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Protective effects of limb remote ischemic per-conditioning on the 
heart injury induced ‎by renal ischemic-reperfusion through the 
interaction of the apelin with the RAS/iNOS ‎pathway
Sahar Janfeshan, Fatemeh Masjedi, Zeinab Karimi* 

Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Introduction
Renal ischemia-reperfusion (I/R) is a major cause of 
acute kidney injury (AKI) that is usually induced in some 
surgeries (kidney transplantation and coronary artery 
bypass grafting) and multiple clinical situations, including 
trauma, severe infection, sepsis, and hemorrhagic 

shock.1,2 Renal I/R is characterized by sudden restriction 
of blood supply to the kidney followed by the subsequent 
restoration of perfusion and re-oxygenation.3,4

The consequences of renal I/R injury are local as 
well as remote organ destruction such as liver,5 lung,6,7 
and heart.8 The physiological and pathophysiological 
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Abstract
Introduction: Remote ischemic 
conditioning upregulates endogenous 
protective pathways in response to 
‎ischemia-reperfusion injury. This study 
tested the hypothesis that limb remote 
ischemic per-‎conditioning (RIPerC) 
exerts cardioprotective effects via 
the renin-angiotensin system ‎‎(RAS)/
inducible nitric oxide synthase (iNOS)/
apelin pathway.‎
Methods: Renal ischemia-reperfusion 
injury (I/R) was induced by bilateral 
occlusion of the ‎renal pedicles for 
60 minutes, followed by 24 hours of 
reperfusion; sham-operated rats served 
‎as controls. RIPerC was induced by four 
cycles (5 minutes) of limb ischemia-reperfusion ‎along with bilateral renal ischemia. The functional 
disturbance was evaluated by renal (BUN ‎and creatinine) and cardiac (troponin I and lactate 
dehydrogenase) injury biomarkers. ‎
Results: Renal I/R injury increased renal and cardiac injury biomarkers that were reduced in 
‎the RIPerC group. Histopathological findings of the kidney and heart were also suggestive of 
‎amelioration injury-induced changes in the RIPerC group. Assessment of cardiac ‎electrophysiology 
revealed that RIPerC ameliorated the decline in P wave duration without ‎significantly affecting 
other cardiac electrophysiological changes. Further, renal I/R injury ‎increased the plasma 
(322.40±34.01 IU/L), renal (8.27±1.10 mIU/mg of Protein), and cardiac ‎‎(68.28±10.28 mIU/mg 
of protein) angiotensin-converting enzyme (ACE) activities in ‎association with elevations in the 
plasma and urine nitrite (25.47±2.01 & 16.62±3.05 μmol/L) ‎and nitrate (15.47±1.33 & 5.01±0.96 
μmol/L) levels; these changes were reversed by RIPerC. ‎Further, renal ischemia-reperfusion injury 
significantly (P=0.047) decreased the renal (but not ‎cardiac) apelin mRNA expression, while renal 
and cardiac ACE2 (P<0.05) and iNOS ‎‎(P=0.043) mRNA expressions were significantly increased 
compared to the sham group; these ‎effects were largely reversed by RIPerC.‎
Conclusion: Our results indicated that RIPerC protects the heart against renal ischemia-‎reperfusion 
injury, likely via interaction of the apelin with the RAS/iNOS pathway.‎
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inducible nitric oxide synthase (iNOS)/apelin pathway.
 

Materials and Methods
Animals
This study was done on 30 male Sprague-Dawley rats 
weighing 250-270 g. They were purchased from the 
Animal Center of Shiraz University of Medical Sciences. 
Animal work took place in a specific animal room (in 
separate cages) at a controlled temperature of 22 to 25 
°C with lighting (12 hours light/dark cycles) and was 
acclimatized to water and food without restriction. 

Surgical procedure
Rats were anesthetized with Ketamine (50 mg/kg; Alfasan, 
Woerden, the Netherlands) and xylazine (10 mg/kg; Bayer, 
Leverkusen, Germany) and were then put on a surgical 
heating table to retain the body temperature at 37 °C. The 
procedure of renal ischemia is described in our previous 
study.23 Briefly, a midline abdominal incision was made, 
and the renal pedicles were exposed. Rats were randomly 
allocated to three groups (n=10 per group): (1) Sham, 
in which renal pedicels did not clamp; (2) BIR (bilateral 
ischemic-reperfusion) group, in which both renal pedicles 
were occluded for 60 minutes using microaneurysm 
vascular clamp; (3) BIR+RIPerC (remote ischemic per-
conditioning) groups, in which four cycles of 5 minutes 
ischemia of the left femoral artery followed by 5 minutes 
reperfusion were applied at the beginning of renal 
ischemia. After the termination of ischemia, the clamps 
were token up and confirmed for appropriate reperfusion 
of the blood flow to the ischemic kidney. The abdominal 
incision was then sutured by 2/0 stitches in 2 layers.

