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Abstract
Introduction: Non-steroidal anti-
inflammatory drugs (NSAIDs) constitute 
an important class of  pharmaceuticals 
acting on cyclooxygenase COX-1 and 
COX-2 enzymes. Due to their  numerous 
severe side effects, it is necessary to 
search for new selective, safe, and 
effective  anti-inflammatory drugs. In 
silico design of novel therapeutics plays 
an important role in  nowadays drug 
discovery pipelines. In most cases, the 
design strategies require the use of 
 molecular docking calculations. The docking procedure may require case-specific condition  for 
a successful result. Additionally, many different docking programs are available, which  highlights 
the importance of identifying the most proper docking method and condition for a  given problem.  
Methods: In the current work, the performances of five popular molecular docking programs, 
 namely, GOLD, AutoDock, FlexX, Molegro Virtual Docker (MVD) and Glide to predict the 
binding mode of co- crystallized inhibitors in the structures of known complexes available for 
cyclooxygenases  were evaluated. Furthermore, the best performers, Glide, AutoDock, GOLD and 
FlexX, were  further evaluated in docking-based virtual screening of libraries consisted of active 
ligands  and decoy molecules for cyclooxygenase enzymes and the obtained docking scores were 
 assessed by receiver operating characteristics (ROC) analysis. 
Results: The results of docking experiments indicated that Glide program outperformed other 
 docking programs by correctly predicting the binding poses (RMSD less than 2 Å) of all  studied 
co-crystallized ligands of COX-1 and COX-2 enzymes (i.e., the performance was   100%). However, 
the performances of the other studied docking methods for correctly  predicting the binding poses 
of the ligands were between 59% to 82%. Virtual screening  results treated by ROC analysis revealed 
that all tested methods are useful tools for  classification and enrichment of molecules targeting 
COX enzymes. The obtained AUCs  range between 0.61-0.92 with enrichment factors of 8 – 40 
folds. 
Conclusion: The obtained results support the importance of choosing appropriate docking  method 
for predicting ligand-receptor binding modes, and provide specific information about  docking 
calculations on COXs ligands. 
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sampling algorithm and the scoring function.32 The goal 
of a sampling algorithm is to generate putative ligand 
orientations/conformations (usually called poses) at 
the binding site of a protein. Three main types of ligand 
sampling algorithms exist: shape matching, systematic 
search and stochastic algorithms.33 The objectives of scoring 
function are to evaluate and rank the poses generated in 
docking simulations. As the most important component 
of molecular docking, scoring functions have three major 
applications: binding mode identification, binding affinity 
prediction and virtual database screening.12

A suitable docking program should be able to reproduce 
the experimental binding modes of ligands. The root 
mean square deviation (RMSD) between corresponding 
atoms of docked pose of the ligand and its experimental 
binding mode is one of the widely used criteria for testing 
the quality of a docking calculation. The RMSD value less 
than 2 Å suggests proper docking outcome.34

Virtual screening (VS) is a powerful technique for 
identifying hit molecules from large chemical libraries. VS 
is divided into two broad categories, namely ligand-based 
(LBVS) and structure-based (SBVS) virtual screening 
methods. LBVS can be performed by similarity search, 
ligand-based pharmacophores and quantitative structure-
activity relationship (QSAR). On the other hand, SBVS 
can be done mainly through docking calculations.35

The receiver operating characteristics (ROC) curve 
with the calculation of the area under the curve (AUC) is 
a practical way of measuring the overall performance of 
diagnostic tests. In the case of testing docking algorithms, 
ROC curves can allow a direct comparison of different 
virtual screening workflows. In virtual drug screening, 
ROC curves are often used to visualize the efficiency of the 
used application to separate active ligands from inactive 
molecules. In general, the higher the AUC, the more 
effective the virtual screening workflow is in discriminating 
active compounds from inactive compounds. In this 
context, sensitivity (Se) is the percentage of truly active 
compounds being selected. On the other hand, specificity 
(Sp) is the percentage of truly inactive compounds that 
are discarded.36,37 Due to the importance of molecular 
docking in drug design and discovery, the current study 
aimed to evaluate a set of popular docking programs, 
namely GOLD, AutoDock, LeadIT (FlexX), Molegro 
Virtual Docker (MVD) and Glide, for their performance 
to correctly predict the poses of bound ligands to COX-
1 and COX-2 enzymes determined experimentally. In 
addition to this, AutoDock, GOLD, Glide and FlexX were 
evaluated by comparing their effectiveness in selecting 
active compounds from a database of decoys in virtual 
screening.

