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Introduction
Metabolomics is an ‘omics’ approach, involving the 
study of metabolites, which are considered to be the best 
indicator of an organism’s phenotype.1,2 Metabolomic 
profiling has been performed widely on several cancer 
types including colorectal cancer (CRC).3-7 However, the 

analysis of primary samples from bio-fluids or tissues is 
influenced by age, body mass, gender, and diet, which 
biases differential metabolite profiling and affected 
pathways.8-10

Metabolomics analysis of cell lines has been extensively 
used in disease research.2 Cell metabolomics has many 
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Abstract
Introduction: Metabolomic studies on various 
colorectal cancer (CRC) cell lines have improved our 
understanding of the biochemical events underlying 
the disease. However, the metabolic profile dynamics 
associated with different stages of CRC progression 
is still lacking. Such information can provide 
further insights into the pathophysiology and 
progression of the disease that will prove useful in 
identifying specific targets for drug designing and 
therapeutics. Thus, our study aims to characterize the metabolite profiles in the established cell 
lines corresponding to different stages of CRC. 
Methods: Metabolite profiling of normal colon cell lines (CCD 841 CoN) and CRC cell lines 
corresponding to different stages, i.e., SW 1116 (stage A), HT 29 and SW 480 (stage B), HCT 15 
and DLD-1 (stage C), and HCT 116 (stage D), was carried out using liquid chromatography-mass 
spectrometry (LC-MS). Mass Profiler Professional and Metaboanalyst 4.0 software were used for 
statistical and pathway analysis. METLIN database was used for the identification of metabolites.
Results: We identified 72 differential metabolites compared between CRC cell lines of all the stages 
and normal colon cells. Principle component analysis and partial least squares discriminant analysis 
score plot were used to segregate normal and CRC cells, as well as CRC cells in different stages of 
the disease. Variable importance in projection score identified unique differential metabolites in 
CRC cells of the different stages. We identified 7 differential metabolites unique to stage A, 3 in 
stage B, 5 in stage C, and 5 in stage D. 
Conclusion: This study highlights the differential metabolite profiling in CRC cell lines 
corresponding to different stages. The identification of the differential metabolites in CRC cells at 
individual stages will lead to a better understanding of the pathophysiology of CRC development 
and progression and, hence, its application in treatment strategies. 
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Materials and Methods
Materials
All cell lines were purchased from AddexBio (San Diego, 
CA USA). Dulbecco's Modified Eagle Medium (DMEM, 
high glucose), Gibco cell culture media, fetal bovine 
serum and penicillin-streptomycin were purchased from 
Thermo Fisher Scientific (Waltham, MA USA). Methanol 
and acetonitrile (HPLC grade) were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). 

Cell culture
Normal colon cells (CCD 841 CoN) and CRC cells SW 
1116 (Stage A), HT 29 and SW 480 (Stage B), HCT 15 
and DLD-2 (Stage C), and HCT 116 (Stage D) were used 
for metabolomics analysis. The classification of CRC 
was based on Dukes classification criteria. The stages of 
CRC cells have been classified by American Type Culture 
Collection (ATCC) and previous studies.24,25 All cells 
were grown in cell culture media (DMEM, high glucose) 
supplemented with 10% fetal bovine serum and 1% 
penicillin-streptomycin. Cells were incubated in a CO2 
incubator, BINDER (Tuttlingen, Germany), at 37°C with 
98% humidity and 5% CO2 (v/v) until they reached 80-
90% confluency for extraction of cell lysate.

Extraction of cell metabolites
Intracellular metabolite extraction was performed 
according to previous studies.14, 26 Briefly, metabolites were 
extracted by incubating the cells (1 × 106 cells) with 1 mL 
of chilled (-80°C) extraction solvent (methanol-water (8:2, 
v/v)) for 15 minutes. The supernatant was aliquoted into 
1.5 ml tube and dried in the EppendorfTM concentrator plus 
and stored at −80°C for further analysis. Every extraction 
samples were prepared in three biological replicates.