Experimental protocol
At the end of the surgery, the animals were kept in 
metabolic cages as previously described,24 and 24 hours 
urine volume was collected. After 24 hours reperfusion, 
all rats were weighed and immediately re-anesthetized. 
Animals were placed on a wooden plate to prevent 
additional electrical signals which could interfere with 
our ECG recording. Then, a filled cannula [normal 
saline (SAMEN, Mashhad, Iran) with 15 IU/mL heparin 
(Alborzdarouco, Tehran, Iran)] was inserted into the right 
femoral artery and connected to a pressure transducer. 
ECG electrodes were connected to the hands of animals 
(negative: right hand and positive: left hand) and the left 
limb. After 15 minutes of equilibration, arterial blood 
pressure (BP) and heart rate (HR) were continuously 
recorded for 10 minutes using a PowerLab/8SP data 
acquisition system (AD Instruments, BellaVista, NSW, 
Australia). Blood samples were taken from the abdominal 
vein to measure renal and cardiac function markers. 
Subsequently, the kidneys and heart were removed and 
weighed immediately. Two coronal sections were cut from 
the middle part of the kidney and heart. The left kidney 
and one piece of heart tissue were stored at -80 °C for 

interaction between the kidney and the cardiovascular 
system provides essential indicators for maintaining 
homeostasis.9 Indeed, several studies have demonstrated 
cardiac dysfunction contributes to a high morbidity/
mortality rate after renal I/R injury.10 It is often followed by 
a change in renin-angiotensin system (RAS) components 
and redox imbalance that induces renal and extra-renal 
organ disturbances.11,12

Oxidative stress, as one of the direct effects of the 
hypoxia process, is further developed during reperfusion.11 
Activity of angiotensin-converting enzyme (ACE), which 
can increase the concentration of angiotensin II (Ang II) 
in the plasma by cleaving angiotensin I (Ang I), was shown 
to be significantly increased in renal and cardiac after renal 
I/R injury.13 The excess Ang II can intensify renal ischemia 
and promote renal and heart injury by increasing systemic 
inflammation, reactive oxygen species formation, altering 
the source of nitric oxide (NO) availability, and inducing 
nitrosative and oxidative stress.14,15 ACE2, the first known 
homolog of ACE, was indicated to be a negative regulator 
of RAS because of its ability to convert Ang II to Ang (1–
7), a peptide with vasodilatory and anti-fibrotic effects.16

One of the newly-recognized endogenous peptides that 
has attracted researchers’ attention in the last decade is 
apelin. Apelin is an inotropic and cardioprotective ligand 
that shows positive effects by activating the G-protein-
coupled receptor (APJ) in the pathology of cardiovascular 
diseases.17 Apelin receptor has about 50% homology 
with angiotensin II type 1 (AT1) receptor. However, a 
counter-regulatory role for apelin in relation to the renin-
angiotensin system is suggested by antagonizing the 
effects of angiotensin II on vascular tone, blood pressure, 
and fluid homeostasis.18 Therefore, there are direct cellular 
and biological interactions between these two systems. On 
the other hand, apelin exhibits renal and cardioprotective 
effects through modulation of the nitric oxide synthesis 
(NOS)/NO-generation pathway.19

Hormesis or conditioning is a technique by which 
harmful stimuli below the threshold of injury are applied 
to an organ or system to develop cellular tolerance against 
more severe damage.20 Moreover, it was demonstrated that 
conditioning could be done in a distant (remote) non-vital 
organ, such as a limb, but still exert beneficial effects on 
vital organs. Remote ischemic per-conditioning (RIPerC) 
is an excellent example of episodes of occlusion and 
reperfusion of blood flow on a limb, making temporary 
limb ischemia and remotely promoting endogenous 
protective pathways in the heart and kidney or other 
organs.21,22

The exact endogenous mechanisms of RIPerC are not 
completely understood yet. However, signal transmission 
from the remote site to target organs is reported to be 
modulated by humoral factors, immune cells, and the 
autonomic nervous system.22 Therefore, this study tested 
the hypothesis that limb remote ischemic per-conditioning 
(RIPerC) exerts cardioprotective effects via the RAS/
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measuring ACE activity, NO metabolites, and RT-PCR. 
The right kidney and another slice of the heart were kept 
in 10% formalin for hematoxylin-eosin (H & E) staining.

Measurement of renal and cardiac functional biomarkers
Plasma concentrations of creatinine (Cr), blood urea 
nitrogen (BUN), and lactate dehydrogenase (LDH) were 
measured using Technicon® RA-1000 auto-analyzer 
(Technicon Corporation, Tarry-town, USA) in Namazi 
Hospital Laboratory, Shiraz, Iran. Troponin I level is a 
specific index of myocardium injury. Cardiac troponin I 
(cTn-I) was measured using an enzyme-linked fluorescent 
assay (ELFA) kit (VIDAS®, bioMérieux, North Carolina, 
USA).

