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Introduction
Platinum(IV) complexes are promising compounds 
that demonstrate anti-inflammatory, antimicrobial (L. 
monocytogenes, S. aureus, E. coli, S. typhi, B. abortus, 
M. luteus), and antifungal (A. fumigatus, C. albicans) 
properties.1,2 They also demonstrated high antitumor 
activity against certain tumor cell lines, such as lung 
cancer, ovarian carcinomas, colon carcinomas,3-5 and 
bladder cancer.6 From a synthetic point of view and 
with respect to the method of administration of drugs 
into the body, platinum(IV) complexes have a number 
of advantages over platinum(II) complexes. First, the 
kinetic inertness of platinum(IV) complexes reduces the 
possibility of adverse reactions in vivo.7 This is because 
they are more stable in acidic environments forming as 
a result of the activity of bacteria (the production of folic 
acid for DNA synthesis), and are more active against these 

bacterial cultures.2 Secondly, these compounds are able 
to penetrate cells intact and undergo reduction inside 
the cell. The reduction of platinum(IV) to platinum(II) 
by biological agents is necessary for their antitumor 
activity.8,9 Finally, platinum(IV) complexes do not lose 
potency against cancer cells under hypoxic conditions, 
therefore, they are potential candidates for the treatment 
of avascular tumors.10 Recently, hexachloroplatinate(IV) 
complexes with pyridinium and benzimidazole groups 
were tested and were shown to inhibit two carcinoma cell 
lines (A549 and CNE-2).11

The potential of platinum compounds in combating 
viral diseases is currently being investigated by several 
groups. Castro et al reviewed platinum compounds 
showing promising antiviral properties.12 They showed 
that different ligands in the coordination sphere of 
platinum may have a significant impact on the efficacy 
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Abstract
Introduction: Machine learning methods, 
coupled with a tremendous increase 
in computer power in recent years, are 
promising tools in modern drug design 
and drug repurposing.
Methods: Machine learning predictive 
models, publicly available at chemosophia.
com, were used to predict the bioactivity 
of recently synthesized platinum(IV) 
complexes against different kinds of 
diseases and medical conditions. Two 
novel QSAR models based on the BiS algorithm are developed and validated, capable to predict 
activities against the SARS-CoV virus and its RNA dependent RNA polymerase.
Results: The internal predictive power of the QSAR models was tested by 10-fold cross-validation, 
giving cross-R2 from 0.863 to 0.903. 38 different activities, ranging from antioxidant, antibacterial, 
and antiviral activities, to potential anti-inflammatory, anti-arrhythmic and anti-malarial activity 
were predicted for a series of eighteen platinum(IV) complexes.
Conclusion: Complexes 1, 3 and 13 have high generalized optimality criteria and are predicted as 
potential SARS-CoV RNA dependent RNA polymerase inhibitors.
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validated.28 It was applied in a drug-repurposing study, 
and among more than 6000 medical compounds from 
the DrugBank database potential SARS-CoV 3CLpro 
inhibitors were shortlisted. Motivated by the success of 
this study, we develop two models capable of predicting 
the biological activity of unknown compounds against 
SARS viruses. A series of platinum complexes are tested 
for potential biological activity, with the aim of finding 
new medical application for them.

Materials and Methods
A variety of QSAR models were used to predict the 
bioactivity of platinum complexes against a series of 
38 medical conditions. 36 of them are available on 
chemosophia.com, while we developed and validated two 
novel models against SARS-CoV (all mechanisms) and 
SARS-CoV RNA dependent RNA polymerase as a part of 
the present study. Since all these models are based on the 
algorithms used for the reconstruction of a molecular field 
of the model receptor, a short overview of those algorithm 
is presented.