LC/MS Q-TOF analysis
Samples were analyzed using LC-MS/MS Q-TOF, Agilent 
Technologies 6520 (Santa Clara, CA USA) system. Briefly, 
dried samples were dissolved with 30 µL of acetonitrile-
water (1:1, v/v) (mobile phase), vortex for 1 minute, and 
then centrifuged at 11, 200 g, for 10 min at 4°C. The 
mass spectrometric data were analyzed as described in a 
previous study.26,27 The analysis was performed in three 
technical replicates and three biological replicates with 
positive and negative modes.

Data processing 
Data was processed according to the guideline provided 
by the Class Prediction with Agilent Mass Profiler 
Professional (Manual part number: 5991-1911EN). The 
steps included MassHunter Qualitative Analysis and Mass 
Hunter Profinder to identify untargeted and targeted 
(recursive) features in the sample data files. This analysis 
included extraction of molecular features, subtraction of 
background noise, filtering of data, statistical analysis, 
database search, and alignment. A compound exchange 

potential applications and advantages compared to human 
tissues and bio-fluids; these advantages include the ease 
of control, cheaper process, and the resulting data is 
easier to interpret than the analysis of animal and human 
subjects.2 In addition, in vitro studies using cell culture, 
are not influenced by genetic/ethnic variations and 
environmental factors. Moreover, in contrast to studies on 
animal and human subjects, cell culture analysis does not 
require ethical consideration.11 

Cell metabolomics profiling is an effective tool to 
evaluate the effect of any disease and endogenous and 
exogenous factors on cellular metabolism.12 Moreover, 
the metabolomics profile obtained may provide useful 
information for developing further models of biological 
pathways and networks, besides providing a better 
understanding of the molecular mechanism of disease 
progression.12 The pathophysiology that occurs in cell 
culture may mirror what is happening in in vivo study. 
Hence, this will lead to the possibility of using cell culture 
in place of animal models in CRC studies, especially in 
testing treatment modalities.

Various factors like quenching of cells, variability of 
culture media formulations, differences in passage number, 
and contamination can contribute to inherent biases in 
cell metabolomics. Moreover, metabolite degradation 
may occur during metabolite extraction procedures, and 
a large quantity of cultured cells is required for analysis.11 
However, there has been considerable improvement in 
these methodologies, and presently, cell metabolomics is 
much more accurate, faster, and more informative.13-15

CRC is one of the common causes of cancer death in 
the world.16 Accurate staging and diagnosis for CRC are 
crucial to improving prognosis. Thus, characterization 
of CRC cell lines of different stages is important to 
understand the pathogenesis and pathophysiology of the 
disease progression, especially at the molecular level, to 
improve diagnosis, staging, and treatment strategies of 
CRC. 

Several metabolomics studies have been reported using 
cancer cell lines including breast,17 pancreatic,18 ovarian,19 
gastric,20 and CRC cell lines.21 Metabolic profiling 
on CRC cell lines, SW 1116 and SW 480 using gas 
chromatography-mass spectrometry (GC-MS)22 revealed 
the differences in metabolism between CRC and healthy 
cells. Additionally, metabolomics on CRC cell lines of 
HT 29 highlighted perturbed metabolic pathways like 
glycolysis, tricarboxylic acid cycle, and pentose phosphate 
pathways.23 However, there is a lack of comprehensive 
metabolic characterization of the different stages of CRC 
progression.

In this study, metabolomics profiles of CRC cell lines 
representing all four stages of CRC were characterized 
to understand the metabolic changes in CRC, with 
disease progression using liquid chromatography-mass 
spectrometry (LC-MS). 
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format file (.CEF) was created for each sample, and 
downstream analysis was performed using Mass Profiler 
Professional (MPP) (Agilent Technologies, Santa Clara, 
CA USA). METLIN Personal Metabolite database28 

was then used to identify endogenous and exogenous 
metabolites. 

Data analysis 
Data analysis of intracellular extraction samples was 
performed using molecular feature extraction (MFE) 
algorithm and Mass Hunter for data mining. Entities 
presenting absolute height parameter less than 200 were 
removed. All data files were processed in a batch mode. For 
frequency analysis, the data was first filtered based on the 
presence of the compounds/entities in at least one out of all 
samples. Then the compounds present in all samples were 
selected (second filter). T-test analysis was performed to 
filter the selected entities that were significantly different 
between the two experimental groups. Fold change of 2 
was set for the identification of metabolites that differed 
in abundance between the two groups and was also used 
to eliminate possible discriminating compounds. Data 
recursion was performed to re-examine data in order to 
ensure the validity of each entity. The software generated 
extracted ion chromatograms by re-extracting the final 
group of metabolites from the data. The peak inspection 
of resulted extracted ion chromatograms was conducted 
in order to eliminate false positives and false negatives. 
Statistical analysis was then performed on the confirmed 
metabolites.