Materials and Methods
Data set collection and protein preparation
The crystal structures of cyclooxygenase-ligand complexes 
available in Protein Data Bank at RCSB (https://www.rcsb.

Introduction
Non-steroidal anti-inflammatory drugs (NSAIDs) exert 
their therapeutic effects by inhibiting cyclooxygenase 
(COX) enzymes and are among the most commonly 
used medications due to their wide range of uses.1-3 At 
least two COX isoforms, namely COX-1 and COX-2, are 
known, which share 60% sequence similarity.4 There is 
also another form called COX-3, which is a splice variant 
of COX-1.5

COX-1 is the constitutive integral membrane isoform 
found in the endoplasmic reticulum of most cell types, 
whereas COX-2 is primarily the inducible isoform.6 COX-
1 is responsible for the synthesis of prostaglandins such 
as PGE2 and PGI2, which play important cytoprotective 
effects on GI functions such as induction of bicarbonate 
secretion and reduction of gastric acid secretion. On 
the other hand, COX-2 is expressed in response to pro-
inflammatory cytokines like TNF-α, IL-1β, and IL-6. 
Classical NSAIDs inhibit both enzymes COX-1 and 
COX-2 and their use leads to gastrointestinal side effects. 
Therefore, the development of selective COX-2 inhibitors 
can significantly reduce these side effects.7

Introducing a new drug to the market is a complex and 
time-consuming process.8 There are numerous stages for 
this process, such as target identification and validation, 
lead compound identification, lead optimization, 
preclinical drug development, clinical trials and finally 
post-market monitoring for drug safety. The application 
of computer-aided drug design (CADD) is an essential 
approach for developing new drugs.9 Structure-based drug 
design (SBDD) and ligand-based drug design (LBDD) 
are two major types of CADD used in modern drug 
discovery.10 If the 3D structure of the target is available 
through experimental or prediction methods, SBDD 
approaches can reveal the binding modes of the ligands to 
their target.11 The most common methods used in SBDD 
are molecular docking, structure-based virtual screening 
(SBVS) and molecular dynamics (MD) simulations.12

Molecular docking is an in silico method that samples 
conformations of small molecules in protein binding 
sites.13 Molecular docking is a fast and efficient technique 
that predicts the binding mode and binding affinity 
between a ligand and a target at the atomic level.14

During the past decades, several docking programs 
have been developed within both academia and industry, 
such as DOCK,15 AutoDock,16 AutoDock Vina,17 GOLD,18 
Glide,19 FlexX,20 Surflex,21 Molegro Virtual Docker,22 
ICM,23 Cdocker, LigandFit,24 MOE-Dock,25 LeDock,26 
rDock,27 UCSF Dock,28 and many others.

It is evident that the systematic investigation of existing 
docking approaches would be helpful in selecting those 
algorithms and scoring functions that are optimal for a 
given molecular docking task. Moreover, many studies 
have recently compared the performance of numerous 
docking and screening techniques.29-31 

For a docking program, two basic components are the 
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org/) were downloaded. Rofecoxib (RCX molecule in 
structure 5KIR) was considered as the reference ligand. All 
complexes were superimposed onto 5KIR structure using 
DeepView software (Version 4.1.0). Those complexes with 
ligands that did not occupy the same site as with rofecoxib 
or did not have a drug like structure were excluded from 
the study. Finally, 51 complexes containing COX-1 and 
COX-2 enzymes were selected. The list of PDB identifier 
codes and crystallography resolutions of the structures 
are given in Table 1. The downloaded protein structures 
were edited with DeepView software to remove redundant 
chains, ligands, waters, cofactors and ions. Next, a heme 
molecule was added to those structures that do not have 
heme. Eventually, a single-chain protein was used as an 
input to the docking programs.

