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Introduction
Multiple sclerosis (MS) is characterized by demyelination 
of the central nervous system (CNS).1 Although, various 
environmental and genetic factors are involved in MS 
onset, the role of Epstein-Barr Virus (EBV) infection is 
approved as an environmental causal agent triggering the 
disease.2,3 Approximately 2.5 million people worldwide 
are affected by this disease, which causes substantial 
neurological disabilities in young adults.1 It has been shown 
that infiltration of immune cells from the periphery into 
the CNS results in localized inflammation, demyelination, 
and axonal damage. Clinical manifestations of MS include 
cognitive deficits, sensory abnormalities, paralysis, and 
ocular symptoms that correlate with relapse and remission 

of the disease. However, the symptoms vary depending on 
the affected area within the CNS. The disorder manifests 
in four distinct phenotypes based on its progression 
and course: relapsing-remitting MS (RRMS), secondary 
progressive MS (SPMS), primary progressive MS (PPMS), 
and progressive-remitting MS (PRMS).4,5 

Researchers are currently focused on two paradigms, 
the "outside-in" and "inside-out" to explore the basic 
etiology and pathophysiological theory of MS. Each 
paradigm is studied by distinct experimental animal 
models. The "outside-in" model suggests that MS 
originates from peripherally-induced inflammatory 
and autoimmune attacks targeting damaged myelin. 
Conversely, the "inside-out" theory proposes that primary 
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Abstract
Introduction: Multiple sclerosis (MS) is 
a chronic neuroinflammatory diseases 
characterized by demyelination of the 
nerve fibers. Immunogenic cell death 
(ICD) is a process, during which damaged 
and stressed cells release danger-associated 
molecular patterns (DAMPs) activating 
immune responses. This study aimed to 
elucidate the induction of ICD in MS 
diseases. 
Methods: To achieve this goal, the 
level of DAMPs including Annexin A1 (ANXA1), calreticulin and HMGB1 was measured in 
the cerebrospinal fluid (CSF) of a secondary progressive multiple sclerosis (SPMS) patient in 
comparison to control group.  
Results: Results showed significant upregulation (more than two-fold) of ANXA1, calreticulin 
(CRT) and HMGB1 in the CSF of the patient. 
Conclusion: Although further studies are suggested in this regard, this data could imply induction 
of ICD in MS. The proposed ICD might trigger immune response against neural cells resulting in 
neuroinflammation and demyelination in CNS in MS. Our observation could suggest inclusion of 
ICD interfering treatments in routine MS therapy.
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cell degeneration, particularly in oligodendrocytes (OLs) 
within the CNS, elicits subsequent reactive inflammatory/
autoimmune reactions against myelin fragments.6-9 In 
this regard, a concept involving a cell death model and 
a positive feedback loop driven by damage-associated 
molecular patterns (DAMPs) has been proposed for 
chronic inflammatory demyelination. This paradigm 
aims to align with the "inside-out" theory of MS. 

Immunogenic cell death (ICD) is a process by which dying 
cells release danger signals that can activate both innate 
and adaptive immune responses. ICD occurs in response 
to infection following the release of pathogen-associated 
molecular patterns (PAMPs) and also happens in a sterile 
environment next to the release of danger-associated 
molecular patterns (DAMPs). DAMPs are endogenous 
molecules considered as danger signals capable of eliciting 
the innate and adaptive immune responses, thereby 
enhancing overt autoimmune disorders. Therefore, ICD is 
considered not only as a defense against infection, but also 
a mechanism for clearing damaged and stressed cells.10-13 
ICD is a subset of regulated cell death (RCD) triggering 
immune responses.11,13 Various types of cell death such 
as apoptosis, pyroptosis, autophagy-dependent cell 
death, necroptosis and ferroptosis have been identified 
as significant contributors to the development of 
neuroinflammatory and neurodegenerative disorders in 
the CNS.14 Environmental factors such as EBV infections, 
smoking  and UVR involved in 70% of all autoimmune 
diseases have been shown to promote forms of cell death 
leading to the induction of DAMPs.13,15 One instance 
involves microglia activation triggered by DAMPs like 
extracellular ATP, which have been observed to intensify 
neuroinflammation in conditions like Alzheimer's 
disease.16,17 Additionally, it is shown that heat shock 
protein 70 (HSP70) is upregulated in MS.18 It is shown 
that high mobility group box 1 (HMGB1) released 
from astrocytes promotes experimental autoimmune 
encephalomyelitis (EAE) onset, and increases the disease 
score and demyelination.19 Compelling evidence suggests 
that oxidative stress  results in the release of specific 

DAMPs, such as calreticulin (CRT), and cell death leading 
to neurodegeneration in MS.20,21 To date, there have been 
no direct reports regarding ICD induction in the CNS of 
individuals diagnosed with MS.

We hypothesized there are various reasons for the 
incidence of ICD in MS, including EBV infection. EBV 
infection is approved as a main causal agent of MS.3 Taking 
into account the elevated levels of EBV miRNAs found in 
the CSF exosomes of RRMS patients, implying variation 
in the virus activity in RRMS22,23 and considering that 
infection could trigger ICD,10 in the present case study we 
aimed to answer this question: Does ICD happen in MS 
patients? In order to answer the question, we measured 
the level of DAMPs, including CRT, ANXA1 and HMGB1 
in the cerebrospinal fluid (CSF) of the SPMS patient 
compared to the control group.