Statistical analysis and visualization 
Statistical analysis and visualization were performed 

using the MPP software. The significant differences in the 
abundance of compounds between the two groups were 
determined using a t test. Metabolomics Pathway Analysis 
(Metaboanalyst 3.5) was used to determine PLS-DA score 
plot, principle component analysis (PCA) score plot, 
variable importance in projection (VIP), and pathway 
analysis. VIP scores close to or greater than one were 
considered to be important in a given model. METLIN 
database was then used to determine the identified 
metabolites.

Results
Development of a predictive model for normal colon and 
CRC cell lines with various differentiation grades
A total of 72 metabolites were found to be expressed 
differently between all types of CRC cells compared 
to normal colon cells (Fig. 1). The data of these 72 
differential metabolites were then analysed using PCA, 
an unsupervised multivariate statistical analysis. PCA 
score plot showed separation between the normal colon 
and CRC cells with few overlaps between stages B and C 
(Fig. 2). 

Bivariate statistical analysis between CRC cells of various 
differentiation grades and healthy controls 
Bivariate statistical analysis of the metabolomic data 
from CRC cells and normal colon cells revealed several 
differential metabolites. A total of 39 differential 
metabolites were identified in stage A, 29 in stage B, 32 in 
stage C, and 60 in stage D when compared to normal colon 
cells (Supplementary data). Using these data, the PLS-DA 
model could segregate CRC cells, regardless of the degree 
of differentiation, from normal colon cells (Fig. 3).

Figure 1. Flowchart of workflow analysis for intracellular metabolomics profiles in CRC cells.
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Metabolites differentiated CRC cells of different stages 
versus normal
Following the PLS-DA model, VIP score was determined, 
which represents the most potential metabolite biomarkers 
expressed in a stage-specific manner of CRC. The results 
revealed several important metabolites unique to CRC 

cells of different stages (Fig. 4). Table 1 shows a list of the 
most important differential metabolites in differentiating 
CRC cells of different stages from normal colon cells.

Based on the VIP score, the findings also revealed 
the metabolic pathways associated with differential 
metabolites in CRC of different stages. The result also 
revealed that there were several most important pathways 
affected by their impact and p-value as shown in Table 2.

Discussion
Metabolomics is used to determine the overall metabolite 
composition in given biological samples. In cancer cells, 
there is an increased production of lactate from glucose, 
known as the Warburg effect.29 The findings from global 
metabolomics studies using tissues from CRC patients 
showed the major metabolic pathways affected were 
those involved in energy production and utilization, 
redox status, and the metabolism of amino acid, choline, 
nucleotides, and lipid.9

The present metabolomics study on CRC cells of 
different stages provided clear segregation between CRC 
cells and normal colon cells (Figs. 2 and 3). These findings 
indicate that all CRC cells showed significant changes 
in intracellular metabolites levels when compared with 
normal colon cell lines.

Based on the VIP score (Fig. 4), the most important 
differentiating metabolites were identified in CRC cell 

Fig. 2. PCA analysis of LC/MS metabolites profiles. PCA score plot for 
normal colon and CRC cell lines with percentage variance for component 
1 (30.9%) and component 2 (10.7%). Note: Red plots (0) represent normal 
colon cells, green plot (1) represent stage A, blue plot (2) represent stage B, 
turquoise plot (3) represent stage C, and purple plot (4) represent stage D.

Fig. 3. PLS-DA score plot analysis of intracellular metabolites between CRC of different and normal colon cells. Notes: Plot A; Normal (0) Vs Stage A (1). Plot 
B; Normal (0) Vs Stage B (2). Plot C; Normal (0) Vs Stage C (3). Plot D; Normal (0) Vs Stage D (4).
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Fig. 4. VIP scores of identified intracellular metabolites in CRC cells of different stages compared to normal colon cell. Note: Plot A; Normal (0) Vs Stage A 
(1). Plot B; Normal (0) Vs Stage B (2). Plot C; Normal (0) Vs Stage C (3). Plot D; Normal (0) Vs Stage D (4).