Echocardiographic (ECG) analysis
ECG long lead II was recorded while the rats were lying 
on a wooden plate to avoid additional electrical signals 
which could interfere with our recording. Intervals of R-R 
and J-T (distance between S wave and the end of T wave), 
durations and amplitudes of P, Q, R, S as well as T waves, 
and the heart rate were analyzed by ECG analyzing software 
of a Power Lab system (AD Instruments, Australia). QT 
interval was corrected using normalized Bazett's equation 
QTc= QT/(RR/f)1/2, where f is the normalization factor 
according to RR duration in the sham group.25

ACE activity assay
The ACE activity was measured, as previously described 
by Beneteau et al with minor modifications.26 In 
brief, ACE activity was determined with an artificial 
substrate [furanacryloyl-L-phenylalanylglycylglycine 
(FAPGG, Sigma-Aldrich, St. Louis, Missouri, United 
States)] in a reaction mixture containing 25 mM HEPES 
[4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 
HEPES, Sigma-Aldrich], 0.5 mM FAPGG, 300 mM 
NaCl (Sodium chloride, Sigma-Aldrich), and the 
desired dilution of the serum or tissue homogenate at 
pH 8.2. The reaction rate at 340 nm can be determined 
using the FAPGG extinction coefficient (ε=0.989 μM-1). 
Measurements were performed in 96-well plates at 25 °C. 
Changes in the optical density (340 nm) were measured at 
1 min intervals for 10 min with a microplate reader (Epoch 
2, BioTek, Winooski, Vermont, United States). One unit 
of ACE activity is defined as the amount of enzyme that 
will cause the oxidation of 1.0 µmol of FAPGG to FAP per 
minute at 25 °C. The ACE activity in the serum and tissue 
samples was expressed as µmol of FAPGG oxidized/min/
mL of the serum or mg of protein (Units/mL of serum or 
Units/mg of protein).

Measurement of NO metabolite
The amount of NO can be measured by determining 
the concentrations of nitrite and nitrate end products in 
the plasma and tissue samples by the Griess method.27 
Initially, plasma samples were deproteinized using 99% 

ethanol and centrifuged. Quantitation of nitrite was 
based on its reaction with a mixture of 0.1% NEDD 
[N-(1-Naphthyl)ethylenediamine, Sigma-Aldrich] (25 
‎µL) in 5% HCl (Hydrochloric acid, Sigma-Aldrich) (25 
‎µL) and 2% sulphanilamide (Sigma-Aldrich) (25 ‎µL), 
which were added to 50 ‎µL of deproteinized samples in 
duplicate and kept in a water bath at 37 °C for 15 minutes. 
The optical densities were measured at 540 nm using a 
microplate reader (Epoch 2, BioTek). After that, nitrate 
was quantitated by reducing it to nitrite via the addition of 
vanadium (III) chloride (Sigma-Aldrich) (50 ‎µL) to each 
sample, incubating for 15 min at 37 °C, and rereading 
absorbances at 540 nm. Total nitrite/nitrate (NO2

-/NO3
-) 

concentrations were calculated as µmol per liter of the 
plasma and urine using the standard curve generated 
from the serial concentrations of NaNO2 (0-100 µmol/L) 
(Sodium nitrite, Sigma-Aldrich).

Quantitative RT-PCR analysis 
Total RNA extraction, cDNA synthesis, and SYBR Green 
based-real-time PCR methods were performed to evaluate 
the expression levels of ACE2, iNOS, and apelin genes in rat 
kidney and heart samples. For RNA extraction, 150 mg of 
each kidney and heart tissue sample in BIR, BIR+RIPreC, 
and sham groups was homogenized by adding 800 ‎µL 
Trizol (YTzol, Yekta Tajhiz Azma, Tehran, Iran) in sterile 
falcon tubes on water and ice (4 °C). Homogenized 
solutions were centrifuged for 5 minutes at 4000 rpm, and 
their supernatants were transferred to an RNase-free 2 mL 
microtube. In the next step, 400 ‎µL chloroform (Sigma-
Aldrich) was added, and the solution was kept at 4 °C for 5 
minutes and centrifuged for 20 minutes at 13500 rpm and 
4 °C to form aqueous and organic phases. The aqueous 
phase was removed to a new RNase-free microtube, 800 
‎µL ethanol 100% was added, and it was kept overnight at  
-20 °C. The next day, this solution was centrifuged for 
20 minutes at 13500 rpm and 4 °C. The supernatant was 
removed, 800‎ µL ethanol 75% was added, and the mixture 
was centrifuged for 8 minutes at 8000 rpm and 4 °C. 
Then, the supernatants were removed, and microtubes 
were dried under the hood station for 20 minutes. Total 
RNA sediment was solved in 50 ‎µL diethylpyrocarbonate 
(DEPC)-treated water (Sinaclon, Karaj, Iran) and put on a 
dry block at 55-60 °C for 10 minutes to open the secondary 
structure of RNA. The purity and concentration of RNA 
were measured using NanoDrop™ (Thermo Scientific™, 
Waltham, Massachusetts, United States) at 260/280 nm, 
and cDNA synthesis was done for the rat kidney and heart 
samples using AddScript cDNA Synthesis kit, based on the 
manufacturer’s instructions (AddScript cDNA Synthesis, 
AddBio Inc., Yuseong-gu, Daejeon, Korea). 

