Reimand K, Perheentupa J, Link M, Krohn K, Peterson P, Uibo R. 
Testis-expressed protein TSGA10 an auto-antigen in autoimmune 
polyendocrine syndrome type I. Int Immunol 2008; 20: 39-44. 
doi:10.1093/intimm/dxm118

8. Dianatpour M, Mehdipour P, Nayernia K, Mobasheri MB, 
Ghafouri-Fard S, Savad S, et al. Expression of Testis Specific Genes 
TSGA10, TEX101 and ODF3 in Breast Cancer. Iran Red Crescent 



Asgharzadeh et al

BioImpacts, 2019, 9(3), 145-159158

Med J 2012; 14: 722-6. doi:10.5812/ircmj.3611
9. Modarressi MH, Cameron J, Taylor KE, Wolfe J. Identification and 

characterisation of a novel gene, TSGA10, expressed in testis. Gene 
2001; 262: 249-55. doi: 10.1016/s0378-1119(00)00519-9 

10. Miryounesi M, Nayernia K, Mobasheri MB, Dianatpour M, Oko 
R, Savad S, et al. Evaluation of in vitro spermatogenesis system 
effectiveness to study genes behavior: monitoring the expression 
of the testis specific 10 (TSGA10) gene as a model. Arch Iran Med 
2014; 17: 692-7. 

11. Yuan X, He J, Sun F, Gu J. Effects and interactions of MiR-577 and 
TSGA10 in regulating esophageal squamous cell carcinoma. Int J 
Clin Exp Pathol 2013; 6: 2651-67. 

12. Jakhesara SJ, Koringa PG, Joshi CG. Identification of novel exons 
and transcripts by comprehensive RNA-Seq of horn cancer 
transcriptome in Bos indicus. J Biotechnol 2013; 165: 37-44. 
doi:10.1016/j.jbiotec.2013.02.015

13. Hui L, Chen Y. Tumor microenvironment: Sanctuary of the devil. 
Cancer Lett 2015; 368: 7-13. doi:10.1016/j.canlet.2015.07.039

14. Ansell SM, Vonderheide RH. Cellular composition of the 
tumor microenvironment. Am Soc Clin Oncol Educ Book 2013. 
doi:10.1200/EdBook_AM.2013.33.e91

15. Barar J, Omidi Y. Dysregulated pH in Tumor Microenvironment 
Checkmates Cancer Therapy. Bioimpacts 2013; 3: 149-62. 
doi:10.5681/bi.2013.036

16. Asgharzadeh MR, Barar J, Pourseif MM, Eskandani M, Jafari 
Niya M, Mashayekhi MR, et al. Molecular machineries of pH 
dysregulation in tumor microenvironment: potential targets 
for cancer therapy. Bioimpacts 2017; 7: 115-33. doi:10.15171/
bi.2017.15

17. Busco G, Cardone RA, Greco MR, Bellizzi A, Colella M, Antelmi 
E, et al. NHE1 promotes invadopodial ECM proteolysis through 
acidification of the peri-invadopodial space. Faseb j 2010; 24: 3903-
15. doi:10.1096/fj.09-149518

18. Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, 
and cancer. Int J Cancer 2016; 138: 1058-66. doi:10.1002/ijc.29519

19. Eskandani M, Vandghanooni S, Barar J, Nazemiyeh H, Omidi Y. 
Cell physiology regulation by hypoxia inducible factor-1: Targeting 
oxygen-related nanomachineries of hypoxic cells. Int J Biol 
Macromol 2017; 99: 46-62. doi:10.1016/j.ijbiomac.2016.10.113

20. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 
2003; 3: 721-32. doi:10.1038/nrc1187

21. Corso S, Migliore C, Ghiso E, De Rosa G, Comoglio PM, Giordano 
S. Silencing the MET oncogene leads to regression of experimental 
tumors and metastases. Oncogene 2008; 27: 684-93. doi:10.1038/
sj.onc.1210697

22. Hagele S, Behnam B, Borter E, Wolfe J, Paasch U, Lukashev D, et 
al. TSGA10 prevents nuclear localization of the hypoxia-inducible 
factor (HIF)-1alpha. FEBS Lett 2006; 580: 3731-8. doi:10.1016/j.
febslet.2006.05.058

23. Fischer HP. Mathematical modeling of complex biological systems: 
from parts lists to understanding systems behavior. Alcohol Res 
Health 2008; 31: 49-59. doi: 10.1007/978-3-8349-9870-5_4

