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Introduction
The evolution of engineered nanoparticle bio-conjugates 
(ENPBC) has led to a wide spectrum of biomedical and 
environmental products and applications.1-5 Ideally, 
ENPBCs are the formulation of any pharmacological 
active nanomaterial (e.g., nano-bio-conjugated, 
recombinant proteins, vaccines, nucleic acids, or bio-
products)’ that enable site-specific-targets of organs/cells 
with controlled release or to treat and prevent diseases 
(e.g., cancers, infections, bone tissue engineering, etc) in 

human.4,5 In this context, nanoparticles (NPs) including 
those of gold, zinc, copper, platinum, carbon nanotubes 
and other metal oxides are widely used with varying 
distinctive therapeutic functions/properties.1,6-8 The array 
of applications is based on NPs vast physiochemical broad 
multi-faceted properties derived from their nanosize 
scales and interactions.1,4 However, the understanding of 
the diverse behavior of ENPBCs and characteristics within 
human cells is still limited. Therefore, simple, fast, and 
reliable in vitro screening techniques that detect cellular 
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Abstract
Introduction: The vast diverse products and 
applications of engineered nanoparticle bio-
conjugates (ENPBCs) are increasing, and 
thus flooding the-markets. However, the 
data to support risk estimates of ENPBC are 
limited. While it is important to assess the 
potential benefits, acceptability and uptake, 
it is equally important to understand where 
ENPBCs safety is and how to expand and 
affirm consumer security concerns.
Methods: Online articles were extracted from 2013 to 2016 that pragmatically used xCELLigence real-
time cell analysis (RTCA) technology to describe the in-vitro toxicity of ENPBCs. The xCELLigence 
is a +noninvasive in vitro toxicity monitoring process that mimics exact continuous cellular bio-
responses in real-time settings. On the other hand, articles were also extracted from 2008 to 2016 
describing the in vivo animal models toxicity of ENPBCs with regards to safety outcomes.
Results: Out of 32 of the 121 (26.4%) articles identified from the literature, 23 (71.9%) met the in-vitro 
xCELLigence and 9(28.1%) complied with the in vivo animal model toxicity inclusion criteria. Of 
the 23 articles, 4 of them (17.4%) had no size estimation of ENPBCs. The xCELLigence technology 
provided information on cell interactions, viability, and proliferation process. Eighty-three (19/23) 
of the in vitro xCELLigence technology studies described ENPBCs as nontoxic or partially nontoxic 
materials. The in vivo animal model provided further toxicity information where 1(1/9) of the in vivo 
animal model studies indicated potential animal toxicity while the remaining results recommended 
ENPPCs as potential candidates for drug therapy though with limited information on toxicity.
Conclusion: The results showed that the bioimpacts of ENPBCs either at the in vitro or at in vivo 
animal model levels are still limited due to insufficient information and data. To keep pace with 
ENPBCs biomedical products and applications, in vitro, in vivo assays, clinical trials and long-term 
impacts are needed to validate their usability and uptake. Besides, more real-time ENPBCs-cell impact 
analyses using xCELLigence are needed to provide significant data and information for further in vivo 
testing.
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sterile and instructional conditions. For further details, 
readers are referred to Hamidi et al protocol. Step 1: Set 
the startup xCELLigence RTCA program as instructed 
for use including the experimental layout, page layout, 
and the schedule page layout. Step 2: Prepare the test run 
cell adhesion experiment using the xCELLigence RTCA 
background reading. Step 3: Prepared study target cells 
are adhered to or seeded to the microtiter 96 well plates. 
The wells will be placed on the gold microelectrodes 
that impede the flow of the electric current between 
electrodes. Step 4: The adhered cells are seeded with the 
required growth tissue culture media in question. Step 5: 
Addition of various sterile concentrations of the ENPBCs 
without any external reagents to the tissue culture media. 
Step 6: Monitoring of the ENPBCs and tissue culture 
xCELLigence real-time viability profile from a humidified 
CO2 incubator using an external computer system. 