ACE2, iNOS, and apelin expression levels in the 
kidney and heart tissue samples in all three groups 
were determined using an in-house SYBR green Real-
time PCR protocol by Step One Real-Time Instrument 
(ABI, StepOnePlus, Foster City, United States). The 



Janfeshan et al

BioImpacts. 2024;14(2):275674

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
gene was considered as an internal control to eliminate 
test errors.

The real-time PCR mix was composed of PCR master 
mix (Hot-start Taq DNA Polymerase, SYBR Green I dye, 
dNTPs mixture, protein stabilizers, and enhancers) (Add 
SYBR Master, AddBio Inc.), forward and reverse primers 
(10 pmol), and template cDNA. The real-time conditions 
of the studied transcripts were 95 °C/10 min, 40 cycles 
at 95 °C/15 s, 58°C/20 s, and 72 °C/30 s. Melting curves 
of the target and internal control genes were analyzed to 
confirm the specificity of PCR reactions. All real-time 
tests were repeated three times. The reverse and forward 
primer sequences for transcript amplification are shown 
in Table 1.

Kidney and heart histological evaluation
Renal and heart tissue samples were fixed in 10% formalin 
solution (Formaldehyde 37%, Merck Chemicals GmbH, 
Darmstadt, Germany). Slides of the samples were 
prepared at 5 µm thickness and stained with the routine 
hematoxylin and eosin (H&E) method.

In a blinded fashion, an expert pathologist examined 
each section in at least ten randomly selected non-
overlapping fields under the light microscope. The renal 
histopathology was quantified for the degree of Bowman’s 
space enlargement, brush border loss in proximal tubules, 
cast formation, and tubular necrosis. The myocardium 
structural disturbance was assessed based on the score of 
interstitial edema, minimum congestion, and leucocyte 
infiltration. The level of each manifestation was graded 
according to the changes involved, scoring 0 with no 

changes, 1 with less than 20%, 2 with 20–40%, 3 with 40–
60%, 4 with 60–80%, and 5 with greater than 80%. The 
sum of all numerical scores in each group was reported as 
the total histopathological score.7,28,29

Statistical analysis
All data are expressed as mean ± SEM. Multiple 
comparisons between groups were performed using one-
way ANOVA, followed by Dunnett's and Tukey's post hoc 
tests. Differences were considered statistically significant 
at P<0.05. Statistical analyses were performed using 
GraphPad Prism software package version 9. (GraphPad 
Software Inc. La Jolla, California, USA).

Results
Renal and cardiac injury biomarkers
As shown in Table 2, renal BIR caused a significant 
increase in the plasma levels of Cr and BUN compared 
to values obtained from the plasma of sham-operated 
animals. Cardiac injury markers, including LDH and 
troponin I were significantly higher in the BIR group 
than the sham group. The renal and cardiac functions 
improved when cyclic limb remote ischemia started along 
with the renal ischemia. Therefore, the plasma levels of Cr 
and LDH significantly increased, and BUN and troponin 
I slightly declined in the RIPerC group compared with the 
BIR group.

Blood pressure and electrocardiogram data
As determined in Table 3, mean blood pressure (MBP) 
significantly decreased in the BIR group compared 
with the sham group. The heart rate increased, but not 

Table 1. Primer sequences for transcript amplification

Gene name Gene ID Sequence (5′→3′) Product length (bp)

GAPDH 24383
F: AGTGCCAGCCTC GTCTCATA

91
R: GAGAAGGCAGCCCTGGTAAC

ACE2 302668
F: GTGTCGTGATGGGAACGGTA

124
R: TTGCCAATGTCCATGGAGTCA

iNOS 24599
F: GGGAGAGTGAGCTGGTGTTT

108
R: TGCAGTCCCGAGCATCAAAT

Apelin 58812
F: CTCTGGCTCTCCTTGACTGC

109
R: TCGAAGTTCTGGGCTTCACC

Table 2. Effect of remote ischemic per-conditioning on renal and cardiac injury biomarkers 

Variables
Experimental groups

Sham BIR BIR+RIPerC

Renal injury markers
Cr level (mg/dL) 0.49 ± 0.02 3.91 ± 0.42**** 2.19 ± 0.28***, ###