HyperChem (Version 8.0.6, Hypercube Inc.) was used 
to generate and energy minimize ligand structures using 
MM+ empirical force field38 followed by semi-empirical 
quantum mechanics PM3,39 which is a reparametrization 
of AM1 method, available in HyperChem. Open 
Babel software (version 3.1.1) was used for file format 
conversion.

Docking calculations
Docking with GOLD
To do the docking calculations, first Hermes (Version 
1.7.0, 2015) visualization interface to GOLD (Version 
5.3.0, 2014 Cambridge Crystallographic Data Centre) 
software was used for receptor preparation. The center of 
the active (binding) site was defined by selecting one of 
the central atoms of the co-crystallized ligand and then 
the active site was identified as a 10 Å radius sphere from 
that point. All atoms of the receptor within the sphere 
were considered active in the calculations. The ligand and 
reference ligand (co-crystallized ligand) were specified. 

All four scoring functions available for GOLD including 
ChemPLP, GoldScore, ChemScore and ASP were tested 
in separate runs. For each structure, 10 independent runs 
were carried out where the early termination option was 
turned on, and poses were ranked by scoring functions. 
The early termination option instructs GOLD to terminate 
docking runs on a given ligand if the top 3 solutions are 
within 1.5 Å. Also, for each scoring function, a docking 
run was performed without applying early termination 
option and top 10 scoring poses were saved for analysis.
Docking with AutoDock
AutoDock 4.2 was used for molecular docking. The 
protein structure was imported into the AutoDockTools 
(Version 1.5.7, Molecular Graphics Laboratory, The 
Scripps Research Institute) workspace and polar hydrogen 
atoms and Kollman charges were computed for the 
protein. The protein was saved in PDBQT format. For 
ligand preparation, Gasteiger partial charges were added 
and rotatable bonds were defined. Finally, the prepared 
ligands were saved in PDBQT format. A grid box was 
built with a spacing of 0.375 Å and size of 84 × 84 × 84 
grid points. The Lamarckian genetic algorithm was 
selected for the ligand conformational search. After the 
preparation of grid (.gpf) and docking (.dpf) parameter 
files, molecular docking was conducted using Cygwin 
as a Linux-like environment for windows. In the current 
study, the numbers of 10 and 50 GA runs were used. In 
the case of virtual screening experiments, AutoDock Vina 
algorithm was used by applying AutoDock 4 force field. 
The center of grid box (20 × 20 × 20 Å3) was defined based 
on coordinates of the active ligand provided for the target 
protein by the database (co-crystalized ligand extracted 
from the complex).
Docking with LeadIT platform (FlexX)
FlexX tool available in LeadIT platform (Version 2.1.8, 

Table 1. List of druglike ligands containing COX-1 and COX-2 structures

PDB code Resolution (Å) PDB code Resolution (Å) PDB code Resolution (Å)