Table 1. Differential metabolites profiles and their regulation in CRC cells of different stages compared to normal colon cells

Metabolites
Regulation

KEGG ID/HMDB
Stage A Stage B Stage C Stage D

(R)-1-O-[b-D-Glucopyranosyl-(1->6)-b-D-glucopyranoside]-1,3-octanediol ↑ HMDB0032799
2-Methylbutyroylcarnitine ↑ ↓ ↓ ↑ HMDB0000378
3b-Hydroxy-5-cholenoic acid ↓ HMDB0000308
5-Amino-6-(5'-phosphoribosylamino)uracil ↑ ↑ ↑ ↑ C01268
Adenosine triphosphate (ATP) ↓ C00002
Bis-γ-glutamylcystine ↑ C03646
Chenodeoxycholic Acid ↓ ↓ C02528
Choline ↑ ↑ C00114
Deoxycholic acid ↓ ↓ C04483
Dodecanoylcarnitine ↑ HMDB0002250
Flavin adenine dinucleotide (FAD) ↑ C00016
Hippuric acid ↑ C01586
L-Glutamate ↓ C00025
L-Hexanoylcarnitine ↑ HMDB0000756
L-Phenylalanine ↓ ↑ ↑ C00079
L-Tryptophan ↓ ↓ ↓ ↓ C00078
LysoPC(16:1(9Z)) ↓ ↓ HMDB0010383
LysoPE(0:0/18:1(11Z)) ↑ HMDB0011475
LysoPE(0:0/20:0) ↓ HMDB0011481
LysoPE(0:0/22:5(4Z,7Z,10Z,13Z,16Z)) ↑ HMDB0011494
LysoPE(16:1(9Z)/0:0) ↑ HMDB0011504
N-Acetyl-DL-methionine ↓ HMDB0011745
Pantothenic Acid ↑ ↑ C00864
PE(22:5(7Z,10Z,13Z,16Z,19Z)/15:0) ↓ HMDB0009648
Phosphocholine ↑ C00588
Purine ↓ HMDB0001366
Pyroglutamic acid ↓ HMDB0000267
S-(Formylmethyl)glutathione ↑ HMDB0060507
Tetracosahexaenoic acid ↓ ↓ ↓ ↓ HMDB0002007
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lines in individual stages compared to normal colon cell 
lines. 

Some differential metabolites were common in all 
stages and include 2-methylbutyroylcarnitine, 5-amino-
6-(5'-phosphoribosylamino)uracil, l-tryptophan, and 
tetracosahexaenoic acid. However, the enrichment of 
these common differential metabolites differed across 
the stages of CRC. 5-amino-6-(5'-phosphoribosylamino)
uracil was up-regulated in all stages, l-tryptophan and 
tetracosahexaenoic acid were down-regulated in all stages, 
and 2-methylbutyroylcarnitine was up-regulated in stage 
A and D but down-regulated in stage B and C (Table 1).

5-amino-6-(5'-phosphoribosylamino)uracil was shown 
to be up-regulated in all stages. However, there are no 
previous reports on the alteration of this metabolite in CRC. 
5-amino-6-(5'-phosphoribosylamino)uracil is involved 

in riboflavin metabolism.30 Riboflavin metabolism is 
responsible for the biosynthesis of the flavocoenzymes, 
which are involved in several processes including redox 
homeostasis, bioenergetics pathways, deoxyribonucleic 
acid (DNA) repair mechanisms, remodeling of chromatin, 
protein structure, and apoptosis.31 Thus, upregulation 
of 5-amino-6-(5'-phosphoribosylamino)uracil in CRC 
cells may affect the biosynthesis of flavocoenzymes 
and eventually will affect these relevant physiological 
processes.