As for the standardization and regulation of 
nanomaterials, it must be noted that the toxicity levels 
depend on the type of ENPBC, the size and shape specific, 
surface chemistry, roughness, hydrophilic/hydrophobic 
characteristics, zeta potential, solubility and surface 
coatings and conjugated ligands.15-17 As discussed already, 
despite the evolution of nanomedicine, coupled with other 
vast applications and nano-products there are no clear 
human safety screening techniques either in vitro levels. At 
the moment, the Consumer Protection Act Right requires 
local, government, national, regional and international 
regulatory organizations to protect consumers by setting/
stating standards as well as published safety regulatory/
instructions, protocols, and warnings that might evolve 
from some nano-consumable products.19 Based on this, 
the National Institute of Health (NIH) and Organization 
for Economic Co-operation and Development (OECD) 

toxicity effects are vital before they reach the environment 
and the market. 

The ENPBCs in vitro or in vivo demonstrations have 
shown varying biological effects in animal cell development 
and reproduction.9 However, the biological effects of 
ENPBCs concerning the human health have not fully 
been established as is the case with other commercially 
available pharmacologic active non-nanomaterials and 
antibiotics.3,10-13 For example, commercially available 
drugs have written mechanisms of action, toxicity, and 
side effects whereas such information to date are limited 
for ENPBCs. This is because most nanodrugs are still at the 
developmental phase with limited safety trials. Addressing 
the undesirable effects of ENPBC require clear regulations 
that govern their toxicity in human and environment. 
Specifically, this requires a considerable amount of data and 
evidence-based information to support ENPBCs toxicity 
effect/impact, safety, tolerability, adverse reactions, and 
others. It may also include information and background 
on the toxicity profile and testing tools that could be used 
in the standardization and expansion of local, national, 
regional, and international regulatory frameworks for 
ENPBCs. Unfortunately, the non-availability of tools for 
estimating nanomaterials toxicity for standardization is 
one of the major setbacks regarding their regulations. 

It must be noted that ENPBCs have a large surface 
area and volume ratio leading to a high diverse-level of 
interaction with assays, binding and bonding to chemicals, 
and materials thus giving false toxicity results.11,14 For 
example, graphene families of nanomaterials can interact 
with assays by binding to lactate dehydrogenase (LDH) 
thus giving false negative toxicity results.11 The use of 
xCELLigence real-time cell analysis (RTCA) technology 
system, in this case, is vital because it has some promising 
characteristics that limit ENPBCs interactions with 
various dye, enzymes and chemicals used in estimating 
cytotoxicity thereby reducing false-negative and false-
positive outcome. In other words, xCELLigence in vitro 
toxicity testing provides real-time tissue cells’ observation, 
cell growth, reproduction, and morphological effects 
without the interferences of non-external cells, chemicals 
and dyes interactions as in other conventional cytotoxicity 
testings.14-17

This study, therefore, describes ENPBC toxicity using the 
xCELLigence technology system and the role of regulatory 
bodies regarding ENPBCs and safety guidelines. 

According to reports by Ke et al in vitro toxicity studies 
determined via xCELLigence instrument do not use 
external reagents that may confound the screening. In 
principle, xCELLigence toxicity testing is a noninvasive 
electrical impedance technique that continuously monitors 
and quantifies cell proliferation/viability, morphological 
changes and attachment.12-14 The following steps describe 
a simple synopsis of the xCELLigence ENPBCs toxicity 
screening according to Hamidi et al (Fig. 1).18

It must be noted that all steps are conducted under strict 

Fig. 1. xCELLigence protocol flow system: Adapted from Hamidi et al. 
Using the xCELLigence RTCA system to monitor cell adhesion.



