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Introduction
Pancreatic ductal adenocarcinoma (PDAC) stands out as 
a highly malignant form of human cancer, exhibiting an 
escalating incidence. The current therapeutic approach for 
PDAC involves a combination of surgery, chemotherapy, 
and radiation therapy in select cases, achieving long-
term survival only for a minority of patients.1 The dense 
desmoplastic stroma, distinguished by an overabundance 
of fibroblasts, extracellular matrix, and immune cells, 
is a defining feature of PDAC. This stromal milieu 
plays a pivotal role in disease progression and therapy 
response and is a distinctive PDAC feature. The complex 
interaction among tumor cells and diverse stromal 

components along multiple signaling pathways governs 
the tumor microenvironment's (TME) development.2 
The significance of this interaction underscores the 
necessity for a suitable in vitro technique that accurately 
recapitulates the complexity of pancreatic TME cells, 
thereby advancing our understanding of pancreatic 
cancer development and facilitating the discovery of 
effective treatments. Conventional two-dimensional cell 
cultures, while valuable, need to catch up in capturing 
the intricate multicellular interactions within the TME 
that drive PDAC progression in vivo. Challenges persist 
despite the deployment of animal models in preclinical 
trials to address these limitations. For instance, the 
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Abstract
Pancreatic ductal adenocarcinoma 
(PDAC) stands as the fourth leading 
cause of cancer-related deaths, 
primarily attributable to its resistance 
to chemotherapy, resulting in a nearly 
universal fatality rate. Despite the 
promise exhibited by numerous drugs 
in preclinical studies, their subsequent 
failure in clinical trials underscores the 
inherent limitations of conventional 
two-dimensional cell culture models 
commonly employed in early drug 
screening endeavors. The inadequacies 
of two-dimensional (2D) models 
prompted the exploration of three-
dimensional (3D) culture systems, which 
more faithfully recapitulate the native tumor microenvironment. These 3D systems have distinct 
advantages over 2D models in morphology, proliferation, drug response, and protein expression. 
Among these 3D platforms, tumor organoids and spheroids, generated through different 
methodologies, have emerged as next-generation models that closely mirror aspects of pancreatic 
tumor biology. This comprehensive review scrutinizes pancreatic cancer spheroids' techniques, 
tissue sources, and applications, offering a nuanced analysis of their advantages and limitations. 
By comparing these distinct 3D culture systems, researchers gain valuable insights to inform 
the selection of optimal model designs aligned with their specific experimental objectives. The 
utilization of these advanced models holds significant promise for enhancing the clinical relevance 
of both in vitro and in vivo cancer research, thereby contributing to the development of improved 
therapeutics against pancreatic cancer.
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extended duration and engraftment issues associated with 
drug examination on animal models can impede timely 
research outcomes.3

Recently, there has been much interest in three-
dimensional (3D) cell models since they can accurately 
mimic the characteristics of tumors in living organisms. 
This makes them a valuable tool that fills the gap between 
standard two-dimensional (2D) cell culture methods, and 
in vivo models.4 3D cell cultures facilitate cell-to-cell and 
cell-to-matrix interactions, mirroring the physiological 
conditions experienced by cells in vivo. This approach has 
gained prominence as one of the most favored methods in 
drug development.

Moreover, employing human cells in 3D culture models 
can reduce reliance on alternative models, such as mouse 
models, which are often associated with high costs and 
may not precisely depict therapeutic efficacy and drug 
adverse effects.5,6 Various 3D models for cell culture have 
emerged, including organoids, spheroids, organ-on-a-
chip, 3D scaffolds, hydrogels, 3D bioprinting, tumor 
microenvironment models, tumor organoids, and tumor 
spheres (Table 1).

To develop more effective treatments for PDAC, it is 
essential to use research models that accurately recreate 
the native tumor microenvironment and heterogeneity. 
This review summarizes the latest strides in utilizing 3D 
spheroid models derived from PDAC tissues for disease 
modeling, drug development, and personalized medicine 
applications. Our synthesis encompasses critical studies 
showcasing the capabilities of these models in faithfully 
reproducing tumor heterogeneity, microenvironment 
interactions, and therapeutic responses. Furthermore, we 
address the challenges inherent in these next-generation 
culture systems and outline future directions to enhance 

their clinical translatability.

Spheroid 
Sutherland and colleagues pioneered the concept 
of spheroids in the early 1970s. Since then, various 
models and creation methods have been developed.18 
The formation of spheroids involves spontaneous cell 
aggregation followed by cell surface integrin binding 
to the extracellular matrix (ECM). As cells upregulate 
E-cadherin, accumulating on the cell surface, intercellular 
E-cadherin interactions lead to the compact structure 
characteristic of spheroids. Growth factors, oxygen, 
and nourishment are a few variables that impact this 
process.19,20

Distinct cell lines contribute to the variability in 
the structure and morphology of spheroids based on 
their cellular sources.21 Additionally, the morphology 
of spheroids is impacted by the technique used and 
the primary cell origin.21,22 For instance, Luka et al. 
demonstrated that metastatic cell lines of colon cancer, 
when cultured in a laminin-rich extracellular matrix 
(IrECM), formed grape-like spheroids. In contrast, colon 
cancer cells derived from primary tumor tissue exhibited 
a round morphology.23 In addition, 25 breast cancer cell 
lines were further categorized by Kenni and colleagues 
into four types of 3D spheroids: circular, mass, stellate, 
and grape-like.24 Each spheroid type presents specific 
characteristics, such as weak cell-cell interactions and an 
aggressive phenotype for round, grape-like, and stellate 
spheroids.25-27