1CQE 3.10 3N8W 2.75 4RRZ 2.57
1CX2 3.00 3N8Y 2.60 4RS0 2.81

1EQG 2.61 3N8Z 2.90 5F1A 2.38

1EQH 2.70 3NT1 1.73 5IKQ 2.41

1HT5 2.75 3NTG 2.19 5IKR 2.34

1HT8 2.69 3PGH 2.50 5IKT 2.45

1PGE 3.50 3Q7D 2.40 5IKV 2.51

1PGF 4.50 3QMO 3.00 5JVZ 2.62

1PGG 4.50 3RR3 2.84 5JW1 2.82

1PTH 3.40 4COX 2.90 5KIR 2.70

1PXX 2.90 4FM5 2.81 5U6X 2.93

1Q4G 2.00 4M11 2.45 5W58 2.27

2AYL 2.00 4O1Z 2.40 5WBE 2.75

3KK6 2.75 4OTY 2.35 6BL3 2.22

3LN0 2.20 4PH9 1.81 6BL4 2.22

3LN1 2.40 4RRW 2.57 6COX 2.80
3MQE 2.80 4RRX 2.78 6V3R 2.66

https://www.rcsb.org/
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2014, BioSolveIT, GmbH) was employed for docking 
investigation. Reference ligand was extracted from the 
PDB file of protein-ligand complex. Then it was converted 
to MOL2 format using Open Babel software. Single-chain 
protein was loaded into LeadIT and heme molecule 
and Fe atom were selected as the receptor components. 
Binding site was defined by selecting amino acids within 
10 Å radius of reference ligand. The default docking and 
scoring parameters remained unchanged.
Docking with MVD
Molecular docking by using Molegro Virtual Docker 
(MVD) software (Version 6.0, 2013, CLC Bio) was 
undertaken by introducing PDB files of protein and ligand 
into the workspace. Before initiation of docking operation, 
structure of protein and ligand were prepared. Using the 
detect cavity option, the possible binding pocket(s) on 
the protein were identified. Reference ligand was used 
for RMSD calculations. MVD default settings were used 
including MolDock score [GRID], a grid resolution of 0.30 
Å for grid generation, 10 Å radius from the template as 
the binding site and MolDock SE as the search algorithm. 
The number of runs was set to 10. After docking, energy 
minimization and optimization of hydrogen bonds for 
each pose was done.
Docking with Glide
Before performing docking calculations with Glide 
(Version 8.8, Schrodinger, 2021), protein and ligand 
structures were prepared using protein preparation and 
LigPrep wizards, respectively. The receptor grid was 
centered on the active site residues of the receptor. Glide 
docking was carried out in standard-precision (sp) mode. 
The OPLS3e force field was used in simulations and 
the settings were left to their default values. For virtual 
screening calculations, Virtual Screening Workflow 
(VSW) of Schrodinger software suite was applied using 
default parameters and GlideScore scoring function.
Evaluation criteria
Root-mean-square-deviation (RMSD) between the 
matching heavy atoms of the predicted pose and those of 
the crystal structure was used to assess ligand placement 
accuracy of docking calculation.

Virtual screening 
Virtual screening calculations were carried out using 
docking programs, GOLD, Glide, AutoDock Vina (using 
AutoDock 4 force field) and FlexX. The screening was 
based on two target proteins, namely COX-1 and COX-2. 
The Database of Useful Decoys-Enhanced (DUD-E) was 
used in the experiments.40 It includes, for each target, a 
PDB file and a set of active compounds and decoys with 
an average actives/decoys proportion of 2%.

Results and Discussion
NSAIDs are among the widely used pharmaceuticals 
prescribed as analgesic, antipyretic and anti-inflammatory 
agents.41 Worldwide sale of NSAIDs in 2019 was $US 15.58 

billion and it is expected to reach $US 24.35 billion by 2027 
with 5.8% annual growth rate. The increased prevalence 
of disorders such as rheumatoid arthritis, osteoarthritis, 
migraine, and other pain associated conditions is leading 
to increased consumption of NSAIDs.1 The intake of 
NSAIDs never been without side effects. Although the use 
of low doses of some NSAIDs may be regarded as safe, 
their standard doses are associated with the increased risk 
of cardiovascular and life-threatening gastrointestinal 
tract bleeding.42 Consequently, the need to develop new 
nonsteroidal anti-inflammatory drugs acting on COXs 
and even downstream targets such as prostaglandin E 
(PGE) receptors is being always felt necessary.43