Bionanomaterials toxicity testing by xCELLigence cells viability principles

BioImpacts, 2020, 10(3), 195-203 197

have released calls for the conceptualization of and 
development of safety regulations of bi-nanomaterials 
of biomedical devices, food, cosmetics, chemical and 
industrial systems.10,19

Methodology and Data Sources
Online toxicological search themes were used to screen 
ENPBCs studies from March 2013 to December 2016 
and conglomerate findings that used xCELLigence 
technology to describe in vitro toxicity. Additionally, a 
review of ENPBCs articles from 2008 to 2016 describing 
the in vivo toxicity using animal models was carried out. 
The ENPBCs articles included were those of significant 
toxicological information. The searched themes and topics 
covered were (1) ENPBCs xCELLigence cells’ viability, 
(2) chemistry of ENPBC, (3) the role of the international 
regulatory agencies in ENPBCs toxicity, and (4) challenges 
in regulating ENPBCs. 

Search methods
A literature search was conducted to extract studies 
that address the in vitro cytotoxicity of ENPBCs using 
xCELLigence tools as well as in vivo animal models. 
The articles included were those published in the 
English language (limitation of search) and provided 
a clear and comprehensive description of ENPBCs in 
vitro toxicity using the xCELLigence technique and in 
vivo animal models testing. The key search words used 
for the xCELLigence techniques search and screening 
were xCELLigence nanoparticles toxicity, xCELLigence 
and nanoparticles screening, and xCELLigence and 
nanoparticles cell viability screening. The PubMed advance 
mesh search used, for example, was xCELLigence[All 

Fields] AND ("nanoparticles"[MeSH Terms] OR 
"nanoparticles"[All Fields]) AND ("toxicity"[Subheading] 
OR "toxicity"[All Fields]). The xCELLigence in vitro 
toxicity testing technique was used because it reduces and 
limits confounding toxicity outcomes when compared to 
other conventional testing methods that use chemicals, 
dyes, and reagents.

For the in vivo ENPBCs toxicity estimation and 
description, only published work indicating the use 
of laboratory animals such as mice/rat/mouse were 
eligible. The In vivo nanoparticles toxicity, and In vivo 
nanoparticles testing/screening were the searched main 
keywords. For example, the PubMed advance mesh used 
was (("in"[All Fields] AND "vivo"[All Fields]) OR "in 
vivo"[All Fields]) AND ("nanoparticles"[MeSH Terms] 
OR "nanoparticles"[All Fields]) AND testing[All Fields]. 
Articles that used non-primate animal species such as fish 
and other aquatic animals (limitation of the study) were 
excluded. 

The following were the main online search databases: 
Cochrane Library, PubMed, MeSH PsycInfo, Scopus and 
Google Scholar, Embase, Web of Science, BMC, Plos|One 
and Global Health, ScienceDirect. The Prisma proxy flow 
checklist methodology was used to identify, screen, and 
review the articles 20 as described in Fig 2.

Selection of studies
Two independent reviewers (CSY and GSS) reviewed the 
relevant studies. 

Selection and management of studies
Using the Microsoft Excel spreadsheet, CSY and GSS 
independently reviewed the extracted studies, screened 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Identification of articles:  
ENPBCs articles related to In vitro cytotoxicity using XCELLigence (n=87) and In Vivo NPs toxicity 
testing (n=34): N=121 

Screening of articles:  XCELLigence ENPBC 
toxicity testing (n=28), In vivo ENPBC toxicity 
testing using laboratory animal models 
(n=13)  

Eligibility: Recommended ENPBC studies 
using xCELLigence in vitro toxicity testing 
(n=23) and ENPBC In vivo testing using 
mouse or rat testing (n=9)  

Ineligible articles: Non ENPBC 
XCELLigence (n=59) and non 
ENPBC In vivo laboratory 
animals and aquatic toxicity 
testing (n=21).  