There are several known approaches to spheroid 
creation, with several of these approaches having been 
fine-tuned for controlled mass manufacturing.28-30 There 
are different sources for producing spheroids, with three 

Table 1. Various 3D cell culturing approaches and applications

Model Key Features Modeled Preparation method References

Spheroid
- Cell-cell interactions
- Nutrient/oxygen gradient
- Avascular tumor mimic

- Hanging drop
- Spinner flask
- Non-adhesive surfaces

7

Organoids - Tissue complexity
- Organ physiology

- Matrigel
- Collagen
- Laminin

8

Organ-on-chip - Mimic organ physiology 
- TME - Microfluidic devices 9

3D scaffolds - ECM-like support - Collagen
- Matrigel

10, 11

Hydrogels - Nutrient diffusion - Crosslinked hydrophilic polymers 12, 13

3D Bioprinting - 3D constructs
- Spatial control - Computer-controlled deposition 14

Tumor Microenvironment Models - In vivo ecology
- Stromal cell interactions

- Co-cultures with stroma, immune cells, 
vasculature

15

Tumor Organoids - Intra-tumor heterogeneity
- Patient-specific profiles - Patient-derived 3D models 16

Tumor Spheres - Drug screening
- Cancer stem cell enrichment - Anchorage-independent spheroids 17

ECM: extra cellular matrix.
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common models:
1. Multicellular spheroids from tumor cell lines, 
2. Oncospheres representing cancer stem cell (CSCs) 

growth, 
3. Mechanical and enzymatic tumor tissue dissociation 

produces organotypic multicellular spheres.31,32 
The biological and pathologic properties of the tumor 

cell line are significantly influenced by the types of cell 
lines used, originating from pancreatic cancer, donor 
patients, and the region of derivation. These factors 
should be carefully considered when designing in vitro 
investigations. Numerous studies have explored spheroid 
construction with varying degrees of success and 
inconclusive outcomes. 

Challenges and limitations
Tumor spheroids, such as multicellular tumor spheroids 
(MCTSs), are becoming more commonly utilized as 
3D models in vitro for pharmacological investigations, 
notably in the field of cancer research. 3D cell cultures 
provide a more accurate depiction of the tumor 
environment in living organisms, as opposed to 
conventional 2D cell cultures. This makes them highly 
useful for many applications like as drug screening, drug 
design, drug targeting, drug toxicity assessment, and 
validation of drug delivery techniques.33 Nevertheless, 
despite the benefits they offer, the use of tumor spheroids 
in pharmaceutical research is accompanied by many 
obstacles and restrictions.
Reproducibility and standardization
The lack of consistency in their manufacturing is one 
of the key obstacles to employing tumor spheroids. 
Both scaffold-based and scaffold-free techniques have 
been developed for the production of MCTSs. Cell 
requirements and the relevant biological inquiry often 
dictate the approach taken.34 This heterogeneity might 
cause changes in the characteristics of the spheroids 
formed, which affects the repeatability of results across 
multiple experiments.
Size and testing performance
The effectiveness of tumor spheroids in testing can also be 
influenced by their size. An inadequate supply of nutrients 
and oxygen, for instance, might cause bigger spheroids 
to develop a necrotic core, which in turn can impact 
the efficacy of anti-cancer medications. Furthermore, 
spheroids of different sizes might affect drug penetration 
and distribution, which can provide misleading findings.35

Complexity of TME
Tumor spheroids are more closely related to the in vivo 
tumor environment than 2D cultures, although they do 
not entirely recreate the complexity of the TME. For 
example, most spheroids are formed up of tumor cells 
alone and do not comprise other critical components of the 
tumor microenvironment, such as fibroblasts, adipocytes, 
and immune cells.33 Because interactions between tumor 

cells and various other cell types can greatly impact the 
effectiveness of medication delivery and the therapeutic 
value of therapy, this restriction can impact the accuracy 
of drug testing findings.33

Data analysis
Data generated by research examining cancer cell 
metabolism and cell cycle abnormalities using tumor 
spheroids can be enormous, necessitating sophisticated 
methods for comprehensive analysis.34

Spheroid of pancreatic cancer cell lines 
This section discusses several studies on spheroid 
generation derived from pancreatic cancer cell lines. 
While most PDAC cell lines could form spheroids, 
Sipos et al noted that MiaPaCa-2 "totally failed to 
develop as spheroids" because it disaggregated after 
harvesting.36 In 2013, Yeon et al. documented the 
creation of tumor spheroids (TS) using human 
pancreatic cancer cells (Aspc-1, PANC-1, Capan-2) 
in concave polydimethylsiloxane (PDMS) microwell 
plates. They evaluated their appropriateness as a model 
for testing the effectiveness of anticancer treatments. TS 
formation was observed in the three mentioned cell lines, 
exhibiting varying necrosis within the spheroids. PANC-
1 spheroids, with a spherical shape, rough surface, and 
distinctive adhesion structures, were effectively formed 
on concave microwell plates without noticeable necrosis. 
Drug resistance-associated compounds, including MT1-
MMP, TGF-b1, CTGF, collagen type I, laminin, and 
fibronectin, were detected in PANC-1 spheroids grown 
in concave microwells. TGF-b1, CTGF, and MT1-MMP 
are crucial molecules in pancreatic cancer associated with 
poor prognosis and therapy resistance.37 The study also 
demonstrated the necessity of epidermal growth factor 
(EGF) for the 3D culture of Capan-2 cells. In contrast, the 
monolayer culture of these cells did not require EGF. This 
dependence may be attributed to EGF's significant role in 
pancreatic cancer development and its overexpression in 
pancreatic cancer.38