The diversity of the expertise and cutting-edge 
technologies involved during a drug discovery and 
development project since the very beginning of the 
initial idea until the approval of a drug for a given 
condition makes it a very expensive and time-consuming 
process.44,45 Drug discovery and development projects 
usually start with the identification of lead compounds 
showing activity against an already identified suitable 
target followed by optimization of the lead compound 
mainly through medicinal chemistry activities. Then, after 
many years of research during the rest of the discovery 
stage, one or two promising drug candidates may enter 
clinical phases of the development stage. Eventually, if 
successful, the newly introduced pharmaceutical will be 
monitored during post marketing surveillance period. 
Many computational methods were developed particularly 
during last few decades to speed up drug design and 
discovery processes while reducing the cost and rate of 
failure. Nowadays, computational studies such as protein 
structure modeling, molecular mechanics calculations, 
molecular dynamics simulations, QSAR analyses, 
pharmacophore modeling, and molecular docking are 
extensively practiced at different steps of drug design 
and discovery pipeline including target identification 
and optimization, target structure prediction, virtual 
library generation and screening, lead identification 
and optimization and activity prediction.46-51 One of the 
widely used computational methods which is applied at 
different stages of drug discovery and development is 
molecular docking. Molecular docking is a computational 
method to predict binding conformation and orientation 
of a ligand (usually a small molecule) when interacts 
with its receptor (protein or DNA).52 It can be used 
to investigate mechanisms of drug binding to targets. 
Different molecular docking methods vary in terms of the 
size of ligand molecules (organic molecules, peptides, and 
proteins) they can handle,53 the algorithms they use for 
sampling the conformational space (search method) and 
the scoring function which is used to prioritize different 
poses sampled by the search method.54 Many docking 
algorithms from both academia and industry are available 
to scientific community and from time to time they are 
evaluated in terms of their performance.55-57 Different 
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methods may perform differently when dealing with 
different problems. Therefore, for more reliable results, 
it would be appropriate to identify the best performing 
method for a given molecular docking task. 

Reproducing experimentally known binding poses of 
COX inhibitors
In this study, we have evaluated the performances of 
five well respected docking software in predicting the 
experimentally known poses of 51 COX-1 and COX-2 
co-crystallized ligands. Table 2 summarizes the docking 
results for the studied protein-ligand complexes. 
The percentages of top-ranked solutions close to the 
corresponding experimentally determined structures 
with a range of defined RMSD values are reported in the 
table. According to the results, collectively, Glide docking 
method performed the best, while FlexX program 
accomplished the poorest results. GOLD docking method 
using GoldScore scoring function was the least successful 
pose predictor among the studied docking conditions 
when the RMSD cutoff criterion was set to ≤ 2 Å. Glide 
method predicted the conformations successfully for 94% 
and 100% of ligands with RMSD cutoffs of ≤ 1 Å and ≤ 
2 Å, respectively. Consequently, it can be considered the 
best performing docking algorithm when dealing with 
the prediction of binding poses of inhibitors of COX 
enzymes. The second-best performer was AutoDock (50 
runs), which were able to predict the conformations of 
the ligands with 49% and 82% success rates for ≤ 1 Å and 
≤ 2 Å RMSD cutoffs, respectively. One of the interesting 
aspects of the obtained data presented in Table 2 is the 
substantial improvement in the percentages of the correct 
predictions by all docking methods when the RMSD 
cutoff value was increased from ≤ 1 Å to ≤ 2 Å. The results 
indicated that by accepting RMSD cutoff value of ≤ 2 Å, 
as the criterion of correct prediction of ligands poses, on 
average more than 75% of the studied complexes were 
predicted correctly. At this level of accuracy, the minimum 

(59%) and maximum (100%) prediction efficiencies 
were achieved by GOLD (GoldScore) and Glide docking 
methods, respectively. Moreover, the results in Table 
2 shows that, all used docking methods, except Glide, 
predicted enzyme-bound conformation of some ligands 
very incorrectly (i.e., RMSD values > 4, 5, and 6 Å). This 
indicates that there are ligands which most of the docking 
schemes were not able to predict their bound poses at 
the acceptable level of accuracy. It is obvious that Glide 
successfully predicted correct conformation for all ligand-
enzyme complexes. And once again, the second-best 
performer, i.e., AutoDock (with 50 runs) was superior 
than the others with the least rates (excluding Glide) of 
failures. There are good reciprocal correlations between 
percentages of correct and incorrect pose predictions. The 
results presented in Table 2 are graphically illustrated in 
Fig. 1 for easy visual inspection.