L-tryptophan was shown to be down-regulated in all 
stages of CRC cells which agreed with the observation 
by Wang et al.32 However, the expression of L-tryptophan 
was contrary to Wang et al., where they have reported that 
l-tryptophan was down-regulated only in CRC stage A 
and B. These contrary findings might be because Wang 

Table 2. The most important affected pathways in CRC cells of different stages

CRC stages Affected pathways P value Impact

A

Aminoacyl-tRNA biosynthesis 1.30 x 10-2 0.00
Phenylalanine, tyrosine and tryptophan biosynthesis 1.54 x 10-2 0.50
Phenylalanine metabolism 3.81 x 10-2 0.35
Pantothenate and CoA biosynthesis 7.14 x 10-2 0.01
Glycerophospholipid metabolism 1.31 x 10-1 0.01
Tryptophan metabolism 1.48 x 10-1 0.14

B

Glycerophospholipid metabolism 1.02 x 10-2 0.04
Aminoacyl-tRNA biosynthesis 1.79 x 10-2 0.00
Phenylalanine, tyrosine and tryptophan biosynthesis 1.80 x 10-2 0.50
Phenylalanine metabolism 4.44 x 10-2 0.36
Glutathione metabolism 1.20 x 10-1 0.01
Glycine, serine and threonine metabolism 1.40 x 10-1 0.00
Tryptophan metabolism 1.71 x 10-1 0.14
Primary bile acid biosynthesis 1.90 x 10-1 0.00

C

Glycerophospholipid metabolism 1.24 x 10-3 0.15
Phenylalanine metabolism 6.29 x 10-2 0.00
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 8.70 x 10-2 0.00
Glutathione metabolism 1.67 x 10-1 0.02
Glycine, serine and threonine metabolism 1.94 x 10-1 0.00
Tryptophan metabolism 2.36 x 10-1 0.14
Primary bile acid biosynthesis 2.61 x 10-1 0.00
Aminoacyl-tRNA biosynthesis 2.71 x 10-1 0.00

D

Aminoacyl-tRNA biosynthesis 1.40 x 10-3 0.00
Riboflavin metabolism 2.05 x 10-2 0.00
Phenylalanine, tyrosine and tryptophan biosynthesis 2.05 x 10-2 0.50
Nitrogen metabolism 3.06 x 10-2 0.00
D-Glutamine and D-glutamate metabolism 3.06 x 10-2 0.50
Phenylalanine metabolism 5.06 x 10-2 0.36
Arginine biosynthesis 7.02 x 10-2 0.12
Butanoate metabolism 7.50 x 10-2 0.00
Histidine metabolism 7.98 x 10-2 0.00
Pantothenate and CoA biosynthesis 9.42 x 10-2 0.01
Glutathione metabolism 1.36 x 10-1 0.02
Alanine, aspartate and glutamate metabolism 1.36 x 10-1 0.20
Porphyrin and chlorophyll metabolism 1.45 x 10-1 0.00
Glyoxylate and dicarboxylate metabolism 1.54 x 10-1 0.00
Arginine and proline metabolism 1.80 x 10-1 0.09
Tryptophan metabolism 1.93 x 10-1 0.14
Purine metabolism 2.91 x 10-1 0.01
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et al32 used human tissues, while cell lines were used in 
the other studies. Tryptophan is one of the essential amino 
acids for humans.33 The kynurenine pathway is the major 
route of tryptophan degradation,34 and a decreased level of 
tryptophan observed may be associated with catabolism 
of tryptophan into kynurenine.35 Kynurenine binds to 
aryl hydrocarbon receptor, promoting the generation 
of immune-suppressive T cells which support cancer 
development.36

Tetracosahexaenoic acid was shown to be down-
regulated across all the stages. Although alteration in 
tetracosahexaenoic acid is reported in cervical cancer, 
no reports were available in CRC.37 Tetracosahexaenoic 
acid is a lipid molecule produced from docosahexaenoic 
acid (DHA).38 Downregulation of tetracosahexaenoic 
acid in CRC may probably be due to dysregulation of 
DHA synthesis. Dysregulation of DHA is associated with 
alterations in the structure of membranes, functions of 
membrane protein, cellular signaling, and lipid mediator 
production.39

We also found alterations in 2-methylbutyroylcarnitine 
in CRC, which is reported to be altered in other types 
of cancer,40 in our study highlighting the involvement 
of 2-methylbutyroylcarnitine in CRC. We observed 
2-methylbutyroylcarnitine was up-regulated in stages 
A and D but down-regulated in stages B and C. 
2-methylbutyroylcarnitine is an acylcarnitine. Increased 
level of 2-methylbutyroylcarnitine in cancer is probably 
due to the alteration of metabolic pathways related to cell 
proliferation and energy metabolism in the tumor.41 

Some differential metabolites were identified in specific 
stages of CRC cell lines (Fig. 5), and these metabolites 
might be useful as potential metabolite biomarkers for the 
staging of CRC cell lines as well as illustrating the changes 
in metabolism as CRC progresses. 