In contrast to earlier findings by Sipos et al and Wen et al, 
another study established a 3D spheroid-based cultivation 
method for pancreatic cancer cell lines, specifically 
MiaPaCa-2 and PANC-1, to conduct pharmacological 
testing. Their models exhibited reproducibility and ease 
of manipulation, indicating that 3D cell culture has the 
potential to serve as an intermediary between 2D cell 
cultures and in vivo models in the medication research 
and evaluation method for pancreatic cancer.39 Ware et 
al successfully generated spheroids by combining two 
established techniques: the hanging drop method and 
using methyl cellulose (MC) in the media. This method 
enhanced the compactness of the spheroids while 
preventing their separation into smaller components. 
Five pancreatic cancer cell lines—PANC-1, MiaPaCa-2, 
Capan-1, BxPC-3, and Aspc1—could be effectively 
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transformed into spheroids.40

Various cell lines exhibit distinct spheroidal features, 
likely attributed to differences in their inherent cellular 
characteristics. For instance, BxPC-3 and Capan-1 
displayed similar shapes and developmental patterns, 
generating densely packed spheroids that were one-third 
to one-half the size of those formed by AsPc-1, PANC-
1, and MIA-PaCa-2.40 Conversely, AsPc-1, PANC-
1, MIA-PaCa-2 spheroids, and BxPc-3 and Capan-1 
spheroids demonstrated a comparable phenotype.41 
Despite the importance of the MIA-PaCa-2 cell line in 
pancreatic cancer studies, generating and maintaining 
homogenous and stable MIA-PaCa-2 spheroids has 
proven challenging. Researchers, including Cavo and 
colleagues, have explored various methods to overcome 
these challenges, such as round-bottom wells, hanging 
drop, and Matrigel embedding, in the presence and 
absence of methylcellulose in multiple mediums. Based on 
their results, a hydrophobic base with a methylcellulose-
enriched medium may produce MIA-PaCa-2 spheroids.42 
Genomic research also suggests that the shape and size 
of spheroids may reflect distinct genetic states in the 
cells that produce them.42 While studies demonstrate 
the feasibility of generating spheroids from different cell 
lines, there is no standardized procedure, and researchers 
are focused on refining existing methods. 3D spheroids 
have been the subject of much research due to their 
promise as a model for screening anticancer drugs. For 
example, Longati et al, pancreatic cancer spheroids such 
as AsPC-1, BxPC-3, Capan-1, and PANC-1 are superior 
to 2D-cultured versions of these cells when it comes to 
drug testing due to their chemo-resistant phenotype and 
matrix-rich composition.43 

Additional studies have explored nanoparticle 

permeation in 3D multicellular spheroid models of 
pancreatic cancers, investigating factors such as size, 
surface charge, PEG decorating, and other physicochemical 
features.44 Researchers have also generated spheroids from 
pancreatic tumor stroma cells, particularly pancreatic 
stellate cells, to study drug efficacy, given their role in 
PDAC progression and drug resistance.45 Improved 
spheroid homogeneity and stability and more accurate 
assessment of drug responses are anticipated outcomes of 
future research that uses more suitable cell line models, 
such as primary cells with established mutation pathways.

Cultivating pancreatic cancer cell lines into spheroids, 
three-dimensional cell clusters suitable for diverse 
analyses like live cell staining and imaging, is a valuable 
approach. Nevertheless, creating and manipulating 
stable and robust spheroids from pancreatic cancer cell 
lines, including the challenging MIA-PaCa-2, poses a 
significant challenge.46 Several methods and models have 
been developed to address this issue (Fig. 1).

Liquid overlay technique (LOT)
This method primarily relies on non-adhesive sheets 
covered by poly 2-hydroxyethyl methacrylate (poly-
HEMA),22,47-49 agar, or agarose.50,51 These materials prevent 
cells from adhering to the plate, prompting them to adhere 
to each other and form spheroids.52,53 Plates covered 
with agar or agarose or low-adhesive surfaces create cell 
suspensions. Cells aggregate more efficiently when the 
plate is continuously shaken on a shaker. Liquid overlay 
is a straightforward and widely used method, applicable 
even in 96-well plates. The real-time observation of 
spheroid formation is a notable advantage. However, it 
is necessary to have more influence over the dimension 
and form of the produced spheroids when using the 

Fig. 1. Techniques for generating pancreatic cancer spheroids. A) Liquid Overlay Technique: Cells are seeded onto plates coated to prevent adhesion and 
then aggregate into spheroids. Agitation prevents spheroid fusion; B) Magnetic Bioprinting: Spheroids containing magnetized cells are printed using bioinks; 
C) Hanging Drop Method: Cells aggregate into spheroids by suspending drops containing cells from an inverted plate. Spheroid size can be controlled by 
cell number per drop; D) Semi-Solid System: Cells are cultured in ultra-low attachment plates with methylcellulose and growth factors to promote spheroid 
formation; and E) Microfluidic Devices: Microfluidic systems enable controlled spheroid formation through automated processing steps.
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liquid overlay approach, which is a challenge.54 Table 2 
summarizes the LOT method's pros and drawbacks.