As shown in Table 2 and Fig. 1, according to the success 
rates observed based on RMSD ≤ 2 Å for the top ranked 
poses, the order of performance of docking programs on 
51 COX-1/COX-2 enzyme-inhibitor complexes is Glide 
(100 %) ˃ AutoDock (50 Runs) (82.35 %) ˃ AutoDock 
(10 Runs) (80.39 %) ˃ GOLD (ChemPLP) (76.47 %) ≈ 
GOLD (ASP) (76.27 %) ˃ GOLD (ChemScore) (74.1 %) 
˃ MVD (70.58 %) ˃ LeadIT (FlexX) (60.78 %) ˃ GOLD 
(GoldScore) (59.01 %). It is worth mentioning that 
increasing the number of runs from 10 to 50 in AutoDock 
calculations has led to only a marginal improvement in 
docking performance. Therefore, one may take into 
account the trade-off between small gain in docking 
accuracy and speed of calculations.

In the case of GOLD docking algorithm, four different 
scoring functions were used to predict top 10 solutions 
for 51 enzyme-inhibitor complexes. Comparison of the 
results showed that at the accuracy level of RMSD ≤ 2 
Å, ChemPLP scoring function successfully predicted 
the experimental poses for 42 out of 51 inhibitors 
(0.82%). The RMSD of the first-rank solutions (i.e., the 

Table 2. Performance of docking programs on 51 protein-ligand complexes containing COX-1 and COX-2 enzymes with co-crystalized ligands in terms of 
percentages of docking solutions deviating from the experimental conformation of the ligands at different RMSD cutoff values

Docking method
RMSD

% ≤ 1 Å % ≤ 2 Å % > 4 Å % > 5 Å % > 6 Å

GOLD (ChemPLP)* 43.13 76.47 18.03 18.03 11.37

GOLD (GoldScore)* 27.45 59.01 21.17 17.45 10.19

GOLD (ChemScore)* 42.35 74.7 15.88 14.9 11.76

GOLD (ASP)* 35.09 76.27 15.68 15.68 14.5

AutoDock (10 Runs) 49.01 80.39 13.72 9.8 9.8

AutoDock (50 Runs) 49.01 82.35 9.8 7.84 7.84

LeadIT (FlexX) 19.6 60.78 29.41 29.41 23.52

MVD 39.21 70.58 23.52 19.6 15.68

Glide 94.12 100 0 0 0

*Figures for GOLD algorithm using different scoring functions are the average of 10 separate runs with early termination option turned on.
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highest scoring pose) compared to their corresponding 
experimental solutions for 6 inhibitors were greater 
than 2 Å, and in the mean time for these inhibitors the 
closest solutions were also greater than 2 Å. (In some 
cases, the first rank solution is also the closest solution 
to the reference pose.) For instance, the top scoring 
pose obtained by GOLD (ChemPLP) docking method 
for ligand FF8 deviated 3.99 Å from its enzyme bound 
position solved by X-ray crystallography (PDB structure 
5W58). In this case, the top scoring solution is also the 
closest solution to the experimental pose. These 6 cases 
are called “general failures”. Likewise, for the remaining 3 
inhibitors, GOLD was not successful in predicting good 
solutions for their enzyme bound poses. In fact, in each of 
latter 3 cases, GOLD was able to find a pose with RMSD 
≤ 2 Å, but ChemPLP scoring function failed to rank that 

as the best solution, and instead a wrong solution with 
high RMSD relative to the reference pose (experimental 
data) was scored the best. This type of misprediction is 
termed “ranking failure”. This failure can be represented 
by the top scoring pose obtained by ChemPLP function in 
GOLD docking for ligand P6A in structure 5U6X, which 
showed a RMSD of 10.29 Å relative to its experimentally 
obtained pose. However, the closest pose among 10 
generated solutions had a very small RMSD of 1.56 
Å. The results of this analysis for ChemPLP and other 
scoring functions available in GOLD are shown in Fig. 
2, where the RMSD of the closest observed solution is 
plotted against the RMSD of top ranked solution. Simply, 
in “General failures” no solutions with RMSD ≤ 2.0 Å 
were observed, whereas in “ranking failures” solutions 
that could have been considered successes were generated 
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but not correctly ranked. As is clear from the plots in Fig. 
2, ChemPLP scoring function outperforms other three 
functions available in GOLD docking algorithm, with 
highest success rate and less likelihood of failures.