The differential metabolites in CRC stage A compared to 
normal may reflect the initial metabolic derangements or 
alterations in CRC development. C20H38O12, C23H46NO7P, 
C27H46NO7P), phosphocholine, S-(formylmethyl)
glutathione, and N-Acetyl-DL-methionine were the most 
important differential metabolites identified in stage 

A. The expressions of these metabolites differed, where 
C20H38O12, phosphocholine, S-(formylmethyl)glutathione 
C23H46NO7P, and C27H46NO7P were up-regulated, and 
N-Acetyl-DL-methionine was down-regulated in 
stage A. This finding was contrary to another study 
by Zimmermann et al,22 where they identified ketones 
and alcohols in CRC cells SW1116. The difference in 
expression is probably due to the use of different types of 
sample preparation, analytical platforms, and statistical 
analysis. Zimmermann et al22 used GC-MS in their 
study, which preferentially detects low molecular mass 
metabolites.42 

C20H38O12, C23H46NO7P and C27H46NO7P are involved 
in lipid metabolism, and, hence, play important roles in 
the synthesis or breakdown of lipid molecules for energy 
or storage.43 Hence, upregulation of these metabolites in 
the early stage of CRC (stage A) may reflect the role of 
lipid metabolism in favoring energy production for cancer 
development. Additionally, changes in the lipid metabolic 
pathway may also influence cell growth, proliferation, 
differentiation, and motility.44

Phosphocholine is involved in choline and 
glycerophospholipid metabolism.30 Upregulation of 
phosphocholine in cancer cells has been reported as a 
result of increased uptake of choline by the cells and 
increased intracellular choline kinase activity, which plays 
a vital role in cell proliferation.45,46 

S-(Formylmethyl)glutathione and N-Acetyl-DL-
methionine are essential amino acids.47 Upregulation 
of S-(formylmethyl)glutathione and downregulation of 
N-Acetyl-DL-methionine in the early stage of CRC cells 
(stage A) may reflect the role of amino acid metabolism, 
which act as building blocks for protein synthesis. Amino 
acids are also regulators of important signaling pathways 
and regulate gene expression, protein synthesis, nutrient 
metabolism, and oxidative status.47,48

In stage B, the most important differential metabolites 
compared to normal colon cells were dodecanoylcarnitine, 
l-hexanoylcarnitine, and pyroglutamic acid. The data 
revealed that dodecanoylcarnitine and l-hexanoylcarnitine 
were up-regulated, while pyroglutamic acid was down-

Fig. 5. Schematic representation of differential metabolites unique to the stage of CRC cell lines compared to normal.
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regulated. These findings were contrary to a previous 
report, where ketones and alcohols were the most 
important differential metabolites in CRC SW480 cells.22 

Dodecanoylcarnitine is involved in lipid metabolism. 
Upregulation of this metabolite in CRC cells stage B may 
reflect the role of lipid metabolism. L-hexanoylcarnitine 
is an acylcarnitine; therefore, upregulation of 
l-hexanoylcarnitine in CRC cells stage B may probably 
reflect the metabolic pathways related to cell growth and 
proliferation.41

In CRC cells stage C, the most important differential 
metabolites identified were bis-γ-glutamylcystine, 
hippuric acid,  C21H42NO7P, C42H74NO8P, and purine. 
The data shows bis-γ-glutamylcystine, hippuric acid, 
and C21H42NO7P were up-regulated, and C42H74NO8P 
and purine were down-regulated in CRC cells stage 
C. C21H42NO7P, and C42H74NO8P are involved in lipid 
metabolism43; thus, its alteration in CRC cells stage C may 
probably reflect the alteration of this pathway for cells 
growth and proliferation.