The reconstruction of the molecular field of the model 
receptor is a cornerstone of a Biological Substrate Search 
(BiS) algorithm.29 The molecular field is represented 
by Coulomb and van der Waals potentials on the 
molecular surface. Pseudo-atoms of the model receptor 
are calculated based on the complementarity principle 
between a ligand and the receptor. The orientation of each 
subsequent molecule in the training dataset is optimized 
in the obtained field, with the minimal overall probability 
(P) with

𝑃𝑃 = 1 −∏(1 − 𝑝𝑝𝑚𝑚)
𝑀𝑀

𝑚𝑚=1
                                                         (1)

being the function to be minimized. M is the total number 
of pseudo-atoms of the receptor, and pm equals 

𝑝𝑝𝑚𝑚 = 𝑒𝑒−
𝐸𝐸𝑚𝑚
𝑅𝑅𝑅𝑅 .                                                                       (2)

The contributions to the Em are calculated using 
the MERA force field. After each molecule, the 
complementary receptor field is updated. For technical 
details see references.29-31 Once the receptor’s molecular 
field has been reconstructed and the desirability 
function defined, it is possible to place a new molecule 
into the receptor, reorient it, calculate the interactions, 
and classify it as being active (P > 0.5) or inactive (P ≤ 
0.5). The BiS algorithm was tested using different small 
molecule datasets and for various kinds of bioactivity 
and proved to be a high-quality classification scheme, 
with cross-validation quality usually above 0.9.30,32-36 The 
algorithm calculates the entire spectrum of interaction 
characteristics, including interaction energies (Ej), forces 
(Fj), and force constants (kj, elastic component) 27,37:

and pharmacokinetic profiles of new potential antiviral 
drugs. One of the platinum-based antiviral agents, 
TriplatinNC, protects cells from enterovirus 71 and human 
metapneumovirus infection.13 It blocks viral entry by 
shielding cells from virus attack, opening new directions 
for the development of metalloshielding antiviral drugs. 
Another approach in the development of antiviral 
metal preparations for the treatment of COVID-19 is 
considering metallodrug interactions with biomolecules 
related to viral replication.14 Thus, the antiviral activity 
of platinum coordination compounds and their use as 
antiviral agents is of special interest, especially during the 
COVID-19 pandemic.

Globally, as of 8 February 2022, there have been over 396 
million confirmed cases of COVID-19, including more 
than 5.7 million deaths, reported to WHO.15 COVID-19 
is a contagious disease caused by a new member of the 
Coronaviridae family, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). Recently, the 3D structure 
of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) 
has been resolved by cryo-electron microscopy.16 The 
pivotal role of RdRp in the replication of a virus’s genome 
makes it a perfect target for drug design. Several studies 
have used computational chemistry techniques trying 
to repurpose existing drugs and identify potential RdRp 
inhibitors.17-20 Based on a molecular docking study, Elfiky 
identified ribavirin, remdesivir, sofosbuvir, galidesivir, and 
tenofovir as potential anti-COVID-19 drugs.17 Byléhn et 
al were interested in inhibition mechanisms19 and showed 
that remdesivir follows a similar interaction pattern as 
natural base adenine, and proposed a delayed termination 
mechanism.

A variety of statistical methods, such as linear, 
polynomial, and nonlinear regressions, partial least 
squares, or principal component analysis, are used for 
QSAR model design. Recently, with advances in computer 
power, machine learning entered and revolutionized the 
field of computationally aided drug design.21-23 Following 
the recommendations of Tropsha et al24–26 for QSAR 
model design and validation, like selecting only accurate, 
precise and consistent experimental data for the dataset, 
and rigorous validation of predictive models, it is possible 
to design models with high predictive power.

For a drug to show therapeutic effects, it has to interact 
with some molecule of the targeted organism, e.g., a 
peptide, an enzyme, or DNA. With a proper description 
of those interactions, it is possible to design a decision 
rule for classifying molecules as active or inactive. 
On www.chemosophia.com,27 an on-line platform for 
cheminformatics, bioinformatics, and drug design, two 
approaches for the prognosis of bioactivities are adopted, 
based on 3D QSAR molecular interior and exterior 
models. Since all calculations were performed using the 
ChemoSophia platform, we briefly revise both techniques 
in the Methods section. Recently, a successful QSAR 
model using a machine learning model was designed and 
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𝐸𝐸𝑗𝑗 = ∑(𝐸𝐸𝑗𝑗𝑗𝑗𝐶𝐶 + 𝐸𝐸𝑗𝑗𝑗𝑗𝑉𝑉𝑉𝑉𝑉𝑉)
𝑁𝑁