Duplicates removal of 
irrelevant articles ENPBC 
xCELLigence in vitro testing 
(n=5) and ENPBC In vivo testing 
(n=4) 

Inclusion:  xCELLigence ENPBC cell viability testing (n=23) and In vivo ENPBC articles describing 
toxicity testing (n=9): where N=32 

Fig. 2. The identification, selection and screening of ENPBCs XCELLigence in vitro viability and the in vivo ENPBCs toxicity articles flowchart for dose 
estimation.
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the titles, and results. Thereafter, the pre-piloted 
checklist was applied to identify eligible studies. The 
eligible studies were further screened for duplicates and 
other irrelevant studies. To reduce discrepancies, a clear 
screening and selection approach was used based on the 
headings generated in Tables S114,21-43 and S224,28-31,38,44-51 

(see Supplementary file 1). Similarly, some findings were 
further discussed to find a suitable outcome especially for 
the same studies extracted from conference abstracts and 
the full published articles. 

Results and Discussion
The limited reliable and specific standardized protocols for 
determining the toxicity of nanostructures or nanosized 
bio-conjugate materials is still a challenge in both in vitro 
and in vivo bio-nanotechnology-applications.1,16 Besides, 
the paucity of data has also compounded the difficulty 
of providing a generalized conclusion regarding the facts 
surrounding ENPBCs toxicities and regulatory standards. 
Out of the 121 articles, which were identified 23 (26.4%) 
of them, were used in this study are listed in Tables S1 and 
S2. They show 23 (71.9%) describing the xCELLigence-in 
vitro toxicity and 9 (28.1%) the in vivo toxicity of ENPBCs 
(Fig. 1). Of the 23 articles, 4 of them (17.4%) had no size 
estimation of ENPBCs, while the xCELLigence technology 
provided information on cell interactions, viability, 
and proliferation process. However, the xCELLigence 
cytotoxicity characteristics varied and were mostly due to 
the allotropic nature of the NP, dose, and size, as described 
in Table S1. For example, toxic ENPBCs were mostly 
those that initiated cell death, inflammation, disruption 
of cell membranes, DNA damage, and oxidative stress.21-25 
Non-cytotoxic ENPBCs were those that failed to initiate 
cell damage, had no cytotoxicity effect on the cells, 
were used for the diagnostic purposes/treatment, were 
biocompatible to cells, and induced no oxidative stress on 
the cells.26-36 Partially nontoxic ENPBCs indicated both 
toxic and nontoxic effects due to size variations or the 
allotropic forms (e.g., carbon allotropes such as diamond, 
graphite, fullerenes, etc).14,21,27-29,37

The in vivo animal model provided further toxicity 
information where 3 out of 9 of the in vivo animal model 
studies indicated partial nontoxic animal effect, one was 
toxic while the remaining results recommended ENPBCs 
as a potential candidate for drug therapy with limited 
information on toxicity (Table S2). Some of the in vivo 
ENPBCs toxicity effects demonstrated programmed cell 
death, causing the release of H2S.29 The ENPBCs that 
exhibited in vivo nontoxic effect were mostly those that 
had the therapeutic effects of antibody-drug conjugate,27 
CTAB layers of gold for diagnosing rheumatoid arthritis,30 

surface coating polymeric NPs used for inhibiting 
cancerous cells31,38-47 and felodipine-loaded polymers for 
pathological examination of different organs of Wister 
albino mice50. The ENPBCs with partial nontoxic effect 
were chitosan-coated polymers for drug delivery,49 silver 

NPs coated polymers that were found localized in various 
body organs, 48 and drug delivery polymeric NPs for anti-
cancer. 51 

The findings indicated limited data and information 
regarding the regulation of ENPBCs toxicity. This may 
be due to limited available standardized protocols and 
methodologies for nanomaterials toxicities analyses. 
Similarly, there were no clear epidemiological studies 
or data from established longitudinal cohort studies 
describing the causal effect/impact of ENPBCs.