By tailoring culture substrates to individual researchers' 
needs, scientists have more leeway regarding experiment 
design and budget. Commercial low-adherence culture 
ware, on the other hand, provides an efficient and easy-
to-use alternative. Many different kinds of cells, including 
cancer cells, may be effectively transformed into spheroids 
using these commercially accessible techniques,63 dental 
papilla cells,64 mesenchymal stem cells (MSCs),65 and a 
mixture of heterogeneous cell types.66 Notable products 
in the market include UpCellTM, NunclonTM, NuncTM, 
SpheraTM, Corning Ultra-Low Attachment surfaces, 
Lipidure® -COAT, CELLSTAR®, and Nanocluster.

A pancreatic cancer spheroid model was created 
using human pancreatic cancer cell lines MIAPaCa-2 
and PANC-1 to assess the effects of chemotherapeutic 
treatments using the LOT approach. Cells at passage >20 
were detached from the bottom of the dish using 0.05% 
trypsin. Using agarose-coated 96-well culture plates (50 
mL 1.5% agarose per well), spheroids were started in a 
liquid overlay by seeding 1.2×103 MIAPaCa-2 cells and 
1.0×103 PANC-1 cells per well in 200 mL of media. Except 
for a 72-hour drug treatment setup detailed in the drug 
treatment section, after an initiating period of 4 days, 50% 
of the supernatant was changed with the new medium. 
This process was repeated every 48 hours after that. 
Spheroid cell viability was evaluated using a modified 

acid phosphatase (APH) test. The study examined the 
effectiveness of gemcitabine and 5-FU in MIAPaCa-2 and 
PANC-1 spheroid and monolayer cultures, respectively. 
The results indicated that the efficacy of chemotherapy 
drugs in spheroid culture is lower than in monolayer 
culture for these two cell lines. This suggests that the size 
and volume of the spheroid, a good simulator of the actual 
tumor sample in the body, may hinder the proper signaling 
of drugs.67 To investigate cellular interactions at the 
molecular and cellular level, spheroids can be generated 
using soft agar. Spheroids made from cell lines MCF-7, 
BxPC-3, Capan-2, Panc-1, MIA PaCa-2, and Capan-1 
showed that the microenvironment of 3D cultured cells is 
more acidic than that of 2D cells, attributed to increased 
phosphorylation of Tyr421 and elevated expression of 
cortactin. This acidity can lead to better stimulation of 
pro-metastasis migration of tumor cells.68 

Hanging drop method
This method is a straightforward technique for forming 
spheroids without requiring specialized facilities. 
This method leverages the surface tension of cellular 
suspensions to optimize spheroid formation by 
intensifying cell-cell interactions by including various 
biological factors in minimal amounts.69,70 The hanging 
drop technique involves seeding tissue culture plates 
with a predetermined number of cells in the shape 
of tiny drops. Spheroids quickly develop after a 180° 

Table 2. Advantages and disadvantages of coating material used in the LOT method

Material Advantage Disadvantage Ref.

Agar

• Straightforward, low-cost, and relatively simple to handle
• Post-processing directly in the plates is very advantageous in 

high-throughput experiments.
• Inexpensive
• Dissolve in water and serum-free media.
• Enables optical microscopy monitoring of spheroid 

development by allowing single cells to spontaneously self-
assemble.

• Preventing the loss of MCTS as a result of the MCTS being 
accidentally removed from the system.

• Used to test a specific number of cancer 
medicines.

• Dissolved in a high temperature
• Agar can affect cell growth and other qualities 

when coated plates are stored for only a few 
days.

• In a drug assay, there are no repeatable results.
• Heterogeneous spheroids are labor-intensive 

and time-consuming to mass-produce.

53, 55-57

Agarose

• Simple to perform and can be sterilized using an autoclave 
or UV light.

• Inexpensive
• Allows for accurate MCTS size adjustment and large-scale 

MCTS generation
• Allows for optical microscopy monitoring of spheroid 

formation.
• Allow for spontaneous self-assembly of single cells.
• Scalability
• The process results in the formation of irregular 3D cellular 

aggregates of varying sizes and forms. 
• Preventing the loss of MCTS as a result of the medium being 

accidentally removed with it.

• Dissolve in a hot environment.
• Coated plates are only good for a few days and 

cannot be reused. They are used for short-term 
cultures and have a wide size distribution.

• Unreliable drug assay results; labor-intensive 
and time-consuming; difficult to mass-produce

• Heterogeneous spheroids Some cell lines have 
a hard time producing spheroids.