The results of docking calculations were inspected by 
dividing them into two groups based on COX-1 and COX-
2 isoforms. The performance of studied docking methods 
on 18 COX1-inhibitor complexes and 32 COX2-inhibitor 
complexes are illustrated in Fig. 3 and reported in detail in 
Tables S1 and S2 of Supplementary file 1. As shown in Fig. 
3, all studied docking methods (except Glide) predicted 
poses of COX1 inhibitors with marginally higher success 
rate than that of COX2 inhibitors.

Screening of chemical structures for identifying COX 
inhibitors by docking methods 
In order to further compare the usefulness of the 
docking methods in design and discovery of novel anti-
inflammatory agents, some of the studied methods 
namely, GOLD (ChemPLP), Glide, AutoDock Vina (using 

AutoDock 4 force field) and FlexX were evaluated for 
their ability in identifying COX1/COX2 active ligands 
from decoy structures using docking-based virtual 
screening analyses. From different scoring functions 
available in GOLD program, ChemPLP was used for 
screening experiments due to its better performance in 
predicting experimentally solved COX1/COX2-inhibitor 
complexes. Table 3 shows the results of ROC analyses 
for the docking screening calculations. Commonly, the 
area under the curve (AUC) is used as the measure of the 
capability of a binary classifier to differentiate between 
classes in ROC analysis, where the higher AUC indicates 
a better performance for the model in correctly assigning 
the membership to classes. The AUC values in this study 
range between 0.6115 to 0.9275 obtained for ROC analyses 
of docking-based screening and classification calculations 
shown for GOLD on COX1 dataset and Glide on COX2 
dataset, respectively. According to the AUC values found 
in this work, all studied docking methods performed 
better on COX2 dataset than the COX1 dataset, which 

Fig. 3. Comparison of the performances of different docking methods on 18 COX1- inhibitor complexes and 32 COX2-inhibitor complexes presented in terms 
of percentages of  docking solutions at RMSD cutoff level of ≤ 2 Å. 

 

0

20

40

60

80

100

120

Su
cc

es
s R

ta
e

Docking Programs

COX-1

COX-2

Table 3. Statistics of ROC analyses on the results of docking screening calculations using different docking methods

Enzyme
Statistics

AUC Std. error 95% CI P value

Docking 
method

Glide

COX1 0.7041 0.01426 0.6762 to 0.7321 <0.0001
COX2 0.9275 0.007629 0.9126 to 0.9425 <0.0001

Combined 0.8055 0.007556 0.7907 to 0.8203 <0.0001

GOLD

COX1 0.6115 0.01834 0.5755 to 0.6474 <0.0001

COX2 0.8576 0.01032 0.8374 to 0.8778 <0.0001

Combined 0.7609 0.01058 0.7402 to 0.7817 <0.0001

AutoDock

COX1 0.8978 0.04347 0.8127 to 0.9830 <0.0001

COX2 0.9050 0.008964 0.8875 to 0.9226 <0.0001

Combined 0.8926 0.009512 0.8740 to 0.9112 <0.0001

FlexX
COX1 0.6747 0.02004 0.6354 to 0.7139 <0.0001

COX2 0.7698 0.01247 0.7454 to 0.7943 <0.0001
Combined 0.7379 0.01079 0.7168 to 0.7591 <0.0001
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means that, in general, the docking methods score active 
ligands higher than the corresponding decoys and they 
do this with better performance for COX2 ligands. The 
best discrimination of active ligands over decoys was 
obtained for Glide method on COX2 dataset with AUC 
value of 0.9275. However, AutoDock gave the best results 
for COX1 dataset (i.e., AUC value of 0.8978). Once again, 
AutoDock outperforms the others considering combined 
COX1 and COX2 datasets.

Fig. 4 shows the illustrative representation of the 
results for ROC analyses performed on docking scores 
obtained for docking screening (i.e., results for docking 
library of COX1 and COX2 active ligands and matching 
decoy structures into the binding site of COX1 and 
COX2 enzymes, respectively) by Glide software as the 
representative (See Fig. S1 for ROC curves and the 
corresponding statistical analyses for all used docking 
methods).