𝑗𝑗=1
+ 𝑈𝑈𝑗𝑗                                            (3)

where 𝐸𝐸𝑗𝑗𝑗𝑗𝐶𝐶   and 𝐸𝐸𝑗𝑗𝑗𝑗𝑉𝑉𝑉𝑉𝑉𝑉  are Coulomb and Van der Waals 
energies of the interaction of each m-th atom of the 
molecule with the j-th pseudo-atom of the receptor. Uj is 
the elastic energy of interaction of the molecule with the 
j-th pseudo-atom

𝑈𝑈𝑗𝑗 =
𝑘𝑘𝑗𝑗∆𝑟𝑟𝑗𝑗2
2                                                                                                  (4)

∆rj is a deviation of the j-th pseudo-atom of the receptor 
from the average position when interacting with the 
molecule of the dataset. In addition, when equating the 
force constants to zero,

𝐹𝐹𝑗𝑗,𝑥𝑥 =
𝜕𝜕𝐸𝐸𝑗𝑗
𝜕𝜕𝜕𝜕 = 0                                                                 (5)

the algorithm can simulate an unlimitedly expandable 
receptor. This property is useful since it imitates receptor 
pockets, which are characterized by a large variation in 
size.

The use of a self-consistent field in BiS identifies the 
optimal arrangement of molecules in the complementary 
receptor until a constant energy value and values of 
the forces of intermolecular interactions equal to zero 
are achieved. In the general case, in the algorithm, the 
energy includes Coulomb, van der Waals interactions, 
and the elastic energy of intermolecular interactions—the 
latter depends on the force constants that determine the 
flexibility and the extensibility of the pseudo-receptor.
CoMIn is a 3D QSAR interior based method, with 
potentials (φ) at the junctions of the 3D lattice as 
descriptors.30,37 Besides classical potentials, such as 
Coulomb and van der Waals, the potential of hydrogen 
bonds or their combination weighted by factor wi, 
quantum descriptors (equation 6)

𝜑𝜑𝑗𝑗 = 𝑤𝑤𝑖𝑖𝑗𝑗𝛼𝛼𝑗𝑗𝑒𝑒−𝛽𝛽𝑗𝑗𝑟𝑟𝑗𝑗𝑗𝑗
2

                                                  (6)

and its derivative (equation 7)

𝜑𝜑𝑗𝑗′ = −2𝑤𝑤𝑖𝑖𝑗𝑗𝛽𝛽𝑗𝑗𝑟𝑟𝑗𝑗𝑗𝑗𝛼𝛼𝑗𝑗𝑒𝑒−𝛽𝛽𝑗𝑗𝑟𝑟𝑗𝑗𝑗𝑗
2

                                              (7)

can also be used. wij is i-th weight factor of atom j (atomic 
charge, volume, distribution of electron density, the 
highest occupied molecular orbital (HOMO), lowest 
unoccupied molecular orbital (LUMO), the difference 
of distribution of LUMO and HOMO, multiplied by the 
corresponding energy of the orbitals, and the products of 
these weight factors), rjm is the distance of atom j from the 
lattice junction m, and αj and βj are explained in Potemkin  
et al study.29 Those potentials are the descriptors used to 
design QSAR models. The electron density version of 

CoMIn algorithm is named ConGO.
The first step in the algorithm includes the 

superposition of the molecules from the training set and 
the computation of the generalized field described by 
potentials at the lattice junctions. The results include the 
Coulomb and van der Waals contributions (equations 
3 and 4) and the potential of hydrogen bonds or their 
combination weighted by specific factors (equations 6 and 
7) at the junctions of the 3D lattice in the space between 
the ligand molecule and the atoms of the pseudo-receptor. 
Those potentials are the descriptors used in the second 
step where the QSAR model is designed, correlating 
biological activity and the descriptors obtained by BiS or 
CoMIn algorithms. This is done by regression analysis 
(multiple linear, polynomial, non-linear, or transcendent) 
or by the partial least square technique. The final step is 
the estimation of the quality of the model, its validation, 
and the evaluation of its predictive power. Additionally, 
by analyzing the potentials it is possible to identify the 
pharmacophoric and anti-pharmacophoric fragments of 
the molecule. The whole procedure using the example of 
5-HT1A agonists is described in detail in Potemkin et al 
study.37 Molecular orbitals were calculated using B3LYP 
functional.38 For light atoms 6-31+G(d,p) basis set was 
used, while for platinum, the LANL2DZ basis set with 
effective core potential was used.39 The visualization of 
molecular orbitals was performed in Gabedit.40