58,59

Poly

(2-hydroxyethyl 
methacrylate) 
(pHEMA)

• Performed simple and relatively easy handling very useful in 
high-throughput experiments direct post processing in plates

• Storing the coat plate and solution at 4 oC for several months 
to prevent the loss of MCTS due to unintended removal of the 
MCTS and medium.

• High expense; long-term cultivation 
problematic; 95 percent ethanol preparation

• Coated plates must be stored for several months 
and are labor-intensive and time-consuming to 
mass-produce.

• Heterogeneous spheroids Some cell lines have 
a hard time producing spheroids.

60-62
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rotation in a humid atmosphere when cells gather at the 
drop's tip—the interface between the liquid and air—
caused by gravity.69,71 While praised for its simplicity 
and compatibility with high-throughput screening, 
tracking spheroid formation and directly assessing drug 
perturbations can be challenging.72

One notable advantage of the hanging drop method is 
the concurrent culture of two or more cell lines, enabling 
cell-matrix interactions and cell-cell investigation. 
Wound healing, tumor cell interactions with stroma in 
aggressiveness and cancer, fetal development, and tissue 
engineering all rely on these interactions.73 However, 
limitations such as a restricted suspension volume and 
inadequate nutrients pose challenges for long-term 
culture. Consequently, spheroids formed using this 
method often need to be transferred to other plates, 
affecting their integrity and time-consuming.74,75  

As mentioned previously, in 2016, Ware et al41 used five 
human PDAC cell lines—BxPC-3, PANC-1, Capan-1, 
AsPc-1, and MIA-PaCa-2—to create a spheroid model 
enriched with human pancreatic stellate cells. Adding 
pancreatic stellate cells enhances the simulation of the 
dense microenvironment characteristic of pancreatic 
tumors. This team used a hybrid approach, combining 
the hanging drop method with methyl cellulose as a 
medium component. The findings revealed notable 
differences between spheroids grown with pancreatic 
stellate cells and those formed with only PDAC cell 
lines. Spheroids cultivated with pancreatic stellate cells 
exhibited increased density, compactness, and more 
collagen than those produced using PDAC cell lines alone. 
Beyond similarities in collagen content, spheroids that 
incorporated pancreatic stellate cells closely resembled 
orthotopic tumors regarding the expression of KI67 and 
HIF-1α.41

Magnetic bioprinting
Another innovative approach for maintaining cell 
cohesion until spheroid formation involves using 
magnetic force. Magnetic 3D bioprinting enables the 
magnetization of cells with biocompatible nanoparticles, 
which are subsequently printed onto multi-well forms. 
Once nearby, these magnetized cells aggregate to form 
a spheroid, which can be harvested for subsequent 
biophysical and biochemical studies. In a study by Noel 
et al, NanoShuttle, comprising iron oxide, poly-L-lysine, 
and gold nanoparticles, was employed. The Patu8902 cell 
line was labeled with NanoShuttle, which electrostatically 
binds to the plasma membrane and is spontaneously 
released after approximately one week. The specific 
membrane receptor involved in this binding has yet to 
be discovered. Notably, using meager magnetic forces 
(30 pN) ensures sufficient force for cell accumulation 
without compromising cell survival, metabolism, or 
proliferation.76

Semi-solid system 
The production of non-specific cell aggregations results 
from the mobility of individual cells, which is one of 
the constraints of spheroid formation.77 The semi-solid 
culture method addresses this issue by incorporating 
methylcellulose into the spheroid culture medium, thereby 
limiting the excessive mobility of cells. In this approach, 
cells are seeded in ultra-low attachment plates, and the 
culture medium is supplemented with methylcellulose and 
growth factors. After 11 days, spheroids are formed. Yang 
et al successfully generated spheroids from the PANC-
1 cell line using this method. These spheroids exhibited 
enhanced proliferation, differentiation, migration, 
and invasion properties compared to conventional 2D 
cultures.78 

Patterned surfaces and microfluidic devices
In 1970, microfluidics emerged as a versatile technology 
with applications across various industries, including 
cell isolation,79 biological and diagnostic sensors,80 
pharmacological experiments,81 DNA extraction,82 and 
the formation of spheroids. Microfluidic chips consist 
of inlets and outlets connected by microchannels or 
chambers within a bulk material. The microchannel 
network directs, mixes, or splits liquid fluid to achieve 
specific applications used in biomedical and chemical 
settings, including microreactors, fluid mixers, cell 
culture, and sorting of cells and particles.83 

The gas permeability, cheap cost, and ease of use of 
PDMS make it a popular material for microfluidic system 
fabrication.84-86 PDMS's transparency enables direct 
fluorescent imaging of proteins and cells.87-92 However, 
challenges such as evaporation of cell culture medium 
over time due to gas permeability, time-consuming 
system development, and repeatability issues have 
been associated with PDMS microfluidic systems.93,94 
Microfluidic systems have been fabricated using plastic 
and glass materials to address these challenges.91 