BUN level (mg/dL) 16.63 ± 1.54 120.70 ± 5.15**** 109.30 ± 7.58***

Cardiac injury markers
LDH (U/L) 404.80 ± 120.60 1816 ± 334.80** 1187 ± 114.40#

Troponin I (ng/mL) 0.18 ± 0.07 0.58 ± 0.21** 0.23 ± 0.06

Data are expressed as mean ± SEM, n=10.
**P<0.01, ***P<0.0001 and ****P<0.0001 vs. the sham group. #P<0.05 and ###P<0.001 vs. the BIR group.
Cr, creatinine; BUN, blood urea nitrogen; LDH, lactate dehydrogenase; BIR, bilateral ischemic reperfusion; RIPerC, remote ischemic per-conditioning.
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significantly, in this group. ECG long lead II was recorded 
to evaluate whether the renal BIR induced functional 
disturbance in myocardia. ECG analysis data showed that 
P duration significantly decreased, whereas QRS, QTc, 
and J-T intervals significantly increased in the BIR group 
in comparison with the basic intervals in the sham group. 
Remote ischemic per-conditioning slightly modulated 
the transmission of the cardiac impulse. P duration was 
significantly higher in the BIR+RIPerC compared with 
the BIR group. Moreover, QRS and QTc intervals slightly 
declined in the BIR+RIPerC group; however, there were 
significant differences with the basis durations in the 
sham group. The P-R interval did not change in the three 
studied groups (Table 3).

Table 3. Effect of remote ischemic per-conditioning on the mean blood 
pressure, heart rate, intervals, and ‎voltages of electrocardiogram waves

Variables
Experimental groups

Sham BIR BIR+RIPerC

MBP (mm Hg) 104.50 ± 8.40 88.55 ± 3.70** 102.90 ± 4.15#

HR (BPM) 215.10 ± 7.75 221.30 ± 9.85 232.50 ± 9.01

P-R Interval (ms) 53.43 ± 1.71 52.75 ± 1.55 55.83 ± 1.06

P Duration (ms) 23.53 ± 1.08 14.80 ± 0.78*** 19.42 ± 1.05*, #

QRS Interval (ms) 15.26 ± 0.87 20.27 ± 1.02** 19.10 ± 0.52*

QTc Interval (ms) 41.18 ± 2.22 62.50 ± 2.44*** 57.26 ± 3.65**

J-T Interval (ms) 22.40 ± 2.40 40.31 ± 2.90** 42.83 ± 2.70***

P Amplitude (mV) 1.62 ± 0.25 1.40 ± 0.25 1.70 ± 0.50

Q Amplitude (mV) -4.25 ± 0.72 -3.38 ± 0.90 -2.70 ± 0.30

R Amplitude (mV) 4.46 ± 0.50 4.67 ± 1.13 4.22 ± 0.51

S Amplitude (mV) -3.20 ± 0.90 -3.40 ± 0.96 -2.67 ± 0.22

ST Height (mV) -2.84 ± 0.80 -3.37 ± 0.80 -2.33 ± 0.40

T Amplitude (mV) 4.07 ± 1.27 2.24 ± 0.90 2.10 ± 0.58

Data are expressed as mean ± SEM, n=10.
*P<0.05, **P<0.01, and ***P<0.001 vs. the sham group. #P<0.05 vs. the 
BIR group. 
MBP, mean blood pressure; HR, heart rate; BPM, beat per minute; 
BIR, bilateral ischemia-reperfusion; RIPerC, remote ischemic per-
conditioning.

Bilateral renal ischemia (60 minutes) with 24 hours 
reperfusion led to a slight decline in P and T amplitude 
as well as ST depression in the BIR group compared 
to the sham group; however, the difference was not 
significant. RIPerC restored the P and T amplitude and ST 
depression to the basal voltage in the BIR+RIPerC group. 
No significant differences in Q, R, and S voltages were 
observed among the three experimental groups (Table 3).

ACE activity in the plasma and tissue
The activity of the ACE was measured in three types 
of samples (plasma, heart, and kidney) 24 hours after 
reperfusion. Our data showed that bilateral renal ischemia 
(60 minutes) stimulated the activity of ACE. Therefore, 
the activity of ACE in the kidney, as well as plasma and 
heart tissues, was significantly elevated in the BIR group 
compared to that in the sham group (in all three P<0.0001). 
Cyclic remote ischemia at the time of ischemia prevented 
the increase in the ACE activity seen after renal ischemia. 
For this reason, there was a significant difference in the 
ACE activity between the BIR+RIPerC and BIR groups in 
the plasma and heart (P<0.0001) as well as in the kidney 
tissue (P<0.001). However, the kidney ACE activity in 
the BIR+RIPerC group was higher than the sham group 
(P<0.01) (Fig. 1).