To design QSAR models capable of predicting bioactivity 
against the SARS-CoV virus and the inhibition potential 
against SARS-CoV RdRp, the pIC50 values characterizing 
the compounds’ bioactivity against the specific targets 
are were collected from the ChEMBL database.41,42 Data 
curation was performed according to the suggestions of 
Fourches et al,43 so salts and mixtures were removed. For 
duplicate inputs, more optimistic values were removed. 
After this process, the pIC50 values were within the 3.00 
and 7.30 range for SARS-CoV RdRp and within 3.55 and 
6.64 for SARS-CoV test sets. The SARS-CoV training 
set had 236 compounds (Table S1), while SARS-CoV 
RdRp had 154 (Table S2). 3D structures were generated 
by GP Global software available at chemosophia.com, 
and optimized using the MultiGen approach30,35,44 for 
the global minimization of energy without changing the 
geometries of stereo centers. To validate the performance 
of the methods, 10-fold cross-validation was applied. 
The final result of the QSAR model for SARS-CoV is 
a geometrical mean of neural network and multiple 
regression models desirability functions. Technical details 
about QSAR model design and validation are summarized 
in Table 1, while the basic steps are presented in Fig. 1.

Since all compound geometries used to generate models 
were optimized by the MultiGen approach30,35,44 and 
MM3 force field,45 the structures of platinum complexes 
were minimized using the same approach, with water as 
a solvent. Although it is expected that the difference in 
the structures of the complexes in crystal and in water 
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solution are substantial, as an initial geometry estimate, 
geometries obtained by X-ray diffraction experiments 
were used. ChemoSophia,27 an online application for 
chemoinformatics, bioinformatics, and computational 
toxicology research available at chemosophia.com, was 
used to predict 38 types of bioactivities (Table S3) and 
ADMET properties for minimum energy complexes.

The partial desirability functions for metabolism 
on isoforms 3A4 and 2D6 of cytochrome P450, and 
cytotoxicity, are determined from the desirability function:

𝑑𝑑𝑥𝑥 = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎 + 𝑏𝑏𝑒𝑒))                                                         (8)

where x is 3A4 (probability of metabolism on 3A4 
isoform) or 2D6 (probability of metabolism on 2D6 
isoform) or cyt (probability of cytotoxicity); a and b are 
parameters determined from the system of two equations. 
The first equation, when  x x=   (x is the mean value of 
x) the dx = 0.5. The second equation, when the value x = x 
+ ∆ (∆ is the confidence interval of x at a confidence level 
of 0.95) the dx = 0.95.

Since logP should be in the range from 0 to 5, according 
to Lipinski’s rules, i.e., it has a lower and an upper bound, 
a two-sided desirability function is used:

𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎 + 𝑏𝑏 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)2))          (9)

where a, b and c are parameters determined from the 
system of three equations. The first equation, when logP 
= 0 (lower bound) the dlogP = 0.05. The second equation, 
when the value logP = 5 (upper bound) the dlogP = 0.05. 
The third equation, when the value logP = 2.5 (mean 
value) the dlogP = 0.95.
The generalized optimality criterion (d) is calculated as 
the geometric mean of partial desirability functions

𝑑𝑑 = √𝑑𝑑3𝐴𝐴4𝑑𝑑2𝐷𝐷6𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙4 .                                                                                                  (10)

Results and Discussion
Thirty-six out of the 38 QSAR models used in this study 
are publicly available at chemosophia.com. Those models 
are based on BiS, CiS and CoMIn algorithms used to 
calculate specific potentials (see equations 3–7) that serve 
as features in the subsequent step where regression or 
machine learning models were used to build the prediction 
model. For example, in reference,30 the authors go step by 
step through the algorithm and validation process with 
detailed explanations for four different models, including 
anti-tumor DNA-antimetabolites, factor Xa inhibitors, 
inhibitors of 5-HT1A and α1-AR receptors. Following the 
same approach, recently Novak and Potemkin published a 
model predicting bioactivity against the SARS-CoV main 
protease (3CLpro), with a cross-R2 value of 0.91.28