Recent advancements in 3D printing technology 
have provided solutions for spheroid formation using 
microfluidics. In this technique, cells grow in layers 
through automated systems. Polyjet, stereolithography, 
and extrusion-based printing are three 3D printing 
techniques applicable to microfluidics.92,95,96 These 
techniques can produce systems with channels that 
facilitate cell-cell interaction, mimicking in vivo 
conditions.92,97 Additionally, chips,69,98-101 and biosensors98 
have been designed to produce spheroids. In these 
techniques, cells are trapped on a bed of ECM, including 
fibronectin and collagen.102 The accumulation of spheroids 
can be quantified by being placed between two electrodes, 
proving valuable in assessing the efficacy of medications.103 
The materials used for these structures typically include 
silicon, glass, or plastic, with transparent materials 
enabling fluorescent microscopy investigations.102 
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Moreover, recent approaches involve using columns 
coated with Matrigel, poly-L-lysine, and barium chloride 
for spheroid culturing. This method includes suspending 
cells in 1% alginate, collagen, and Matrigel. The column 
is then introduced into the culture medium using the 
hanging drop method, ultimately resulting in spheroid 
formation at the tip of the column. This technique proves 
effective in assessing medication efficacy, as these columns 
can be placed in a medium or a 96-well plate containing 
the drug.104,105

Integrating pancreatic stellate cells and pancreatic 
tumor spheroids in a 3D collagen matrix is the goal of the 
microchannel plate-based co-culture paradigm put out 
by Lee and colleagues. By recreating chemoresistance and 
the epithelial-mesenchymal transition (EMT), this model 
attempts to mimic the in vivo TME. Findings indicated that 
PANC-1 cells when co-cultured with pancreatic stellate 
cells, doubled the number of spheroids and generated 
3D tumor spheroids after five days. By cultivating 
pancreatic stellate cells in close quarters with cancer cells 
in a 3D collagen matrix, they were able to show that the 
two cell types interact to enhance EMT and medication 
resistance in the microchannel plate. One promising 
approach to studying EMT and treatment resistance 
therapeutically relevantly is the microfluidic co-culture of 
pancreatic stellate cells and pancreatic tumor spheroids.106 
Additionally, there have been reports of spheroid models 
that exhibit enhanced biological complexity. These 
models involve the co-culturing of 3D cancer cells with 
one or more kinds of cells from the PDAC TME. This is 
a significant improvement compared to monocultures, as 
interactions between cells in the TME might impact the 
course of the illness and the effectiveness of treatment.107 
See Table 3 for a comparison of different methods for 
pancreatic-derived spheroid formation.

Patient-derived spheroid
Tumor-derived spheroids are created by isolating single-
cell suspensions from tumor tissues using mechanical or 
enzymatic methods, followed by serum or serum-free 
medium cultivation. Various cancers, including brain,108 
breast,109 lung,110 colon,111 prostate,112 pancreatic,113 and 
ovarian cancers, have been successfully used to generate 
tumor-derived spheroids.114 Enriching cancer stem cells is 
achieved by cultivating tumor cells with stem cell traits in 
a serum-free medium rich in various growth factors like 
progesterone, hydrocortisone, and insulin. This process 
promotes tumor cell proliferation while excluding non-
malignant and differentiated cells. As a result, a critical 
feature of tumor-derived spheroids is the concentration 
of cancer stem cells.

Tumors are either partially physically or enzymatically 
dissociated into 0.3 mm pieces for use in ex vivo explant 
cultures, followed by cultivation in agar-covered plates 
with a serum-containing medium comparable to 

organotypic multicellular tumor spheroids.115 Although 
tumor spheroids are among the most fundamental 3D 
cell culture models, their attractiveness lies in their ability 
to closely mimic solid tumors' characteristics in various 
ways. Importantly, they interact with other cells and the 
ECM. Moreover, when grown beyond 500 µm, spheroids 
resemble non-vascularized or minimally vascularized 
tumors, displaying metabolic gradients. There are three 
distinct layers to the structure: one with cells that are 
actively dividing, one with cells that are resting, and 
finally, one with cells that are hypoxic and necroses.85 
Similar to human cancers, these unique characteristics 
of tumor spheroids make them resistant to radiation and 
anti-cancer therapy. Consequently, tumor spheroids are 
extensively utilized in drug screening investigations.116

3D tumor sphere models can be divided into four 
distinct groups based on their culture methods and 
sphere biology: organotypic multicellular spheres (OMS), 
multicellular tumor spheroids (MCTS), tissue-derived 
tumor spheres (TDTS), and tumorspheres (Fig. 2).117 
1. MCTS: These spheroids comprise tumor cells co-

cultured with stromal cells such as immune cells, 
endothelial cells, and fibroblasts, which can be 
mono- or heterotypic cell populations. Cell culture in 
non-adherent media can produce MCTS.118 

2. Tumorspheres: Also known as cancer stem cell 
spheres, this method isolates and propagates CSCs 
from tumor tissues or cancer cell lines.119

3. TDTS: This model is created by partially dissolving 
tumor tissue using enzymes or mechanical means. 
This process separates cancer cells from non-tumor 
cells while keeping cancer cells in touch with each 
other. The OMS model differ from this approach, 
which involves cutting primary tumor tissues.120

4. OMS: Primary tumor tissues are sliced to obtain 
OMS models. When compared to MCTS and 
tumorspheres, TDTS and OMS models do a better 
job of simulating tumor development and gene 
expression patterns. But by including stromal cells, 
the OMS model adds another layer of intricacy.120 
OMS has great promise for personalized medicine 
since it is the best 3D model for evaluating a tumor's 
therapeutic response to treatment.150