NO metabolites (nitrite and nitrate) in the renal and 
cardiac tissues
We measured the concentration of NO metabolites 
(nitrite and nitrate) in the kidney and heart tissues. Our 
data confirmed that NO production was induced after 
renal ischemia in the kidney as well as heart tissue. Thus, 
tissue NO2

– (nitrite) levels were elevated in the BIR group 
compared with the sham group (P<0.05). In addition, the 
kidney and heart NO3

– (nitrate) levels slightly increased 
after renal ischemia in the BIR group. While nitrite and 
nitrate content decreased in the BIR+RIPerC group, there 
was no significant difference between the mean values of 
NO2

– and NO3
– levels in the BIR and BIR+RIPerC groups 

(Table 4).

Fig. 1. Effect of limb remote ischemic per-conditioning on the activity of the angiotensin-converting enzyme (ACE) in the plasma (A), kidney tissue (B), and 
heart tissue (C). Data are expressed as mean ± SEM, n=10. **P<0.01 and ****P<0.0001 vs. the sham group. ###P<0.001 and ####P<0.0001 vs. the BIR group.
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NO metabolites (nitrite and nitrate) in the biological 
fluids
We also investigated the level of nitrite and nitrate in 
the biological fluids (plasma and urine) samples in the 
experimental groups as an index of NO synthesis. There 
was a significant increase in the plasma and urine nitrite 
and nitrate concentration in the BIR compared with the 
sham group (P<0.01 and P<0.05, respectively). Increased 
plasma and urine nitrite and nitrate levels induced by 
renal BIR were significantly decreased in BIR+RIPerC in 
comparison with the BIR group (P<0.0001 and P<0.001, 
respectively) (Fig. 2).

The mRNA levels of apelin, ACE2, and iNOS in the renal 
and heart tissues
After 24 hours of reperfusion, the apelin mRNA 
expression was downregulated in the renal tissue (Fig. 

3A), not the cardiac tissue (Fig. 3D) of the BIR group. 
However, the expression levels of ACE2 and iNOS in renal 
and myocardium tissues were significantly higher in the 
BIR groups than in the sham group (Fig. 3B-C and Fig. 
3E-F). Remote ischemic per-conditioning modulated 
the expression of these genes. The apelin expression 
was upregulated, and iNOS and ACE2 expression were 
downregulated in BIR+RIPerC compared to the BIR 
group in both studied tissues (Fig. 3A-F).

Renal and cardiac histopathological findings
Renal glomerular, tubular, and vascular damages in the 
experimental groups are shown in detail in Fig. 4. The 
normative appearance was found in the sham group (Fig. 
4A and 4D) in the cortex and medulla area. Compared 
with those in the sham group, the rats in the BIR group 
showed significant renal histopathologic changes, 

Table 4. Effect of remote ischemic per-conditioning on the concentration of NO metabolites (nitrite and nitrate) ‎in the kidney and heart tissues

Variables
Experimental groups

Sham BIR BIR+RIPerC

Kidney
NO2¯ level (µmol/L) 53.01 ± 6.79 76.43 ± 7.52* 72.96 ± 3.44

NO3¯ level (µmol/L) 2.04 ± 0.06 2.11 ± 0.11 1.91 ± 0.03

Heart
NO2¯ level (µmol/L) 43.14 ± 7.14 65.60 ± 4.61* 58.04 ± 3.99

NO3¯ level (µmol/L) 1.77 ± 0.08 1.90 ± 0.12 1.78 ± 0.02

Data are expressed as mean ± SEM, n=10.
*P<0.05 vs. the sham group.

Fig. 2. Effect of remote ischemic per-conditioning on NO metabolites (nitrite and nitrate) in the biological fluids (NO2
¯ and NO3

¯ levels in the plasma (A and B) 
and urine (C and D) samples, respectively). Data are expressed as mean ± SEM, n=10. *P<0.05 and **P<0.01 vs. the sham group. ###P<0.001 and ####P<0.0001 
vs. the BIR group. BIR, bilateral ischemic reperfusion; RIPerC, remote ischemic per-conditioning.
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including bowman space enlargement, epithelial tubular 
cells injury, acute tubular necrosis, intratubular cast, and 
vascular congestion (Fig. 4B and 4E). In the BIR+RIPerC 
group, minimal structural changes in the glomeruli and 
tubules were observed (Fig. 4C and 4F). Quantifiable 
results showed that the total histopathological score 
significantly increased in the BIR group and modulated in 
the BIR+RIPerC group (Fig. 4G).

Bilateral renal ischemic reperfusion-induced slight 
structural damage in the heart tissue. The appearance 
of the sham group did not show alterations. Myocardial 
tissue destruction was characterized by interstitial edema, 
minimum congestion, and leucocyte infiltration in the 
BIR group. The combination of renal ischemia with cyclic 
remote ischemia (femoral artery ischemia) attenuated the 
severity of lesions in the BIR+RIPerC group. The total 
histopathological score decreased in the BIR+RIPerC 
group (Fig. 5A-D).