The in vitro xCELLigence cell viability test techniques 
were used as indicators for the first-line screening, 
observing cell growth responses and effects of ENPBCs 
on human cell cultures.9,21-23 Similarly, the in vitro 
xCELLigence profiles were identified as broad sensitivity 
testing effects in cell cultures which were good precursors 
for specific toxicological testing in animal models and 
clinical trials in humans. Table S1 indicates and describes 
the diversity of the in vitro xCELLigence technique toxicity 
profiles of ENPBCs in cell cultures. The characteristics that 
were used in assessing the in vitro xCELLigence toxicity 
were: nature of ENPBC, shape, nanosize, animal cell lines 
used, dose toxicity estimation, and outcome effect on cell 
cultures.52-55

The toxicological, dose concentrations and effect of 
ENPBCs in cell lines showed varying toxicity levels. 
For example, citrate stabilized gold NPs (AuNPs) at a 
concentration of 1nM, 2nM and 5nM were shown to be 
moderately toxic to BEAS-2B cell lines.14 Similarly, using 
Ru(II) complex (2–4) 4 at a concentration of 0.5nM, 
1nM, 2nM and 5nM: the 0.5 μM was toxic to A549R 
cells resulting to the death of cells after a short interval, 
confirming the cytotoxicity of complex 4 against A549R 
cells.23 According to reports by Li et al limitations to 
validate of xCELLigence technique impact are due to 
inadequate data or denominator indexes that could be 
used to quantify the behavior of ENPBCs in humans as 
well as the guideline monitoring methods and procedures 
for characterizing ENPBCs toxicity levels. Moreover, 
the limitations are also prevalent despite a host of other 
instruments including UV-Vis absorption spectroscopy, 
TEM, SEM, HrTEM, DLS, HPLC, ICP-MS, FTIR, and 
AFM for characterizing ENPBCs properties,9 as listed in 
Table S1.14,21-43

The changes and mechanisms that take place in living 
cells in response to ENPBCs delivery are useful for 
understanding cell impact and after effect of ENPBCs.17 

The in vitro xCELLigence impendence technique has 
emerged as an alternative method that challenges the 
limited earlier traditional standards. The technique 
permeates cells to have direct contact with the ENPBCs 
without interference with other compounds or molecules 
as is the case with other in vitro testing methods.11 For 
example, studies have shown ENPBCs interactions 
with MTT formazan assay crystals such as dyes like 
Neutral Red or Alamar Blue have resulted in conflicting 
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false outcomes.44-45 Further, ENPBCs and lactate 
dehydrogenase (LDH) assay interaction has been found 
to confound outcome measurements, and thus, resulting 
in inconclusive endpoints results.46 On the other hand, the 
in vitro xCELLigence technique incorporate an integrated 
sensitive impedance detection sensor chips system at the 
bottom of the cell culture plates that track ENPBC-cell 
interaction changes and their morphologies in cell and 
cell proliferation.14,17 This method shows internalized 
ENPBCs within cells and their subsequent intracellular 
aggregation.14 However, in vitro xCELLigence techniques 
seem to have some limitations as well. According to 
findings by Meindl et al the xCELLigence technique was 
found to be less sensitive to the CNT-induced cytotoxicity. 
The reasons for the less sensitive were not mentioned in 
the study. This indicates that xCELLigence techniques 
may not be a good standard for ENPBCs screening and 
thus, other in vitro cytotoxicity methods may be explored.

To enhance ENPBCs acceptability, the usage and 
sustained uptake in human drug delivery systems, the 
in vivo animal model toxicity testings are the next steps 
for assessing the activities, effect, and impact of ENBPCs 
in humans. Table S2 describes the in vivo toxicity effect 
of ENPBCs in animal models with varying effects from 
toxic to non-toxic ones. The varying effects occur at the 
absorption level, blood concentration, distribution and 
organ concentration, metabolic-breakdown and excretion/
elimination phases.47-48 The effects are influenced by several 
factors, depending on the nature of the ENPBC including 
size, the zeta potentials, shape, and the ENPBC general 
characteristics. 48 Other inherent influential characteristics 
are the route of administration, dose-effect, time of 
dose-to-cell effect interaction, ENPBC-cell–interaction, 
and host-immunological profiles.48 For example, the 
intranasal inoculation of Fe3O4 magnetic nanoparticles 
(MNPs) coupled with polymer poly(lactic-co-glycolic 
acid) (PLGA) at a concentration of 50 μL containing 
one mg/mL of MNP was tolerated in vivo but inhibited 
lung adenocarcinoma growth in mice.31 In another study 
conducted by Wang et al while performing aortic allografts 
with 20 nm hydrogen sulfide (H2S) mesoporous silica NPs 
(MSNs) at the concentrations of 3.13 μg/mL to 800 μg/mL, 
the study revealed that the release of H2S in a controlled 
fashion can result in apoptosis of graft endothelium. 
An experimental study by Recordati et al reported the 
mid-zonal hepatocellular necrosis, gall bladder and 
hemorrhage toxic effects when treating mice with an 
intravenous dose of 10 mg/kg of 10nm silver NPs (AgNPs) 
coupled with citrate (CT)/polyvinylpyrrolidone (PVP). 
These varying outcomes are described in Table S2.24,28,30-