Applications of different 3D models 
As previously mentioned, many approaches are used 
to create three-dimensional spheroids. In this section, 
various 3D models have been applied to studying 
pancreatic cancer. According to the literature, each of 
these models has distinct uses. Spheroids find applications 
in preclinical domains, gene expression evaluation, and 
protein investigation. 3D tumor models generated by 
spherical microplates mimic the in vivo conditions of 
the microenvironment, allowing spheroids to grow as 
monocellular entities or in conjunction with other cells 
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in the microenvironment. This model offers a better 
opportunity for predicting the effectiveness of cancer 
medications. The MCTS model in pancreatic cancer is 
employed for investigating hypoxia markers,40 different 
miRNA expression,37 protein levels,37-122 and drug 
responses.37,123-125

In co-culture methods, various behaviors of 
pancreatic cancer cells, including aggression126, 127, 
immigration,128 proliferation,129 signaling pathways,130 
and drug resistance,129,131 can be investigated. Device-
based 3D models, such as biosensors and chips, are 
utilized in pancreatic cancer to evaluate hypoxia,132 

Table 3. Different methods of pancreatic-derived spheroid formation 

Cell line Advantage Disadvantage Ref.

Pellet culture
Capan-2
PDAC1, PDAC2, PDAC3, 
PDAC5

• Evaluation the spatio-
temporal dynamics effect of 
chemotherapeutics

• The difference in the size of the 
spheroids was less than 10%. 

• Requiring large numbers of cells to 
produce structures of sufficient size

108-111

LOT

MIAPaCa2
PANC-1
BxPC-3
Capan-1 Capan-2 Panc-
1 MCF-7

• Easy handling
• Cost-effective
• The real-time formation can be 

followed

• Coating the surface can be time 
consuming

67,68,112-116

Hanging drop AsPc-1, PANC-1, BxPC-
3 MIA-PaCa2, Capan-1, 

• Easy handling
• Uniform spheroid in size and 

shape

• Changing media is not possible
• Low throughput

75-78,117,118

Magnetic bio 
printing Patu8902 • Rapid and simple

• High cost
• Metal nanoparticles may interfere 

the therapeutic method which is 
testing by spheroid

79

Semi-solid system PANC-1 • Limitation of extra mobility of 
cells

• Low-throughput
• Coating the surface can be time 

consuming

119

Patterned Surfaces 
and Microfluidic 
Devices

PANC-1
• Easy handling
• User friendly
• Low-cost

• Low-throughput
82,84,89,91,92,97,100,103, 

107,120

Fig. 2. In vitro 3D tumor sphere models for cancer research. From left to right: MCTS, spheroids of only tumor cells like cancer cell lines, useful for studying 
inherent behaviors like invasion, proliferation, and drug response. Tumorspheres, generated by isolating and amplifying cancer stem cells from tumor tissues 
or cancer cell lines. TDTS, created by partially dissociating tumor tissue enzymatically or mechanically to separate cancer cells from non-tumor cells while 
maintaining cancer cell connections. OMS, organotypic multicellular spheroids derived from patient tumor samples, representing a personalized model for 
assessing therapeutic response.
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pharmacological responses,106,134 and expression markers 
and factors.106 Recreating the in vivo environment 
has led to tumor spheroids or tumoroids gaining 
prominence.135,136 Recently, novel platforms have 
been developed as combinations that do not require 
microfluidics for fabricating spheroids.137-141 For example, 
microcells made by micro-molding or photolithography 
techniques can produce spheroids of specific sizes 
and compositions.69,137,142 Furthermore, platforms with 
weak attachment surfaces were designed utilizing non-
adhesive materials, such as PDMS143-145 or agarose.146,147 
These platforms allowed the formation of spheroids in a 
controlled and simple environment. A small sample size, 
incompatible culture media, and the inability to retrieve 
any samples are all potential limitations of this method. 
However, these models are highly effective in medical 
screening and are simple.71,141,142,148,149

An essential part of the TME in pancreatic cancer is the 
presence of pancreatic stellate cells, which are involved 
developing treatment resistance and the advancing the 
disease. Lee et al designed a culture model based on 
microchannels for producing spheroids with pancreatic 
stellate cells in a 3D collagen matrix, allowing the 
examination of epithelial-mesenchymal transfer and drug 
resistance. They designed microchannels using collagen 
so spheroids could grow with pancreatic stellate cells in a 
3D pattern. An advantageous paradigm for therapeutically 
testing EMT and treatment resistance was suggested, 
which involves collaborating pancreatic tumor stellate 
cells with pancreatic tumor spheroid microfluidics.106

 On the other hand, the initiation of pancreatitis and 
pancreatic cancer follows different patterns. Acinar cells 
of the exocrine pancreas are positioned beneath the 
ductal cells and reconstruct the 3D structure of pancreatic 
tissue. However, the molecular mechanism of 3D 
structure formation still needs to be better understood. 
Therefore, Hakobyan et al designed a spheroid 3D model 
of pancreatic cancer using laser-assisted bioprinting. This 
model could be applied to determine the phenotypic 
evolution of cancer cells over time through visual analysis 
of phenotypic features.150 