Discussion
Renal ischemia/reperfusion-induced AKI is an outcome 
of various clinical situations, including transplantation, 
partial nephrectomy, sepsis, hydronephrosis, or elective 
urological surgery. Recent studies have demonstrated that 
cardiac failure is the most common complication after 
clinical and experimental AKI induced by renal ischemia/
reperfusion.10,30

The obtained results in this study demonstrated that 

renal ischemia induced cardiac functional disturbance 
and structural damage. In addition, we detected significant 
elevation in ACE activity, No metabolites, and mRNA 
levels of iNOS and ACE2 in the post-renal I/R (ischemic/
reperfusion) heart tissue. 

Renal I/R injury caused histological and functional 
alterations in renal and heart tissues.30-32 We also found 
that tissue damages were associated with high plasma 
levels of renal and cardiac injury biomarkers, such as 
BUN, Cr, LDH, and troponin I. 

Remote ischemic conditioning (RIC) is an adaptive 
phenomenon that causes tissue resistance to long-term 
ischemia or ischemia-reperfusion after one or more 
brief conditioning ischemia-reperfusion cycles.33,34 
The phenomenon of RIC was first reported by Murry 
et al.35 Some researchers separately showed renal 
and cardioprotective effects of remote ischemic per-
conditioning.36,37 To the best of our knowledge, no study has 
reported the mechanism involved in the protective effect 
of RIPerC on acute heart injury due to renal I/R injury. For 
the first time, we investigated the protective effects of this 
procedure on cardiac injury induced by renal I/R injury 
through interactive effects of apelin, RAS axis, and iNOS. 
In the first step of this research, we found that renal as 
well as heart dysfunctions improved when renal ischemia-
reperfusion was done along with remote ischemic per-
conditioning. The post-renal I/R myocardium injury 
improved with RIPerC. According to our previous study, 

Fig. 3. Effect of remote ischemic per-conditioning on the apelin (A and D), ACE2 (B and E), and iNOS (C and F) mRNA expression in the renal and heart 
tissues. Data are expressed as mean ± SEM, n=10. **P<0.01 and ****P<0.0001 vs. the sham group. ##P<0.01 and ####P<0.0001 vs. the BIR group. BIR, bilateral 
ischemic reperfusion; RIPerC, remote ischemic per-conditioning.
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histopathological findings demonstrated that remote 
ischemic per-conditioning significantly decreased 
epithelial tubular cell injury, tubular necrosis, intratubular 
cast, and vascular congestion.38

Moreover, other cardiac functional data indicated 
that RIPerC causes amelioration of ECG parameters, 
mean blood pressure, and heart rate. Prolonged QTc and 
QRS intervals in the BIR groups are similar to those of 
other studies on the cardiac effect of renal I/R injury.39,40 
These results and the rise in troponin I and LDH activity 
confirmed myocardial injury after renal I/R injury. 

However, the mechanisms involved in the cardiac injury 
induced by renal I/R are not completely understood. In 
the second part of the study, we set out to investigate 
the interactive effect of RAS, iNOS, and apelin in our 
experimental groups. Our result showed that apelin plays 
a critical role in post-renal I/R cardiac dysfunction. 

Various studies have indicated that endogenous apelin/
APJ receptor has potential therapeutic effects in kidney 
and cardiovascular diseases.17,41,42 Wang et al showed that 
apelin mRNA downregulated at 1-day post‐myocardial 
infarction (MI) in humans and murine. In addition, 

apelin-knockout mice were susceptible to MI after cardiac 
ischemia-reperfusion.43 Moreover, Gholampour et al 
showed that apelin expression increased after renal I/R 
injury.44 However, our result indicated that the expression 
level of the apelin gene decreased in the kidney, but not 
the heart, after renal I/R injury, whereas apelin mRNA 
upregulated in the heart and kidney of the BIR+RIPerC 
rats. 

During renal ischemia and re-oxygenation of the tissue, 
the parenchymal cells, including tubular epithelial cells 
and vascular endothelial cells, generate free radicals, 
which are reactive nitrogen species (RNS) or reactive 
oxygen species (ROS). ROS/RNS stimulates inducible 
isoforms of NOS, which causes about 1000-fold higher 
NO formation than eNOS.11,45

Our results were in line with those of Meng et al study 
that indicated mRNA levels of iNOS increased after 
renal I/R in the kidney sample.46 In addition, nitrate 
and nitrite concentration as an index of NO production 
increased in biological fluids (blood and urine). Previous 
studies have confirmed systemic redox imbalance and 
systemic inflammation after renal I/R.10,47,48 Therefore, in 