31,38,44-51 Altogether, more in vivo animal predictive data are 
needed to validate standard methods for determining the 
safe applications of ENPBCs in humans. 

Chemistry of engineered nanoparticles bio-conjugates
It should be recalled that ENPBCs have multifactorial 

complexity that may span from structural activities 
and interactions with biomolecules/cellular structures 
including proteins, membranes, cells, DNA, and 
organelles.17,48 Some of these effects include the generation 
of radicals/oxidative stress, modulation of inflammatory 
profiles, and mutations.1,9,52 It has also been found that 
interference of ENPBC with detector instrument, assays, 
dyes use in cytotoxicity (neutral red, Alamar blue, etc) and 
buffers have resulted in false negative/positives outcomes 
and misinterpretation or inappropriate toxicity results.44,45 
ENPBCs in this context are referred to as core nanoparticle 
and/ outer stabilizing layers made up of ligands (bio-
conjugates). The bio-conjugates may be drugs, carboxyl 
(-COOH), amine (-NH2), hydroxyl (-OH), methyl 
(-OCH3), esters (-CO- OR), PEGylated layer intended 
for drug delivery applications. These bio-conjugates have 
great cellular interaction with cells, biodegradation as well 
as the elimination of the core nanoparticle. Therefore, 
elucidating toxicity effects that occur upon the interaction 
of functional groups with the cell surfaces or cellular 
components can lead to elevated intracellular reactive 
oxygen species resulting in DNA, lipids, proteins damage, 
cytotoxicity, apoptosis, unregulated cell signaling, tumor 
enhancer.48,52-54 

Engineered nanoparticles bio-conjugates-structures
The nature/size of ENPBCs can be investigated using 
various optical systems, including TEM, SEM, ICP-MS 
to determine bio-distribution. Furthermore, the FT-IR 
can be used to determine the chemical bonding of the 
functionalized ligands and HR-TEM the capping image 
with ENPBCs.53 The structure of ENPBCs can initiate an 
effect that may lead to bio-persistence, bio-durability, and 
long-term toxicity effect when inhaled.55 The functional 
activity, stability and chemistry of ENPBCs may influence 
the chemical and toxicity both in vitro and in vivo. The bio-
dissolution of ENPBC which is a measure of bio-durability 
of chemical and physical properties is a dependent 
function of size, surface area-shape as well as the medium 
and ionic strength.48,53,54 The challenges resulting from 
these properties have hindered the development of 
standardized protocols for determining the bioavailability, 
absorption, distribution, bioaccumulation, metabolism, 
excretion, release of ENBPCs. 

