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Introduction
Alzheimer’s disease (AD), which is an age-related 
neurodegenerative disorder, is the most prevalent 
form of dementia in the elderly. Hallmarks of AD 
include intraneuronal neurofibrillary tangles (NFTs) 
of hyperphosphorylated tau protein and cerebral 
senile plaques with extracellular deposits of β-amyloid 
peptide (Aβ). The sporadic AD is categorized into 
early- and late-onset with a prevalence of 3–5% and 
95–97%, respectively.1-4 Genetics has been found to be a 

contributing factor in neurodegenerative diseases such as 
Parkinson’s disease,5 multiple sclerosis,6 Leber’s Hereditary 
Optic Neuropathy,7 and AD.8 Amyloid precursor protein 
(APP)9,10 and presenilin-1-2 (PSEN1-2) mutations11,12 

have been found in less than 5% of the AD patients.13,14 
Moreover, allelic variation of the Apolipoprotein E (Apo 
E) locus on chromosome 19 has been considered as a risk 
factor of late-onset AD (LOAD).15 Potential involvement 
of genes on chromosomes 6, 9, 10, 11, 12, 14, 18, 19, 
and X in LOAD has been demonstrated.16,17 It has been 
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Abstract
Introduction: Alzheimer’s disease (AD), 
which is a progressive neurodegenerative 
disorder, causes structural and functional 
brain disruption. MS4A6A, TREM2, and 
CD33 gene polymorphisms loci have 
been found to be associated with the 
pathobiology of late-onset AD (LOAD). In 
the present study, we tested the hypothesis 
of association of LOAD with rs983392, 
rs75932628, and rs3865444 polymorphisms 
in MS4A6A, TREM2, CD33 genes, 
respectively.
Methods: In the present study, 113 LOAD patients and 100 healthy unrelated age- and gender-
matched controls were selected. DNA was extracted from blood samples by the salting-out method 
and the genotyping was performed by RFLP-PCR. Electrophoresis was carried out on agarose gel. 
Sequencing was thereafter utilized for the confirmation of the results.
Results: Only CD33 rs3865444 polymorphism revealed a significant difference in the genotypic 
frequencies of GG (P = 0.001) and GT (P = 0.001), and allelic frequencies of G (P = 0.033) and T 
(P = 0.03) between LOAD patients and controls.
Conclusion: The evidence from the present study suggests that T allele of CD33 rs3865444 
polymorphism is associated with LOAD in the studied Iranian population.
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In the present study, our aim was to test the hypothesis 
of association of the three polymorphisms, rs983392, 
rs75932628, and rs3865444 of MS4A6A, TREM2, and 
CD33 genes, respectively, in LOAD patients in an Iranian 
population in the north west of Iran. 

Materials and methods
Participants
In this case–control study, 113 LOAD patients and 100 
unrelated healthy controls were recruited. All the subjects 
were selected from neurologic wards of hospitals of 
Tabriz University of Medical Sciences, Tabriz, Azerbaijan 
Province, Iran. Inclusion criteria were LOAD diagnosis 
according to its diagnostic protocol.33 Exclusion criteria 
were history of other neurodegetrative diseases and 
inherited diseases. Unrelated healthy control subjects were 
selected by advertisement from the general population 
and controlled by a neurologist for not suffering from 
LOAD. Age and gender matching was carried out in the 
two groups to control their possible confounding effects. 
Peripheral blood samples were obtained from LOAD 
patients and elderly control group and written informed 
consent was obtained from all of the subjects. Additionally, 
information on demographic characteristics such as 
gender, age, education, and MMSE score was collected. 

Genotyping
DNA was extracted from blood samples (5 mL) by 
the salting-out of the cellular proteins. The salting-
out was carried out by dehydration and precipitation 
using a saturated NACL solution.34 By using Primer 3 
software, forward and reverse primers were designed for 
each DNA fragment (Table 1). DNA was amplified by 
polymerase chain reaction (PCR) (Table 2). Restriction 
fragment length polymorphism (RFLP) was performed 
by certain restriction enzymes (Thermo Fisher Scientific, 
USA) (Table 1). Restriction products were separated by 
electrophoresis in 3% agarose gel with the aid of DNA 
safe stain and visualized in a UV transilluminator. The 
gels were thereafter evaluated in a UV transilluminator 
and images were captured. In addition, sequencing of 10% 
of PCR products were carried out by Sanger method to 
confirm the results of RFLP analysis. 