Materials and Methods 
Participants and human ethics 
All participants underwent examination at Razi Hospital 
in 2023. The secondary progressive multiple sclerosis 
(SPMS) patient met the McDonald’s criteria24 and the 
diagnosis was fulfilled in agreement with the recent 
diagnostic criteria. While the clinical differentiation 
between RRMS and progressive forms remains 
challenging, the revised “Lublin Criteria were used to 
distinguish these phenotypes.25 The case study consisted 
a total of four individuals: one with SPMS, and three with 
idiopathic intracranial hypertension (IIH), who served 
as the control group. The patient was 52-year-old female 
which was diagnosed as SPMS. Her Expanded Disability 
Status Scale  (EDSS) was 8. This patient had been 
administered   2 vials Zytax for 6 months and Captopril 
25 bid.  The relevant clinical details and demographic 
information of the participants are presented in Table 1. 
The current study was approved by the ethics committee of 
Tabriz University of Medical Sciences with IR.TBZMED.
REC.1402.348 number. Written informed consent was 
obtained from the SPMS patient. The IIH samples were 
collected from the hospital, where the IIH patients were 

Table 1. List of the participants enrolled in this study (n = 4) 

Num Gender Age Inclusion criteria Disease EDS* Treatment and dosing Start of 
treatment

I F 26 Headache, Nausea, 
Vomiting, Diplopia IIH - Acetazolamide 250 mg tds, 

Topiramate 50 bid, Baclophen 10 bid 2023

II F 46 Headache, Nausea, 
Vomiting, Diplopia IIH - Acetazolamide 250 bid, Propranolol 

10 bid 2023

III F 42 Headache, Nausea, 
Vomiting, Diplopia IIH -

Acetazolamide 250 tid,
Topiramate 50 bid,
Acetaminophen 500 tid, prn (if 
required)

2019

IV F 52
Quadriplegia Lower limbs 
1/5
Upper limbs 4/5

SPMS 8 Zytax 6 months 2 vials, Captopril 25 
bid 2015

EDSS: Expanded Disability Status Scale; F: female; IIH: idiopathic intracranial hypertension; SPMS: secondary progressive MS; tds: three times per 
day; bid: two times per day, prn: as needed.

https://www.netmeds.com/prescriptions/zytax-80mg-injection
https://www.netmeds.com/prescriptions/zytax-80mg-injection
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lumber punctured as a routine treatment.

CSF preparation
CSF samples were collected from IIH individuals and 
SPMS patient without the need for additional LP. In other 
words, the remaining CSF samples were collected from 
the hospital and used in this study. The patient and the 
healthy control groups were matched in terms of sex and 
ethnicity.

Determination of the expression level DAMPs 
An enzyme-linked immunosorbent assay (ELISA) 
was used to determine the expression levels of DAMP 
molecules, namely CRT, ANXA1 and HMGB1. 

Human ANXA1 commercial ELISA Kit (Elabscience; 
E-EL-H5512) was used to determine the level of ANXA1. 
HMGB1 levels were determined using commercial 
Novus ELISA kit (cat. No. NBP2-62766). CRT levels 
were analyzed using Cusabio ELISA kit (Cat. No. CSB-
E09787h). 

CSF samples were obtained from all participants by 
non-traumatic lumbar puncture and stored at -80 °C 
until being used. Before the experiments, CSF samples 
were centrifuged for 10 minutes at 1500 rpm to separate 
the cells, and then the kits were used according to 
Manufacturer protocol. 

To analyze HMGB1, ANXA1 and CRT levels in the 
samples, the micro-ELISA plate pre-coated with an 
antibody specific to HMGB-1, ANXA1 and CRT were 
employed. Following addition of the samples in the wells 
the wells were washed, then, biotin-conjugated antibody 
against the markers were pipetted into the corresponding 
wells. After washing the plates, streptavidin-HRP 
conjugate solution was added to the wells, and proceeded 
by washing, addition of the substrate to the wells. Finally, 
intensity of the developed color was measured. The 
measured optical density (OD) was proportional to the 
markers amount in the initial step. The concentration of 
the markers in CFS samples was calculated by comparing 
the OD of the samples with the standard curve. The 
DAMPs levels were standardized based on the protein 
concentration of each sample. All samples were analyzed 
in triplicate.

Statistics
All values are expressed as the mean ± SD. GraphPad 
Prism Version 9 (GraphPad Software, San Diego, Calif. 
USA) was used to analyze data. The data from the two 
groups was compared by t test. The significance level was 
set at P ≤ 0.05.