Bis-γ-glutamylcystine is involved in glutathione 
metabolism.30 Hence, upregulation of bis-γ-
glutamylcystine in CRC cells stage C might reflect the 
role of glutathione metabolism in preventing oxidative 
damage.49 High level of glutathione in cancer tissues 
promotes tumor progression and increased metastasis.50

Purines are basic components of nucleotides in 
cell proliferation. Therefore, impairment of purine 
metabolism in CRC cells stage C may affect many cellular 
functions such as alterations in the levels of DNA, RNA, 
energy production, signal transduction, and various other 
metabolic pathways that use the by-products of this purine 
metabolism as cofactors.51 Impaired purine metabolism 
has been reported to be associated with the progression of 
various cancers.52

FAD, 3b-hydroxy-5-cholenoic acid, ATP, l-glutamate, 
and C25H52NO7P) were the most important differential 
metabolites identified in CRC cells stage D. The results 
showed FAD was up-regulated, while 3b-hydroxy-5-
cholenoic acid, ATP, l-glutamate, and C25H52NO7P) were 
down-regulated in CRC cells stage D. 

In this study, we observed that L-glutamate is the most 
important differential metabolites in CRC cells stage D 
compared to normal colon cells. Tian et al.4 previously 
reported up-regulation of L-glutamate; however, we 
found L-glutamate was down-regulated in our study. 
This difference may be because Tian et al.4 used primary 
tissue samples, while in our study, cell lines were used. 
Hence, this illustrates the difference in in vitro and in 
vivo environments, where in vitro studies are conducted 
in a controlled environment, while metabolism in in 
vivo studies may be affected by several biological and 
endogenous factors.

Glutamate might play a role in the development of CRC. 
Increases in glutamate levels have been shown to stimulate 
tumor cell proliferation and motility by activation of 

glutamate receptors (GluRs).53 In fact, glutamate receptors 
have been suggested to act as a potential growth factor in 
tumor development in CRC.54

Until now, there are no reports on the alteration of 
FAD in CRC. FAD is involved in riboflavin metabolism.30 
Therefore, upregulation of FAD in CRC cells stage D 
may reflect the roles of riboflavin metabolism in energy 
production and utilization, maintenance of redox status, 
DNA repair mechanism, chromatin remodeling, protein 
structure, and apoptosis as described above.31 

ATP is the main source of energy for cell growth 
and proliferation. Decreased levels of ATP in CRC 
cells stage D reflect lower production of ATP due to 
the re-programming of their metabolic engines.55 This 
phenomenon is known as Warburg effect, which involved 
switching biochemical pathways from favoring energy 
production to anabolic reactions that primarily support 
the growth and proliferation of cells.55,56

Taken together, our findings revealed that the metabolite 
profiles in CRC cell lines corresponding to different stages 
of CRC differed significantly. Initially, in the early stage 
(stage A), lipid metabolism and amino acid metabolism 
were increased which favors energy production for cancer 
development and serves as building blocks for growth, 
respectively. As cancer progresses to stage B, metabolites 
present were mostly involved in lipid metabolism that 
is responsible for energy production. In stage C, the 
differential metabolites are mostly involved in lipid, 
glutathione, and purine metabolism that promote cancer 
progression and metastasis. However, in stage D, energy 
production is decreased, and metabolism is channeled 
to favor cell growth and proliferation. The differential 
metabolites identified in CRC cells of different stages 
indicate the requirements for each stage of CRC cells to 
support cell growth and proliferation. This stage-specific 
metabolic rewiring of CRC cells gives rise to unique 
metabolic signatures which can be useful in future in 
vitro studies for biomarker development and improving 
treatment strategies. 

Conclusion 
We identified several differential metabolites in CRC cell 
lines compared to normal colon cell lines, which were 
involved in metabolic rewiring favoring cell growth and 
proliferation.Our findings also revealed that there are 
specific differential metabolites at each stage of the disease. 

These changes in metabolic profiles of CRC cells might 
represent the closest reflection of the phenotypes, which 
will help in interpreting the functional status of the cells. 
Thus, metabolic characterization is important in the 
development of in vitro models for future drug testing 
studies. 
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