Data analysis was performed by SPSS version 16.0 
by chi-square test. Hardy–Weinberg equilibrium was 
assessed using Fisher exact test (P > 0.05). Furthermore, 
the odds ratios (OR) with 95% confidence interval (CI) 
were estimated for data. A P ≤ 0.05 was considered as 
statistically significant.

shown that mutations and differential expression of 
microglial receptors are associated with an increased risk 
of developing AD.18

TREM2, which stands for triggering receptor 
expressed on myeloid cells 2, is an innate immune 
receptor on chromosome 6q21.1. It is expressed on the 
cell surface of macrophages, osteoclasts, microglia, and 
immature dendritic cells. It facilitates phagocytosis and 
downregulation of inflammation in the central nervous 
system.19 TREM2 strongly increases the risk of developing 
AD, indicating microglial role in the pathogenesis of AD.20 
R47H (rs75932628) missense mutation within TREM2 
gene has been reported to be associated with an increased 
risk of AD (OR = 2.92) in Icelandic population.19 Such 
association has also been found in American, German, 
Dutch, and Norwegian populations.21,22 Elsewhere, there 
was an association of rare R47H and R62H variants of 
TREM2 gene and increased risk of LOAD.22

The MS4A, which refers to membrane-spanning 
4-domains subfamily A gene, is located on chromosome 
11q12.2. It serves an important role in immunity. In 
addition, MS4A families have a significant effect on 
tau phosphorylation, Aβ generation, and apoptosis 
through the regulation of calcium homeostasis. MS4A 
gene is highly expressed in monocytes and myeloid 
cells.23 Recently LOAD genome-wide association studies 
(GWASs) have detected single nucleotide polymorphisms 
(SNPs) of MS4A6A gene such as rs983392 in association 
with increased risk of LOAD.24,25 MS4A6A expression level 
is associated with an increased generation of plaque and 
tangle in AD patients.26 It is suggested that AD specific 
brain structures are influenced by MS4A6A genotypes, 
indicating a possible role of the polymorphism in AD-
related neuroimaging phenotype.27

CD33 or Siglec-3 is a type I transmembrane protein 
belonging to the sialic acid-binding immunoglobulin-like 
lectins expressed on the cells of myeloid lineage. It plays 
an important role in mediating clathrin-independent 
endocytosis, cell growth and survival regulation by 
the induction of apoptosis, cell–cell interaction, and 
immune cells inhibition.28,29 The association of CD33 gene 
polymorphisms with the LOAD has been demonstrated 
in several GWASs.30,31 In addition, it was shown that 
CD33 rs3865444 polymorphism was associated to CD33 
overexpression and amyloid plaque intensity by the 
impairment of Aβ microglia-mediated clearance in the 
brain of AD patients.32

Little attention has been paid to the association of 
these polymorphisms with AD in the Iranian population. 

Table 1. Forward and reverse primers and restriction enzymes used for electrophoresis of the investigated polymorhisyms