The role of international agencies in engineered 
nanoparticle (ENP) bio-conjugates (BC) 
Toxicity determination and characterization for drug 
delivery 
Accurate and reliable information about the characteristics, 
concentration, and cytotoxicity of ENPBCs are major 
properties that can be used to understand the safe use of 
ENPBC as well as their profile in drug delivery agents. 
Engineered NPs (ENPs) either naked or coated with 
bio-conjugates are governed and influenced by their 
physicochemical properties.1,48,52-55 The physicochemical 
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property profiles of any drug delivery are the function 
of morphological-shape, size distribution, zeta potential, 
subcellular localization, expression of cell markers, and 
chemical composition concerning cells’ activities. The 
toxicity of ENPBC, therefore, depends mostly on the 
physicochemical properties.1,55 The physicochemical 
characterization of ENPBCs must be precise and fully 
determined before assessing their cytotoxicity. The 
development of regulatory standards and methods for 
ENPBCs in biological/biomedical applications and 
systems are urgent mandatory requirements. Various 
internationals, regionals, cross border organizations, 
nationals and local organizations have been constituted 
to provide regulatory guidelines, standards, and safety 
information for the safe use and discharge of ENPBCs. 

The International Organization for Standardization 
(ISO) main body including the Organization for Economic 
Cooperation and Development (OECD), Food and Drug 
Administration (FDA or USFDA), Scientific Committee 
on Emerging and Newly Identified Health Risks 
(SCENHIHR) and other regulatory bodies functions is 
to develop technical safe regulatory guidelines regarding 
the physicochemical properties of engineered NPs and 
toxicological assessment56 which can be used to shape safe 
usage of nanomaterials before subjecting them to human 
consumption and other usages. The objectives aimed 
at describing the inherent nano-toxicity of ENPs and 
nanomaterials that assure consumer security, safety, and 
their usage. Furthermore, the ENPs characteristics must 
be described to detail in terms of their physiochemical 
properties, impurities, and toxicological levels at in vitro 
and in vivo, cellular and molecular level, routes of exposure, 
uptake, and absorption rates.17 Other areas of concern are 
the ethical, legal, and societal implications of ENPBCs 
and future areas of research.57 Likewise, the generation 
of reliable data that supports further development, risk 
estimation, and potential risks of nanoproducts. However, 
according to a report by OECD, there are no specific 
detailed data, regulations available, and standard test 
methods for ENPBCs human exposure measurement as 
well as methodologies for risk assessments. Currently, 
several ISO committee groups are working on various 
aspects of nano-toxicity and risk assessments. The 
Nanotechnology Industries Association (NIA),58,59 ISO-
Technical Committees on nanotechnologies have been 
released for determining the potential biological effects of 
ENPBCs. More information on NIA standard catalog can 
be found at https://www.iso.org/ics/07.120/x/. 

Due to ENPBCs sizes, ion release, and strong potential 
ability to functionalized to varying groups of molecules 
and protein, they have been found to initiate and cause 
diverse biological effects. Furthermore, these ENPBC-
based therapeutics can catalyze properties that overcome 
biological barriers, and initiate intracellular effective 
drugs delivery in cells such as macrophages,3 and 
targeted disease cells.3,6 To be sure that ENPBCs are safe, 

regulatory and legislative bodies including testing and risk 
assessment and management bodies must be constituted 
to guide their usage

Challenges of engineered NPs bio-conjugates 
As earlier mentioned, ENPBCs have great potential 
for improving biomedical research and drug delivery 
applications.4 Their successes rely on the ability of surface 
functionality and stabilization of NPs as drug carriers and 
as targets to specific cells. However, most challenges facing 
ENPBC are size specificity and reproducibility. There is no 
specific equipment responsible for reproducing the exact 
sizes of ENPBCs and bio-conjugates attachments. The 
inability to produce exact specific attachments and sizes 
of ENPBCs have prompted regulatory bodies to examine 
ENPBCs on a case-by-case-base-effect. This is because 
different ENPBC nano-sizes have different properties 
that tend to affect the physicochemical properties and the 
functionality including pharmacological, immunological, 
and toxicity profiles. According to a study by Desai,6 the 
complexity and nature of ENPBCs may substantially 
vary and thus, may be difficult to control and predict 
their behavior in biological systems. It is also difficult to 
sterilize ENPBC for biomedical applications.60 

It must also be noted that newer toxicity screening 
techniques such as xCELLigence always come with 
their limitations.61-64 According to Kho et al high capital 
and consumables costs play a significant role. Secondly, 
xCELLigence technology work on cells that must 
adhere to the bottom of microplates and generate viable 
impedance signals. However, floating/ non-adherent and 
poorly plated cells may fail to generate signals resulting 
in false toxicity,63,64 a common phenomenon of neuronal 
cells61,62 and cancer cells due to lack of adherence to the 
gold microelectrodes. This is likely the main limitation of 
xCELLigence toxicity testing technology. 