24. Ajami NE, Gupta S, Maurya MR, Nguyen P, Li JY, Shyy JY, et al. 
Systems biology analysis of longitudinal functional response of 
endothelial cells to shear stress. Proc Natl Acad Sci U S A 2017; 114: 
10990-5. doi:10.1073/pnas.1707517114

25. Peng W, Wang J, Cai J, Chen L, Li M, Wu FX. Improving protein 
function prediction using domain and protein complexes in PPI 
networks. BMC Syst Biol 2014; 8: 35. doi:10.1186/1752-0509-8-35

26. De Las Rivas J, Fontanillo C. Protein-protein interactions essentials: 
key concepts to building and analyzing interactome networks. PLoS 
Comput Biol 2010; 6: e1000807. doi:10.1371/journal.pcbi.1000807

27. Wu D, Yotnda P. Induction and testing of hypoxia in cell culture. J 
Vis Exp 2011; 54: 2899. doi:10.3791/2899

28. Webb B, Sali A. Protein structure modeling with MODELLER. 
Methods Mol Biol 2014; 1137: 1-15. doi:10.1007/978-1-4939-0366-
5_1

29. Wiederstein M, Sippl MJ. ProSA-web: interactive web service 
for the recognition of errors in three-dimensional structures of 

proteins. Nucleic Acids Res 2007; 35: W407-10. doi:10.1093/nar/
gkm290

30. Luthy R, Bowie JU, Eisenberg D. Assessment of protein models 
with three-dimensional profiles. Nature 1992; 356: 83-5. 
doi:10.1038/356083a0

31. Colovos C, Yeates TO. Verification of protein structures: patterns 
of nonbonded atomic interactions. Protein Sci 1993; 2: 1511-9. 
doi:10.1002/pro.5560020916

32. Lovell SC, Davis IW, Arendall WB, 3rd, de Bakker PI, Word JM, 
Prisant MG, et al. Structure validation by Calpha geometry: phi,psi 
and Cbeta deviation. Proteins 2003; 50: 437-50. doi:10.1002/
prot.10286

33. Johansson MU, Zoete V, Michielin O, Guex N. Defining and 
searching for structural motifs using DeepView/Swiss-PdbViewer. 
BMC Bioinformatics 2012; 13: 173. doi:10.1186/1471-2105-13-173

34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt 
DM, Meng EC, et al. UCSF Chimera--a visualization system for 
exploratory research and analysis. J Comput Chem 2004; 25: 1605-
12. doi:10.1002/jcc.20084

35. Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, 
Thomas V, et al. DOCK 6: combining techniques to model RNA-
small molecule complexes. RNA 2009; 15: 1219-30. doi:10.1261/
rna.1563609

36. Pourseif MM, Moghaddam G, Naghili B, Saeedi N, Parvizpour 
S, Nematollahi A, et al. A novel in silico minigene vaccine based 
on CD4(+) T-helper and B-cell epitopes of EG95 isolates for 
vaccination against cystic echinococcosis. Comput Biol Chem 2017. 
doi:10.1016/j.compbiolchem.2017.11.008

37. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein 
interaction diagrams for drug discovery. J Chem Inf Model 2011; 
51: 2778-86. doi:10.1021/ci200227u

38. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei 
J, et al. The DAVID Gene Functional Classification Tool: a novel 
biological module-centric algorithm to functionally analyze large 
gene lists. Genome Biol 2007; 8: R183. doi:10.1186/gb-2007-8-
9-r183

39. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, 
Huerta-Cepas J, et al. STRING v10: protein-protein interaction 
networks, integrated over the tree of life. Nucleic Acids Res 2015; 
43: D447-52. doi:10.1093/nar/gku1003

40. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, 
et al. Cytoscape: a software environment for integrated models of 
biomolecular interaction networks. Genome Res 2003; 13: 2498-
504. doi:10.1101/gr.1239303

41. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: 
identifying hub objects and sub-networks from complex 
interactome. BMC Syst Biol 2014; 8 Suppl 4: S11. doi:10.1186/1752-
0509-8-S4-S11

42. Bader GD, Hogue CW. An automated method for finding 
molecular complexes in large protein interaction networks. BMC 
Bioinformatics 2003; 4: 2. doi: 10.1186/1471-2105-4-2 

43. Van Hemert JL, Dickerson JA. PathwayAccess: CellDesigner 
plugins for pathway databases. Bioinformatics 2010; 26: 2345-6. 
doi:10.1093/bioinformatics/btq423