Gene SNP Forward primer Reverse primer Restriction enzyme

MS4A6A rs983392 (A/G) 5’-GCCCAGAATATGTCAGCAAAAAC-3’ 3’-AAGAAGAGCTAGCATGCACAGA-5’ NlaIII

TREM2 rs75932628 (C/T) 5’-GTTGTAGATTCCGCAGCG-3’ 3’-AAGACCAAGTGCCTCCAGA-5’ Hinp1I

CD33 rs3865444 (G/T) 5’-ACAACTGTTTACACCAGGGC-3’ 3’-AGTGTTTCTCCGAGATGACG-5’ N1aIII

https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3865444
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Results
Demographic characteristics of patients such as gender, 
age, education, and MMSE score are shown in Table 3. 
Allelic and genotypic frequencies of MS4A6A (rs983392), 
TREM2 (rs75932628), and CD33 (rs3865444) gene 
polymorphisms were assessed in 113 LOAD patients and 
100 control individuals. For MS4A6A gene polymorphism 
(rs983392), G allele produced digestion by NlaIII detecting 
CATG/ sequence, in contrast to A allele abolishing 
the restriction site. For the TREM2 (rs75932628), C 
allele produced digestion by Hinp1I detecting G/CGC 
sequence, in contrast to T allele abolishing the restriction 
site. For the CD33 (rs3865444), G allele produced 
digestion by NlaIII detecting CATG/sequence, in contrast 
to A allele abolishing the restriction site. Genotypic and 
allelic frequencies of MS4A6A polymorphism (rs983392) 
showed no significant difference between the LOAD 
patients and the control group (Table 4). In TREM2 
polymorphism (rs75932628), there was a non-significant 
difference between the frequency of allele T and the others 
(Table 5). There was also a non-significant difference 
between TT genotypic frequency and the others (Table 
5). We also found a significant difference in genotypic 
(GG, P = 0.001; GT, P = 0.001) and allelic (G, P = 0.033; 
T, P = 0.03) frequencies of CD33 gene polymorphism 
(rs3865444) between the LOAD patients and the controls 
(Table 6). Fig. 1 shows RFPL results of MS4A6A, TREM2, 

and CD33 gene polymorphisms. Fig. 2 illustrates 
sequencing confirmation of the PCR-RFLP results.

Discussion
Recently, several GWASs have identified polymorphisms 
in MS4A6A, TREM2, and CD33 gene loci in 
LOAD patients. However, little is known about the 
abovementioned polymorphisms in Iranian population 
in Azerbaijan province. One study in an Iranian Azeri 
population showed that bridging integrator 1 (BIN1), 
estrogen receptor 1 (ESR1), toll-like receptor 2 (TLR2), 
chemokine receptor type 2 (CCR2), tumor necrosis 
factor alpha (TNF α), APOE, and phosphatidylinositol-
binding clathrin assembly protein (PICALM) are loci for 
susceptibility of LOAD.35 In this population, variants of 
TNF α, ESR1, CCR2, and APOE showed to be associated 
in 3 different genetic models. With adjustment for APOE, 
the genotypic and allelic association with BIN1, CCR2, 
and ESRα (PvuII) was found only in patients with APOE 
ε4; nevertheless, without Bonferroni correction, the 
association with CCR5, was seen only in cases with APOE 
ε4 allele.

TREM2 is an innate immune receptor and is encoded 
on the cell surface of microglia, immature dendritic cells, 
osteoclasts, and macrophages. For the first time, Jonsson 
et al19 reported the rs75932628 polymorphism in TREM2 
gene associated with an increased AD risk in an Icelandic 
population. An association of the TREM2 p.R47H 
substitution with Parkinson’s disease (OR=2.67; P = 0.026) 
and frontotemporal dementia (OR = 5.06; P = 0.001) were 
demonstrated.36 In addition, an association of this SNP 
with the increased risk of LOAD has been reported. 22 In 
the present study, no T allele and TT genotype of TREM2 
rs75932628 (R47H) polymorphism was seen. The TREM2 
rs75932628 SNP, identified by Jonsson et al,19 failed to 
pass quality control due to a low minor allele frequency 
(0.0009). The frequency of minor allele varies usually 
across populations with a reported frequency from the 
Exome Variant Server of 0.26% among 4300 European 
Americans and 0.02% among 2203 African Americans.37 
Nevertheless, Mehrjoo et al38 showed that there were-T 
one homozygous and 2 heterozygous AD patients and 
one heterozygous healthy control of TREM2 exon 2 
rs75932628.