On the other hand, the measurement of broth 
suspended cells and their interactions with ENPBCs using 
xCELLigence technology is one of the ongoing future 
technological developments.64-65 Because non-adherence 
cells including hematopoietic stem cells by nature have 
suspension and circulating characteristics66,67 that have 
limited their attachment potentials and ability to attach 
and grow on E-plate wells.68 However, the attachment 
characteristics can be enhanced by functionalizing or 
binding/coating the blood cell-matrix surfaces or the 
E-plate wells, for example, with peptide immobilization 
substrates such as fibronectin, laminin, and collagen 
types I and IV66-68 that allow for cell adhesion.66,67,69 Even 
though xCELLigence operations are designed to work 
with adherent cells,8 however, by using binding protein 
matrices non-adherent cells including those of cancers 
can now be monitored on xCELLigence technology.66-68,70 
In such instances and/or procedures, the protein matrix 
binds to cells and enhances their attachment capability 
on cell well plates. For example, Martinez-Serra et al 

https://www.iso.org/ics/07.120/x/
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What is the current knowledge?
√ Traditionally bionanomaterials cytotoxicity exhibits 
complex toxicity outcomes difficult to interpret.

What is new here?
√ The non-invasive-xCELLigence cellular-bio-response 
require pooled data to validate bionanomaterials cytotoxicity 
protocols and methodological development.

Review Highlights

improved the attachment capacity of non-adherent cells of 
hematological malignancies such as leukemia/lymphoma 
cells with fibronectin. The results showed that the non-
adherence leukemia/lymphoma cells were able to attach 
and grow profusely on the surface of the E-plates wells. 
In other studies, Abbasalipour et al71 while testing for 
transduction characteristics of Lentivirus on K562 cells 
reported an enhanced adhesion, and multiplication of 
K562 cells coated with fetal bovine serum. Similarly, 
Hillger et al72 while investigating the cellular properties 
and GPCR drug responses in lymphoblastoid cell lines 
coated the detector surface with fibronectin to enhance 
cell surface adhesion that allows for the detection of 
cellular responses with xCELLigence system. It must be 
noted that, from several studies, cell adhesion, invasion, 
proliferation and migration, enhances and changes the 
local ionic interface at the E-plate gold electrodes such 
that better cell index impedance is generated with real-
time analytical graphical plots. Without this phenomenon 
of cells attachment and growth in the well plates, the cell 
index is close to the zero-mark69 since only viable cells 
with adherence characteristics potential can benefit from 
the xCELLigence toxicity enumeration. 

 
Conclusion
Several biomedical benefits accorded to ENPBCs have 
been applauded by several scholars. As a result, this 
has advanced research and development in the field of 
nanotechnology. However, toxicological standards are 
almost non-existent. The results showed that ENPBCs have 
different bio-impacts either at the in-vitro or in vivo animal 
model levels. These variations are due to differences in the 
ENPBCs, size compositions, adjustment, storage, route 
of administration, dose concentration, types of cell lines, 
target organs, molecular and the model animal used. It is 
important to generate large data on specific sizes of ENPBC 
health outcome effects in different settings to estimate and 
validate the generalizability of specific ENPBC toxicity 
impact. To keep pace with ENPBCs biomedical products 
and applications, in vitro, in vivo assays, clinical trials and 
long-term impacts are needed to validate their usability 
and uptake. In addition, more real-time ENPBCs-cell 
impact analysis using xCELLigence technology is needed 
to provide significant data for further in vivo testing and 

subsequent steps in the development of safety standards. 
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