44. Pourseif MM, Moghaddam G, Daghighkia H, Nematollahi A, 
Omidi Y. A novel B- and helper T-cell epitopes-based prophylactic 
vaccine against Echinococcus granulosus. BioImpacts 2018; 8: 39-52. 
doi:10.15171/bi.2018.06

45. Oklu R, Walker TG, Wicky S, Hesketh R. Angiogenesis and current 
antiangiogenic strategies for the treatment of cancer. J Vasc Interv 
Radiol 2010; 21: 1791-805; quiz 806. doi:10.1016/j.jvir.2010.08.009

46. Khosravi Shahi P, Fernandez Pineda I. Tumoral angiogenesis: 
review of the literature. Cancer Invest 2008; 26: 104-8. 
doi:10.1080/07357900701662509

47. Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent 
mechanisms of vascularization and vascular remodelling. 
Cardiovasc Res 2010; 86: 236-42. doi:10.1093/cvr/cvq045

48. Lee K, Zhang H, Qian DZ, Rey S, Liu JO, Semenza GL. Acriflavine 
inhibits HIF-1 dimerization, tumor growth, and vascularization. 



Expression and impacts of TSGA10 in breast cancer

BioImpacts, 2019, 9(3), 145-159 159

Proc Natl Acad Sci U S A 2009; 106: 17910-5. doi:10.1073/
pnas.0909353106

49. Hu CJ, Sataur A, Wang L, Chen H, Simon MC. The N-terminal 
transactivation domain confers target gene specificity of hypoxia-
inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 2007; 
18: 4528-42. doi:10.1091/mbc.E06-05-0419

50. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible 
factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by 
cellular O2 tension. Proc Natl Acad Sci U S A 1995; 92: 5510-4. 

51. Semenza GL. HIF-1: upstream and downstream of cancer 
metabolism. Curr Opin Genet Dev 2010; 20: 51-6. doi:10.1016/j.
gde.2009.10.009

52. Mansouri K, Mostafie A, Rezazadeh D, Shahlaei M, Modarressi 
MH. New function of TSGA10 gene in angiogenesis and tumor 
metastasis: a response to a challengeable paradox. Hum Mol Genet 
2016; 25: 233-44. doi:10.1093/hmg/ddv461

53. Modarressi MH, Behnam B, Cheng M, Taylor KE, Wolfe J, van 
der Hoorn FA. TSGA10 encodes a 65-kilodalton protein that is 
processed to the 27-kilodalton fibrous sheath protein. Biol Reprod 
2004; 70: 608-15. doi:10.1095/biolreprod.103.021170

54. Mobasheri MB, Jahanzad I, Mohagheghi MA, Aarabi M, Farzan S, 
Modarressi MH. Expression of two testis-specific genes, TSGA10 
and SYCP3, in different cancers regarding to their pathological 

features. Cancer Detect Prev 2007; 31: 296-302. doi:10.1016/j.
cdp.2007.05.002

55. Behnam B, Chahlavi A, Pattisapu J, Wolfe J. TSGA10 is Specifically 
Expressed in Astrocyte and Over-expressed in Brain Tumors. 
Avicenna J Med Biotechnol 2009; 1: 161-6. 

56. Murakami Y, Tripathi LP, Prathipati P, Mizuguchi K. Network 
analysis and in silico prediction of protein-protein interactions 
with applications in drug discovery. Curr Opin Struct Biol 2017; 44: 
134-42. doi:10.1016/j.sbi.2017.02.005

57. Thangudu RR, Bryant SH, Panchenko AR, Madej T. Modulating 
protein-protein interactions with small molecules: the importance 
of binding hotspots. J Mol Biol 2012; 415: 443-53. doi:10.1016/j.
jmb.2011.12.026

58. Pourseif MM, Moghaddam G, Saeedi N, Barzegari A, Dehghani 
J, Omidi Y. Current status and future prospective of vaccine 
development against Echinococcus granulosus. Biologicals 2018; 
51: 1-11. doi:10.1016/j.biologicals.2017.10.003

59. He X, Zhang J. Why do hubs tend to be essential in protein networks? 
PLoS Genet 2006; 2: e88. doi:10.1371/journal.pgen.0020088

60. Jiang JQ, Wu M. Predicting multiplex subcellular localization 
of proteins using protein-protein interaction network: a 
comparative study. BMC Bioinformatics 2012; 13 Suppl 10: S20. 
doi:10.1186/1471-2105-13-S10-S20