Table 2. PCR reaction condition for MS4A6A, TREM2, and CD33 gene polymorphisms

Reaction component MS4A6A gene polymorphism TREM2 gene polymorphism CD33 gene polymorphism

WATER, Nuclease-free 17 µL 18 µL 17 µL

10x FastDigest or 10x FastDigest Green Buffer 2 µL 2 µL 2 µL 

PCR reaction mixture 10 µL (0.2 µg DNA) 10 µL(0.1-0.5 µg DNA) 10 µL(0.2µg DNA)

FastDigest enzyme 1 µL (NlaIII) 1-2 µL (HinP1I) 1 µL (NlaIII)

Expexted size of digested products 67+174 bp 164+369 bp 282+366 bp

Table 3. Demographic information of studied healthy controls and AD cases

Demographic information Controls 
 No. (%)

AD cases
 No. (%)

Gender
Male 32 (35.95) 42 (42)
Female 57 (64.04) 58 (58)

Age group (y)

65-69 46 (52.27) 21 (21.64)

70-74 13 (14.77) 13 (13.4)

75-79 18 (20.45) 27 (27.83)

≥80 11 (12.5) 36 (37.11)

Education (y)

Illiterate 44 (57.14) 43 (50)

1-4 years 28 (36.36) 28 (32.55)

5-8 years 7 (9) 10 (11.62)

≥9 years 3 (3.89) 5 (5.81)

MMSE score
<18 group 0 (0) 37 (36)
≥18 group 93 (99) 66 (63)
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The MS4A gene serves an important role in immunity, 
Aβ generation, tau phosphorylation, and apoptosis.26 
MS4A genes are highly expressed in myeloid cells and 
monocytes.23 Recent LOAD GWASs have demonstrated 
several SNPs such as rs983392 polymorphism in MS4A6A 
associated with LOAD susceptibility.25,31,39 

In spite of the fact that MS4A6E mRNA expression 
and rs670139 variant are associated with increased 
generation of tangle and plaque in brain tissues of AD 
patients,26 the International Genomics of Alzheimer's 
Project (IGAP) meta-analysis showed rs983392 variant 
of MS4A6A gene was associated with reduced LOAD 
risk. This polymorphism affects active transcription 
sites and enhancers in human primary monocytes and is 
linked to chromatin marks presenting low transcription 
in neurons and brain tissues.40 Moreover, Qiong et al 
mentioned that in 261 controls, 47 AD patients and, 456 
patients with mild cognitive impairment, rs983392 SNP 
in MS4A6A gene was associated with an increase in the 
volume of left inferior temporal regions. Furthermore, 
this SNP was associated with the volume of right middle 
temporal at baseline.41 However, we found no significant 

association between the rs983392 SNP of MS4A6A gene 
and susceptibility to LOAD. 

CD33 or Siglec-3 is a type I transmembrane protein 
belonging to the sialic acid-binding immunoglobulin-
like lectins and is encoded on the cells of myeloid 
lineage. It serves an important role in mediating clathrin-
independent endocytosis, cell growth and survival 
regulation by induction of apoptosis, and cell–cell 
interaction and immune cell functions inhibition. With 
respect to CD33 rs3865444 polymorphism, our findings 
revealed an association between GG (P = 0.001) and 
GT (P = 0.001) genotypes and LOAD. LOAD was also 
associated with G (P = 0.033) and T (P = 0.03) alleles. It 
is also worth mentioning that T allele and GT genotype 
showed a lower odds of AD. The association of CD33 
gene polymorphisms with the LOAD has been evaluated 
by recent GWASs25,30,31,39 with contradictory findings. 
The rs3865444 SNP can be seen in upstream of the 5’ 
UTR of the CD33 gene.25,31 In addition, CD33 rs3865444 
polymorphism was associated with increased CD33 gene 
expression and amyloid plaque intensity by impairing 
microglia-mediated clearance of Aβ in the brain of AD 

Table 4. Genotype and allele distribution of MS4A6A gene polymorphism (rs983392) in control and case groups

Genotypes and alleles of MS4A6A 
polymorphism (rs983392)