The investigated platinum(IV) complexes 1-18 were 
synthesized and characterized earlier (Table 2).46–50

According to the X-ray analysis, the crystals in 
complexes 1-12 are ionic pairs consisting of two 
tetraorganylammonium or organyltriphenylphosphonium 
tetrahedral cations and one octahedral anion [PtCl6]

2– 
or [PtBr6]

2–. The phosphorus and nitrogen atoms in the 
cations have a slightly distorted tetrahedral coordination. 
The C-N-C and С-Р-С valence angles approach the ideal 
tetrahedral value, being between 109.0(16)° and 115.1(3)° 
for 1-3, and 106.8(2)° and 113.7(3)° for 4-12. The N–С 
bonds differ slightly from each other and are from 
1.441(2) Å to 1.494(3) Å (1–3). The P–C bond lengths are 
from 1.785(6) Å to 1.842(8) Å for 4-12 and are slightly 
lower than the sum of the covalent radii of phosphorus 
and carbon atoms (1.88 Å 44). The center of the symmetry 
is located on the Pt(IV) atom of the hexachloroplatinate 

Table 1. Parameters and validation of QSAR models for a prognosis of anti-SARS-CoV bioactivity

QSAR model SARS-CoV SARS-CoV RdRp

Method 1) Neural network (3 layers)
2) Multiple regression Neural network

Algorithm 1) CoMIn
2) BiS CoMIn

Potential 1) HOMO distribution
2) Coulomb, van der Waals and elastic energy The LUMO distribution derivative

Cross-R2 1) 0.903
2) 0.881 0.863

 
Fig. 1. Workflow from data collection to the successful QSAR model design.
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or hexabromoplatinate anions. Therefore, the asymmetric 
part of the reported structures contains half of the anion. 
A small distortion of the octahedral geometry was found 
for the anions: cis-angles Cl-Pt-Cl and Br-Pt-Br in the 
asymmetric part vary from 88.09(2)° to 91.47(3)°. Trans-
angles Сl-Pt-Cl and Br-Pt-Br are almost equal to the 
theoretical value 180.0°. The cations of complexes (13-16, 
18) have similar bond lengths and bond angles as (1-12). 
Anions have a slightly distorted octahedral configuration.

In water solutions, organic cations surround the Pt(IV) 
anion. In complex 1, equatorial Pt-Cl bond lengths are 
2.277 Å, and axial 2.282 Å, with just minor deviations 
from a perfect octahedron. The organic part of the 
complex, the tetraethylammonium cations, have direct 
van der Waals contacts with four chlorine anions. The 
substitution of bulky tetraethylammonium cations by 
trimethylammonium cations (complex 3) is reflected in 
Pt-Cl bond lengths, which are longer compared to 1.

By replacing a chlorine anion with a diethyl sulfoxide, 
complex 13 is obtained. Compound 13, with desirability 
equal to 0.54, is a complex with octahedral geometry 
in water solution. Diethyl sulfoxide is in a coordination 
sphere of Pt(IV), together with five chlorine anions. Pt-
Cl bond length, where chlorine is in the axial position (or 
trans relative to Sulphur), is 2.346 Å and it is the longest of 
all Pt-Cl bonds. Pt-S distance is slightly longer (2.350 Å), 
and the angle S-Pt-Cl is 175.7°. The tetraethylammonium 
cation is positioned closer to the diethyl sulfoxide, having 
close contact with one of the equatorial chlorine anions.

After geometry optimization for all 18 complexes, 

Table 2. Platinum complexes whose bioactivity were studied with 
references to their synthesis and characterization