Close investigation of the results presented so far 
provides interesting information regarding the application 
of docking calculation on ligands targeting COX enzymes. 
Glide and AutoDock performed better in reproducing the 
binding pose of COX ligands with structurally known 
ligand-enzyme complexes (higher percentages of docking 
solutions within the given RMSD cutoffs shown in Table 
2) and also these two methods have led to better AUC 
values in ROC analyses. The agreement between the 
two different docking performance assessment strategies 
used in this study is more pronounced when dealing with 
COX2 dataset. The correlations between AUC values and 
the percentages of docking solutions within the given 
RMSD cutoffs for COX2 dataset using Glide, GOLD, 
AutoDock and FlexX are very high as shown in Fig. 5. 

The correlations are even higher (R2 close to unity) for the 
combined data excluding AutoDock. However, for COX1 
dataset no such correlation was observed.

Another point which can be deduced from the results 
is that the studied software performed marginally better 
in reproducing the experimental poses of co-crystalized 
COX2 ligands compared to the co-crystalized COX1 
ligands for the structurally solved complexes. In contrast, 
in large scale docking-based screening calculations the 
opposite was the case, and ranking COX2 dataset was 
more precise than that for COX1 dataset. This may be due 
to the relatively bigger size of COX2 active ligands/decoys 
dataset and may allude to the fact that one may use docking 
screening with more confidence for the identification of 
COX2 ligands. Enrichment factor is a reliable criterion 
to assess the performance of a classification method. In 
this regard the enrichment factors (EFs) were calculated 
for large-scale docking experiments on COX1 and COX2 
active ligands/decoys datasets (Table S3). It is noteworthy 
to mention that EFs for 0.1% of top-ranking structures 
(ligands and decoys) for different docking methods (Glide, 
GOLD, AutoDock and FlexX) range between 8 and 40 
determined for GOLD on COX1 and AutoDock on COX1 
datasets respectively. This means that all studied docking 
protocols are able to efficiently enrich the active ligands 
among top-scoring structures. The estimated EFs (at the 
level of 0.1% top-ranking scores) for COX1 dataset are 
40, 29, 19 and 8 for AutoDock, FlexX, Glide and GOLD, 
respectively. For COX2 dataset, EFs are 31, 23, 20 and 12 
for AutoDock, GOLD, Glide and FlexX. 

Conclusion
Based on the results obtained in this study, one may 

Fig. 4. The results of ROC analyses on docking scores for COX1 and COX2 active ligands  and decoys obtained by Glide docking method. The plots show 
AUC curves for COX1, COX2,  and combined COX1 and COX2 date sets. The statistics for ROC analyses are given in bottom  right hand panel. 
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conclude that in the case of COX enzymes, which are the 
prime targets for NSAIDs and are involved in different 
conditions such as inflammation, arthritis, cardiovascular 
diseases and cancer. Glide docking method outperformed 
other methods by successfully predicting the binding 
poses for all structurally known ligand-COX complexes. 
For large scale docking studies for the identification of 
COX active ligands all studied docking methods showed 
certain degrees of success. For example, Glide performed 
the best based on the ROC analysis of the scores for 
docking active ligand/decoy structures on COX2 enzyme, 
while AutoDock was the best on COX1 dataset and 
combined COX1 and COX2 datasets. All tested methods 
were able to enrich active ligands at 0.1% of top-scoring 
structures, however, AutoDock exhibited the highest 
performance in this regard as well. In general, the results 
obtained in this study reinforce the notion that docking 
methods are valuable tools in predicting ligand-receptor 
binding modes, and provide specific information about 
docking in ligand-COX enzyme systems. However, they 
do not substitute experiments and all docking methods 
have their specific limitations which should be realized by 
users to better appreciate the strengths and weaknesses of 
each approach.

What is the current knowledge?
√ Docking protocols are valuable means of predicting 3D 
structures of ligand-target  complexes. 
√ Docking protocols perform differently on different ligand-
target systems. 

What is new here?
√ Glide docking method performed the best on predicting 
binding poses of ligands on  COX enzymes. 
√ Glide and AutoDock showed better performances for 
ranking ligands (actives and  decoys) targeting COX2 and 
COX1 enzymes, respectively. 
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