LOAD (n=113) Control (n=88)
Odds ratio (95 % CI) P value

n F n F

A 122 0.539 89 0.505 1.146 (0.63-2.07) 0.315

G 104 0.460 87 0.494 0.873 (0.48-1.58) 0.367

AA 31 0.274 23 0.261 1.069 (0.54-2.09) 0.405

AG 60 0.530 43 0.488 1.183 (0.65-2.14) 0.249

GG 22 0.194 22 0.250 0.722 (0.35-1.48) 0.179

Table 5. Genotype and allele distribution of TREM2 gene polymorphism (rs75932628) in control and case groups

Genotypes and alleles of TREM2 poly 
morphisms (rs75932628)

LOAD (n=102) Control (n=86)
Odds ratio (95 % CI) P value

n F n F

C 203 0.995 171 0.994 1.2 (0.002-1166261.4) 0.467

T 1 0.004 1 0.006 0.665 (0.00-405.997) 0.5

CC 101 0.99 85 0.988 1.2 (0.046-41.1) 0.287

CT 1 0.009 1 0.012 0.755 (0.036-1125592.1) 0.493

TT 0 0 0 0 - -

Table 6. Genotype and allele distribution of CD33 gene polymorphism (rs3865444) in control and case groups  

Genotypes and alleles of CD33 
polymorphism (rs3865444)

LOAD (n=105) Control (n=91)
Odds ratio (95 % CI) P value

n F n F

C 173 0.824 130 0.714 1.875 (0.91-3.88) 0.03

T 37 0.176 52 0.286 0.533 (0.25-1.09) 0.03

CC 73 0.695 43 0.472 2.549 (1.37-4.74) 0.001

CT 27 0.257 44 0.483 0.370 (0.19-0.7) 0.001

TT 5 0.047 4 0.043 1.098 (0.24-4.95) 0.50
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patients.32 
CD33 has been identified as a modifier of Aβ pathology 

in vivo. The protective T allele of rs3865444 SNP is 
associated with reduced levels of insoluble Aβ42, CD33 
microglial expression, and plaque burden in brains of AD 
patients. CD33 microglial is overexpressed in AD but the 
expression reduced in patients with T allele of the CD33 
SNP rs3865444 because of the lower numbers of CD33-
positive microglial cells. Therefore, CD33 may serve 
an important role in regulating Aβ microglial clearance 
and consequently may be a treating and preventive target 
of AD.42 Recently, therapies targeting CD33 have been 
developed in acute myeloid leukemia (AML).28,43,44 Walker 
et al45 investigated the rs3865444 polymorphism effects on 
the AD development and the expression of CD33 mRNA 
and protein in 96 controls and 97 AD patients and showed 

that the overexpression of CD33 mRNA was seen to be 
associated with the pathology of AD in temporal cortex 
samples and also identified that homozygous individuals 
with A/A (or T/T) alleles resulted in reduced levels of 
CD33 protein in temporal cortex.45 A meta-analysis 
of 2634 LOAD patients and 4201 controls comprising 
six case-control studies from the USA and Europe also 
showed a significant association of CD33 rs3865444 SNP 
and AD (OR = 0.92, P = 0.049).46 Investigation of fifty-
eight SNPs in 229 LOAD cases and 318 control individuals 
from mainland China showed that rs6656401-rs3865444 
(CR1-CD33) pairs were associated with the reduction of 
LOAD risk.47 

Conclusion
MS4A6A, TREM2, and CD33 gene polymorphisms loci 

Fig. 1. Electrophoresis results of MS4A6A, TREM2, and CD33 gene polymorphisms.

Fig. 2. Sequencing confirmation of MS4A6A, TREM2, and CD33 gene polymorphisms.
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have been found to be associated with the susceptibility 
to LOAD. In the present study, we tested the hypothesis 
of association of LOAD with rs983392, rs75932628, and 
rs3865444 polymorphisms in MS4A6A, TREM2, CD33 
genes, respectively. The findings from the present study 
suggest that T allele of CD33 rs3865444 polymorphism is 
associated with LOAD in the studied Iranian population. 
Further investigations at mRNA and protein level 
may provide insights on the role of these mutation in 
susceptibility to LOAD.
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