No. Formula Reference

1 [(C2H5)4N]2[PtCl6]
46

2 [(C2H5)2NH2]2[PtCl6]
47

3 [(CH3)3NH]2[PtCl6]
48

4 [Ph4P]2[PtCl6]×CH3CN 48

5 [Ph3PCH=CHCH3]2[PtCl6]
50

6 [Ph3PCH2OCH3]2[PtCl6]
50

7 [Ph3PC2H5]2[PtBr6]
48

8 [Ph3P(cyclo-C3H5)]2[PtBr6]
48

9 [Ph3PCH2Ph]2[PtBr6]
48

10 [Ph3PCH3]2[PtBr6]
49

11 [Ph3PCH=CH2]2[PtBr6]
49

12 [Ph3PCH2CH=CH2]2[PtBr6]
49

13 [(C2H5)4N][PtCl5(DESO-S)] 48

14 [Ph3PCH2CH=CHCH2PPh3][PtCl5(DMSO-S)] 48

15 [Ph3PC2H5][PtCl5(DESO-S)] 48

16 [Ph3PCH2OCH3][PtCl3(DMSO-S)] 48

17 cis-[PtCl2(DESO-S)(PPh3)]
48

18 [Ph3PCH2Ph][PtBr5(DMSO-S)] 48

38 kinds of bioactivities were predicted, together with 
ADMET properties. The results of ADMET property 
predictions are presented in Table 3. Most of the complexes 
have high scores for being metabolized on at least one of 
two cytochrome P450 isoforms (1 = a high probability 
of metabolism, 0 = low probability of metabolism). 
This fact by itself does not mean that a complex cannot 
be used as a drug. It can, if it remains after metabolism 
sufficiently to exploit the therapeutic effect. Generalized 
optimality criterion (d) is a criterion based on particular 
desirability functions, with the most desirable molecule 
having a score of 1. Only four complexes (1-3, 13) satisfy 
Lipinski’s recommendation for lipophilicity, usually 
expressed as a partition coefficient in 1-octanol or a water 
system, with logP values in the range between 0.9 (2) 
and 4.2 (13). Chemosophia’s toxicity classification model 
identified all Pt complexes as cytotoxic. Toxicity resulting 
from cisplatin administration, one of the most widely 
used and successful chemotherapeutic agents, includes 
kidney damage, hearing loss, severe nausea and vomiting, 
peripheral nerve damage, and bone marrow suppression.51 
As the lethal dose is significantly higher than their 
therapeutic concentrations, those compounds might 
have practical therapeutic potential. Therefore, additional 
research is needed. The general desirability of a complex 
as a potential drug (d) is calculated as the geometrical 
mean of particular (property based) desirabilities. 
According to the desirability rule, the top three platinum 
complexes with the best ADMET properties are 1, 3, and 
13. Compounds with organyltriphenylphosphonium 
moiety have undesirable ADMET properties.

Complexes 1, 3, and 13 (Fig. 2) show potential activity 
against a variety of conditions (Table 4) and have the 
highest generalized optimality criterion. Since all three of 
them are toxic, it is not of special importance to suggest 
them against conditions that are not serious or for which 
less toxic drugs already exist.

There are several hundred proteins and double stranded 
DNA fragments complexed with coordinative compounds 
of platinum in the RSCB PDB database (www.rscb.org). 
Zhao et al52 recently designed, synthesized and measured 
bioactivity against cancer cell lines for three biotinylated 
platinum(IV) complexes. Their molecular docking studies 
confirmed that non-covalent interactions are responsible 
for the effective binding of the biotin moieties of all the 
studied platinum(IV) complexes for streptavidin, while 
platinum did not affect their binding abilities. Platinum 
introduces additional stabilization to the complex, 
compared to the protein-ligand complex without 
platinum. Sankarganesh et al53 performed spectroscopic 
titrations, viscometric measurements, and molecular 
docking analysis to show that gold and platinum complexes 
intercalate to circulating tumor DNA. Here, we focus on 
anti-SARS activity, where Pt(IV) complexes may act as 
RdRp inhibitors. Compounds 1 and 13 exhibit potential 
bioactivity against SARS-CoV RdRp and are further 
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analyzed. Bioactivity predictions for all Pt(IV) complexes 
are collected in Table S4 in Supplementary file 1.