Fig. 4. Histopathological finding of the renal cortex and medulla at the end of 24 h reperfusion: sham group (A and D) showed normal appearance. Obvious 
tissue injuries were observed in the BIR group (B and E); a higher degree of Bowman space enlargement (blue arrow), loss of brush border in the proximal 
tubules (black arrow), cast formation (yellow arrow), and tubular necrosis (white arrow). Remote ischemic per-conditioning improved structural changes in 
the BIR+RIPerC group (C and F). The level of each manifestation was graded according to the changes involved, scoring 0 with no changes, 1 with less than 
20%, 2 with 20–40%, 3 with 40–60%, 4 with 60–80%, and 5 with greater than 80%. The sum of all numerical scores in each group was stated as the total 
histopathological score (G). H & E staining (magnification ×400) and data are expressed as mean ± SEM, ***P<0.01 vs. the sham group and ###P<0.001 vs. the 
BIR group. BIR, bilateral ischemic reperfusion; RIPerC, remote ischemic per-conditioning
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the current study, upregulation of cardiac iNOS mRNA 
may be related to response to these systemic conditions. 
Overexpression of cardiac iNOS was accompanied by 
increased nitrate and nitrite levels in the post-renal I/R 
myocardium. In two separate studies, Güvenç et al and 
Feng et al demonstrated the deleterious effect of NO 
derived from iNOS.49,50 On the other hand, in accordance 
with other studies, some cardiovascular protective 
effects of the apelin peptide depend on NO derived from 
eNOS.19,51 An et al reported that apelin overexpression 
increased the eNOS levels through diminishing iNOS 
levels during ischemia-reperfusion injury in diabetic 
myocardium.52 In the current study, we found decreased 
apelin expression along with increased iNOS expression 
in the tissue samples of the BIR group.

Interestingly, our result demonstrated that iNOS 
expression following NO production decreased when 
renal ischemic reperfusion was performed along with 
remote ischemic per-conditioning. Accordingly, nitrate 
and nitrite concentration declined in the kidney and heart 
tissues and biological fluids. 

In the third step, we measured different components of 
the cardiac and renal RAS in the experimental groups to 
evaluate the association between the RAS axis and apelin 
activity.

Renal I/R seems to change the balance of the RAS 
axis.3,53 This is supported by our data which showed that 
ACE activity markedly increased in the plasma as well as 
cardiac and renal tissues 24 h after reperfusion. Efrati et al 
demonstrated that captopril, as an ACE inhibitor, declined 
angiotensin-II production following the development 
of renal dysfunction at the early stage of reperfusion, 
differentially inhibited inflammation, significantly 
decreased intrarenal NO, and reduced histopathologic 
signs of renal damage after renal I/R.13 Interestingly, in our 
work, ACE2 mRNA was upregulated in both tissue samples 
in the BIR group. Whereas da Silveira Kátia et al detected 
that gene expression of ACE2 remained unchanged in the 
renal I/R2h group, it was significantly downregulated in 
the I/R4h group.54 The increased level of ACE2 mRNA in 
the heart and renal tissue may be a compensatory response 
to the local and systemic increase of the ACE activity in 
ischemic conditions, even though the elevation of the 
mRNA level of ACE2 could not suppress the deleterious 
effect of ACE activity in the ischemic condition. 

Clear evidence exists of antagonism between the apelin 
system and the RAS. Previous studies have confirmed 
that apelin is an endogenous and cardioprotective peptide 
that exhibits beneficial effects through the modulation of 
RAS axis components in the pathology of cardiovascular 

Fig. 5. Histopathological finding of the heart tissue at the end of 24 h reperfusion: sham group (A) showed a normal appearance. Obvious tissue changes were 
detected in the BIR group (B) with a higher degree of interstitial edema and congestion. Remote ischemic per-conditioning improved the structural changes 
in the BIR+RIPerC group (C). Muscle fiber (white arrow), central nucleus (black arrow), congestion (blue arrow), and interstitial edema (yellow arrow). The 
level of each manifestation was graded according to the changes involved, scoring 0 with no changes, 1 with less than 20%, 2 with 20–40%, 3 with 40–60%, 
4 with 60–80%, and 5 with greater than 80%. The sum of all numerical scores in each group was stated as the total histopathological score (D). H & E 
staining (magnification ×400) and data are expressed as mean ± SEM, ***P<0.01 vs. the sham group and ###P<0.001 vs. the BIR group. BIR, bilateral ischemic 
reperfusion; RIPerC, remote ischemic per-conditioning
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diseases.55 Apelin depletion progressed the myocardium 
dysfunction and structural remodeling through 
angiotensin II pathways.56 Our data clearly indicated that 
remote ischemic per-conditioning suppressed the cardiac 
ACE activity and ACE2 expression.

Conclusion
Remote ischemic per-conditioning is a potential 
phenomenon to promote endogenous protective pathways 
against renal I/R injury. The findings of the current 
study revealed that renal I/R induced kidney and heart 
structural and functional disturbance by a significant 
increase in injury biomarkers. Histological damages in the 
renal and heart tissues were in line with the increased ACE 
activity and NO metabolites in the tissues and biological 
samples. On the other hand, the level of apelin mRNA 
was downregulated, but iNOS and ACE2 genes were 
upregulated in the renal and heart tissues. In total, our 
results indicated that RIPerC protects the heart against 
renal I/R injury, probably through the interaction of the 
apelin with the RAS/iNOS pathway.
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