Results and Discussion 
In order to elucidate the occurrence of ICD in SPMS, we 
measured three DAMP markers including CRT, ANXA1 
and HMGB1 in CSF of the patient compared to the 

control group. Differentially elevation of these molecules 
not only could represent the incidence of ICD, but also 
could concur as upstream activators of ICD originated 
adaptive immunity.26 Our results revealed a significant 
elevation in the level of ANXA1 in the CSF of SPMS 
patient compared to individuals without MS, as depicted 
in Fig. 1. The observed increase in ANXA1 levels in the 
CSF of the patient suggests a potential association between 
ANXA1 and the pathophysiology of MS. ANXA1 is 
known for its involvement in ICD processes. It is involved 
in the functional maturation of antigen-presenting cells 
(APCs), particularly dendritic cells (DCs) during ICD. 
Upon release from apoptotic cells, ANXA1 binds to the 
formyl peptide receptor 1 receptor (FPR1) on APCs, 
facilitating a stable interaction between the APC and the 
dying cancer cell. This function of ANXA1 enables the 
uptake of antigens and their cross-presentation on major 
histocompatibility complex class I (MHC I), ultimately 
leading to the activation of immune responses.27-29

We also identified a significant increase in the level 
of CRT in the CSF of the patient compared to the levels 
observed in the control group (Fig. 2). CRT, a chaperone 
protein located in the endoplasmic reticulum (ER), is crucial 
for proper protein folding, and disruptions in this process 
can lead to ER stress, implicated in neurodegenerative 
disorders like Alzheimer's and Parkinson's diseases.30 
CRT is linked to apoptotic pathways and influences cell 
death in neurodegenerative conditions. Consistent with 
our findings, externalized CRT signals phagocytic cells 
to clear damaged cells, contributing to the inflammation 
observed in various neurological disorders and some 
autoimmune diseases.20,30-33 CRT, a multifunctional 
protein, serves as an "eat-me" signal when exposed on 
dying cells, aiding in phagocytic clearance and providing 
insights into ICD-related molecular events.27-29 Consistent 
with our findings, earlier studies have documented 
an upregulation of molecules associated with the 
endoplasmic reticulum stress-related signaling pathway, 

Fig. 1. ANXA1 level in CSF sample of control group and SPMS patient. Bar 
graph related to ANXA1 measurement using standard ELISA assay that 
represents means ± SD measured in each group. A comparison between 
the results from control group and SPMS patient was done using a t-test. 
ELISA experiments were repeated at least three times. ** indicates: 
P < 0.01.
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including CRT, in MS lesions.34 As a multifunctional 
protein involved in various cellular processes, CRT has 
also been implicated in ICD and immune responses.35 
Accordingly, the observed elevated CRT levels may 
reflect ongoing immunogenic cellular stress or damage 
associated with neurodegenerative processes in the CNS 
in MS. Further exploration of the specific implications 
and mechanisms related to increased CRT levels could 
deepen our understanding of disease progression and 
potentially inform targeted therapeutic strategies.

As shown in Fig. 3. the level of HMGB1 was also 
significantly elevated in the CSF of the SPMS patient 
compared to the levels observed in the control group. 
HMGB1 is a protein crucial in regulating inflammation 
and immune responses, released during cell injury to signal 
the immune system. It interacts with receptors like Toll-
like receptor 4 (TLR4) on DCs resulting in efficient antigen 
processing and presentation.36 Reduction of HMGB1 and 
ANXA1 by malignant cells is one of the mechanisms, 
by which these cells reduce the immune infiltration.37,38 
Previous studies have noted the involvement of HMGB1 
in neuroinflammation, contributing to immune 
responses in neurodegenerative diseases, stroke, 
traumatic brain injury, epilepsy, and neurodegenerative 
disorders like Alzheimer's, Parkinson's diseases,39-41 and 
antiphospholipid syndrome.42 Our finding underscores 
the potential involvement of HMGB1 in the pathogenesis 
of MS. HMGB1, a nuclear protein with diverse functions, 
is known for its role in inflammatory responses and cell 
death processes.43,44 The observed heightened levels of 
HMGB1 in CSF of the SPMS patient may reflect ongoing 
cellular stress and inflammation in the CNS, contributing 
to the neuroinflammatory milieu characteristic of MS. 
Further investigation into the specific mechanisms and 
consequences of elevated HMGB1 levels could enhance 
our understanding of disease dynamics and possibly 
unveil novel therapeutic targets.

Conclusion
In conclusion, this study provides valuable insights 
into the complex interplay between ICD and MS. Our 
investigation of ICD biomarkers, particularly ANXA1, 
CRT, and HMGB1, in the CSF of the SPMS patient reveals 
significant elevations in ANXA1, CRT, and HMGB1 
levels compared to those without MS. The heightened 
levels of these biomarkers suggest their potential roles in 
the neuroinflammatory responses characteristic of MS. 
These findings contribute to our understanding of MS 
pathophysiology and may pave the way for novel diagnostic 
and therapeutic avenues. Although continued exploration 
of the specific mechanisms underlying ICD biomarkers’ 
variations is crucial for advancing our comprehension 
of the disease dynamics and identifying potential targets 
for more targeted therapeutic interventions in the realm 
of MS. Meanwhile, the elevated levels of DAMPs could 
imply ICD occurrence leading to adaptive autoimmunity 
in MS. Therefore, prescribing cell-damage and cell-stress-
interfering compounds in this disease is suggested.
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