The pharmacophoric and antipharmacophoric 
fragments are obtained by analysis of the generalized 
field.37 Fig. 3 shows pharmacophoric (red) and 
antipharmacophoric (blue) fragments of complexes 1 
and 13 in the modelled complementary field of SARS-
CoV RdRp. It can be seen that metallic center (platinum) 
and organic ligand exhibit mostly antipharmacophoric 
properties. Just like in the example of sodium chloride, 
where combining reactive metallic sodium and poisonous 
gaseous chlorine forms table salt (sodium chloride) with 
completely different properties from original compounds, 
here one can also observe ‘the whole is bigger than the sum 
of its parts’ effect. Although separately platinum and the 
organic ligand do not show bioactivity, when they interact, 
they are predicted to have significant bioactivity against 
a variety of conditions. We believe that the emergence of 

bioactivity is a consequence of the interaction of valence 
shell electrons from the platinum with chlorine and that 
this interaction is modulated further by ligand and/or 
diethyl sulfoxide. Fig. 3 shows that equatorial chlorine 
anions, closest to the ethylene moiety of compound 1, are 
pharmacophoric, together with axial one, pointing away 
from ligands. The analysis of HOMO, presented in Fig. 4, 
shows that there are 3p orbitals centered on those specific 
chlorine anions and the 2 2x y

d
−  orbital of platinum. The 

energy difference between HOMO and HOMO-1 orbitals 
is only 0.027 eV, while the HOMO–LUMO gap is 4.01 eV.

The scientific community and medical practice offer 
proof of the importance of platinum compounds, such 
as cisplatin, carboplatin, oxaliplatin, nedaplatin, and 
lobaplatin.54 Several platinum-based agents are well 
documented, and much is known about the mechanism 
of action in anticancer treatments.55 Some insights are 
also obtained about their interaction with the target.52,53 

Table 3. Predicted ADMET properties of Pt(IV) complexes and their desirability as potential drugs

3A4 2D6 cyt logP d3A4 d2D6 dlogP dcyt d

1 0.7756 0.2238 1.0 1.4500 0.9774 0.9942 0.9002 0.1268 0.5771

2 0.9077 0.9026 1.0 0.9100 0.6260 0.0000 0.7666 0.1268 0.0330

3 0.0000 0.4593 1.0 1.1500 1.0000 0.9237 0.8454 0.1268 0.5610

4 0.9540 0.6527 1.0 6.8400 0.2586 0.5077 0.0000 0.1268 0.0000

5 0.9713 0.4839 1.0 7.7367 0.1341 0.9011 0.0000 0.1268 0.0000

6 0.9795 0.6722 1.0 6.6233 0.0886 0.4310 0.0000 0.1268 0.0000

7 0.9891 0.1287 1.0 8.1337 0.0488 0.9980 0.0000 0.1268 0.0000

8 0.9893 0.0006 1.0 7.9337 0.0482 0.9995 0.0000 0.1268 0.0000

9 0.9803 0.6156 1.0 8.4203 0.0848 0.6382 0.0000 0.1268 0.0000

10 0.8906 0.8469 1.0 7.8337 0.7281 0.0029 0.0000 0.1268 0.0000

11 0.9826 0.8268 1.0 8.1337 0.0740 0.0093 0.0000 0.1268 0.0000

12 0.9231 0.6885 1.0 8.3337 0.5135 0.3649 0.0000 0.1268 0.0000

13 0.0297 0.3044 1.0 4.2413 1.0000 0.9859 0.6914 0.1268 0.5422

14 0.9392 0.6887 1.0 7.4500 0.3818 0.3638 0.0000 0.1268 0.0000

15 0.9902 0.6244 1.0 7.6667 0.0454 0.6094 0.0000 0.1268 0.0000

16 0.9555 0.5986 1.0 5.0150 0.2466 0.6895 0.0430 0.1268 0.1745

17 0.7633 0.0000 1.0 8.8900 0.9829 0.9995 0.0000 0.1268 0.0000

18 0.5802 0.5934 1.0 7.5250 0.9997 0.7039 0.0000 0.1268 0.0000

3A4, 2D6 – isoforms of cytochrome P450, cyt – cytotoxicity, logP – lipophilicity, d –desirability function.

Fig. 2. Structures of Pt(IV) complexes with favorable drug desirability. 1 (left), 3 (middle) and 13 (right).
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Considering the good quality of the training sets and 
the robustness and successful practical demonstrations 
of the applied methods,28,30 our results suggest that 
platinum complexes could be used against a wider range 
of medical conditions, including viruses. Nevertheless, 
although QSAR modeling is a valuable tool to screen 
large compound libraries and identify drug candidates, 
we hope that our study will attract interest and motivate 
experimental groups to conduct research in complex in 
vitro and in vivo experimental systems.