Moreover, Monteiro et al devised a platform for 
evaluating drug resistance in 3D culture, employing 
classified spheroid models that mimic stromal cells. 
These models exhibit repeatable morphology and feature 
molecular biomarkers such as TGF, FGF-2, IL-1, and 
MMP9—essential elements secreted in the stratified 
microenvironment spheroid (STAMS) 3D models of 
human pancreatic cancer. By incorporating STAMS 
into an ECM-mimetic hydrogel matrix, this model 
reflects increased therapeutic resistance and mimics the 
architectural characteristics of PDAC stroma in vitro.151

Bio-fabrication of 3D spheroid models
Understanding the biological behavior of tissues, 

organs, and tumors holds significant promise for disease 
treatment in the medical field.152,153 A major obstacle 
for tissue engineering is producing organs that mimic 
healthy and diseased tissues with a dense population of 
live cells.154,155 Most engineered tissues to date have been 
relatively thin (< 2 mm) to facilitate oxygen and nutrient 
transfer, and remove cell debris.154

3D printing has emerged as a groundbreaking 
technology in tissue generation within medicine. Stents 
and splints are only two medical gadgets significantly 
benefiting from this technique.156 In 3D bioprinting, the 
precise arrangement of layers consisting of biological, 
chemical-biological, and living cells is utilized to construct 
3D structures by controlling the positioning of functional 
components. The resulting material from this technique, 
which incorporates cells, is called bioink. Despite their 
differences, all bioprinters can print cell masses, cells 
encased in hydrogel or other viscous fluids, and cells 
housed in microcarriers.157,158 Bioprinters encompass 
laser-assisted devices, extrusion devices, and printers 
resembling inkjet technology (Fig. 3).

In extrusion-based deposition, syringe-like instruments 
with polymeric or hydrogel characteristics are employed 
to fabricate 3D structures, typically guided by pneumatic 
pressure or computer-controlled mechanical pistons.159 
As a drop-by-drop method, inkjet printing generates the 
3D structure by combining hydrogel and cell-friendly 
biomaterials in drops.160,161 The laser-induced forward 
transfer (LIFT) technique involves cells forming a 3D 
structure as drops using a laser.162-164 According to the 
recent classification by Moroni et al., bio-fabrication is 
categorized as 3D bioprinting.165 3D bioprinting in bio-
fabrication enables the creation of 3D cancer models 
by printing live cells and "bio-ink" ECM together. This 
process allows for accurate manipulation of the position 
and development of primary cells. This may lead to a 
suitable tissue structure.166-168 In this method, bio-ink 
consists of cells surrounded by a matrix printed in a 
specific pattern. Consequently, cells self-organize, and 
3D cell growth occurs. Different types of hydrogels, both 
natural and manufactured, including Matrigel, fibrin, 
collagen, PEG, alginate, and gelatin methacrylate, can be 
utilized in 3D bioprinting for to investigate cell function 
and activity.169-173 

Recently, HeLa cells have been 3D bio-printed in a 
hydrogel, creating a cervical cancer model.173 The cells 
within the 3D tumor bio-print demonstrate elevated 
growth rates, a heightened inclination to create spheroids, 
enhanced matrix metalloproteinase expression, and 
superior resistance to chemical challenges compared to 
cells cultured in a 2D culture. These results mirror in vivo 
responses, making this model suitable for assessing the 
efficacy of medications. The 3D human cancer model is 
a valuable tool for investigating the behavior of healthy 
and diseased cells, and for medication screening.174,175 
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However, this technique has some limitations, such as the 
time-consuming nature of cellular assembly, taking weeks 
or days. Additionally, these models lack the capacity for 
the simultaneous culture of two or three cell types.166,172,176 

Concluding remarks
Pancreatic cancer continues to be one of the most lethal 
forms of cancer, often associated with a grim prognosis. 
Conventional 2D cell cultures have been widely employed 
in fundamental research and drug development; however, 
their ability to accurately predict the efficacy of novel 
treatments is constrained. More clinically relevant cell 
models are urgently needed to improve the success of 
drug development and provide deeper biological insights. 
Diverse in vivo and in vitro models have been established 
for pancreatic cancer. Unlike 2D monolayer cultures, 
3D culture systems better mimic tumors' architecture 
and physiological activity through enhanced cell-cell 
and cell-matrix interactions. Current 3D approaches 
include multicellular spheroids, organoids, co-cultures, 
and microfluidic systems. Spheroid models demonstrate 
greater chemoresistance and expression of tumor 
microenvironment components compared to 2D cultures. 
While technical challenges of scale and reproducibility 
have limited spheroid generation, new technologies are 
emerging to enable large-scale, standardized spheroid 
production critical for downstream applications.

Both spheroids and organoids offer advantages over 
2D models by recreating physiologically relevant tissue 
and tumor conditions. These 3D culture systems more 
faithfully reconstruct the in vivo microenvironment, 
providing higher predictive value for testing therapeutic 

strategies. While organoids emphasize recapitulating 
native tissue organization and heterogeneity, spheroids 
focus on tumor cell proliferation and drug responses. The 
optimal 3D model depends on specific research questions 
and goals. In the future, interconnected spheroid and 
organoid models could provide insight into human 
tissue interactions in vitro. 3D culture will continue to 
have tremendous potential to advance pancreatic cancer 
research and therapy development.
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