Conclusion
Cisplatin [cis-diamminedichloroplatinum(II)] was the 
first platinum complex registered as a chemotherapeutic 
agent against various types of cancers. Further 
investigations resulted in a new class of antineoplastic 
drugs—carboplatin and oxaliplatin. A computationally 
aided drug designed coupled with artificial intelligence 
might be a game changer, lowering the costs and speeding 
up the process of drug development. Present day models 

Table 4. Biological activity of platinum complexes with high desirability 
function

Target/condition 1 3 13

α1 Adrenergic receptor inhibitors Yes No No

Conduction anesthesia Yes Yes No

DNA gyrase inhibition No Yes No

Antioxidant activity No No Yes

Anti-arrhythmic agents Yes No No

SARS-CoV RdRp inhibitors Yes No Yes

Benzodiazepine receptor inhibitors Yes No No

Human factor Xa inhibitors No No No

HIV1 No Yes Yes

LOX5 inhibitors No Yes No

Influenza A Yes No Yes

Influenza B No Yes No

Fig. 3. The distribution of pharmacophore (red) and anti-pharmacophore (blue) parts of compounds 1 (left) and 13 (right), identified by the generalized field 
of SARS-CoV RNA dependent RNA polymerase.

are capable of predicting bioactivities, cytotoxicity, and 
ADMET properties, opening doors toward the design 
of selective drugs with minimal, or ideally without, side 
effects. Platinum(IV) complexes might have an important 
role in this process.
In the first part of the paper, two new QSAR models 
predicting activity against SARS-CoV and its RdRp 
are developed. 10-fold cross-validation indicates their 
robustness and high predictive ability. Those models are 

What is the current knowledge?
√ Cisplatin [cis-diamminedichloroplatinum(II)] was the first 
platinum complex registered as a chemotherapeutic agent 
against various types of cancers.
√ Present day models are capable of predicting bioactivities, 
cytotoxicity and ADMET properties, opening the door 
toward the design of selective drugs with minimal, or ideally 
without, side effects.

What is new here?
√ The cytotoxicity, ADMET properties and bioactivities 
against 38 different kinds of diseases and medical conditions 
have been predicted for a series of platinum(IV) complexes.
√ Two QSAR models for predicting activity against SARS-
CoV (cross-R2 = 0.903 and 0.881) and SARS-CoV RNA 
dependent RNA polymerase (cross-R2 = 0.863) have been 
designed and validated.
√ Pt(IV) complexes with organyltriphenylphosphonium 
moiety have undesirable ADMET properties.
√ Compounds 1, 3 and 13 have a favorable desirability 
function and have predicted activity against various medical 
conditions, including inhibition potential against SARS-CoV 
RNA dependent RNA polymerase.
√ The analysis of (anti)pharmacophoric fragments reveal that 
majority of the atoms are antipharmacophoric, indicating that 
bioactivity is a property that emerges as a result of interaction 
between platinum(IV), halogen anions and organic moieties.

Research Highlights
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based on the re-creation of the complementary receptor’s 
molecular field by BiS or CoMIn algorithms and are being 
implemented at chemosophia.com. To reach the second 
goal, the biological activity was predicted for a series of 
recently synthesized and characterized platinum(IV) 
complexes. Altogether, 38 different activities, ranging 
from antioxidant, antibacterial, and antiviral activities, to 
potential anti-inflammatory, anti-arrhythmic, and anti-
malarial agents were predicted. Geometries of platinum 
complexes obtained by X-ray structure analysis were 
optimized, and the most stable structures in water solution 
were obtained. In the second stage, pharmacokinetic 
and cytotoxicity properties were predicted, and drug 
desirability properties were calculated. Three platinum 
complexes with a desirability factor above 0.5, although 
being predicted as toxic, are identified as hit molecules and 
their potential application against 12 medical conditions 
is shortlisted. Compounds 1 and 13 have high scores as 
potential inhibitors of SARS-CoV RdRp. Although a 
closer analysis of pharmacophoric parts of the complex 
reveals that both platinum(IV) and a majority of ligand 
atoms are antipharmacophoric in nature, we believe that 
biological activity arises dominantly from the interaction 
of electrons from platinum(IV) and chlorine anions, but 
interaction with a ligand cannot be ruled out.
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