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Introduction
In recent years, machine learning models have been 
facing overfitting problems in high-dimensional datasets 
with a low number of samples. High-dimensional features 
lead to low accuracy and high model complexity. Among 
all features, only a few are relevant and important. Using 
feature selection methods is an approach to address this 
problem. Feature selection is the process of manually 
or automatically selecting features that have the highest 
effects on prediction variables or outputs. The presence 
of irrelevant features in a dataset drastically reduces the 
accuracy of the model trained by them. The main objective 
of feature selection algorithms is to choose a minimal set 
of features to achieve accurate classification. 

Feature selection methods can be broadly categorized 
into four groups: Filter, Wrapper, Embedded, and Hybrid 

method. Filter methods employ a set of statistical rules to 
evaluate the subsets of features.1 As they are not directly 
involved in the classification process, filter methods 
exhibit relatively low computational complexity. However, 
their results may not always be highly accurate, as some 
selected features may not be well-suited to the classifier 
algorithm.2 Wrapper methods utilize classifier algorithms 
to assess the fitness of selected features.1,2 While more 
effective than filter methods due to their direct integration 
with a classifier algorithm, wrapper methods exhibit 
high computational complexity. Embedded methods 
incorporate a search method within a classifier algorithm 
to identify the optimal feature subset. These methods 
offer the advantage of being tailored to a specific classifier 
model and exhibit lower computational complexity than 
wrapper methods. Hybrid methods typically combine 
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Abstract
Introduction: High-dimensional datasets 
often contain an abundance of features, 
many of which are irrelevant to the subject 
of interest. This issue is compounded by 
the frequently low number of samples and 
imbalanced class samples. These factors 
can negatively impact the performance 
of classification algorithms, necessitating 
feature selection before classification. 
The primary objective of feature selection 
algorithms is to identify a minimal subset 
of features that enables accurate classification.
Methods: In this paper, we propose a two-stage hybrid method for the optimal selection of 
relevant features. In the first stage, a filter method is employed to assign weights to the features, 
facilitating the removal of redundant and irrelevant features and reducing the computational cost 
of classification algorithms. A subset of high-weight features is retained for further processing in 
the second stage. In this stage, an enhanced Harris Hawks Optimization algorithm and GRASP, 
augmented with crossover and mutation operators from genetic algorithms, are utilized based on 
the weights calculated in the first stage to identify the optimal feature set.
Results: Experimental results demonstrate that the proposed algorithm successfully identifies the 
optimal subset of features.
Conclusion: The two-stage hybrid method effectively selects the optimal subset of features, 
improving the performance of classification algorithms on high-dimensional datasets. This 
approach addresses the challenges posed by the abundance of features, low number of samples, 
and imbalanced class samples, demonstrating its potential for application in various fields.
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elements of both filter and wrapper methods and have 
garnered considerable attention in recent years for their 
utility in feature reduction and selection.

Masoudi-Sobhanzadeh et al3 introduced a software for 
feature selection that employs filter methods, optimization 
algorithms, and three types of classifiers. Their software, 
entitled Feature Select, utilizes filter, wrapper, and hybrid 
methods for feature selection. During the classification 
phase, this software ranks sets of features rather than 
individual features. In Pirgazi et al study,4 a hybrid method 
for effective feature selection is proposed, based on 
Incremental Wrapper Subset Selection with Replacement 
(IWSSr) and Shuffled Frog Leaping Algorithm (SFLA). 
This method comprises two sections: filter and wrapper. 
In the filter section, the Relief method is used to assign 
weights to features. Subsequently, in the wrapper section, 
the search for effective features is conducted using SFLA 
and IWSSr algorithms.

In Taghian and Nadimi-Shahraki study,5 a binary 
wrapper algorithm, entitled “Wrapper-based Binary 
Sine Cosine Algorithm” (WBSCA), is proposed for 
feature selection, based on the Sine Cosine Algorithm 
(SCA). This algorithm is compared with three binary 
algorithms on seven datasets from the UCI machine 
learning repositories. The results demonstrate that this 
algorithm successfully selects important features. In Li et 
al study,6 a feature selection method, entitled Weighted 
K-Nearest Neighbors Genetic Algorithm Feature 
Selection (WKNNGAFS), is proposed, which calculates 
the importance of each feature. In this method, a Genetic 
Algorithm (GA) is employed to search for the optimal 
weight vector, and Weighted K-Nearest Neighbors 
(WKNN) is used for classification.

A mechanism for feature selection is proposed in 
Thejas et al 7 that utilizes both filter and wrapper methods. 
This hybrid method, based on a two-phase process, ranks 
the features and then selects the best feature subset based 
on this ranking. The data is clustered using the K-Means 
algorithm, and the ranking process is conducted using 
the Normalized Mutual Information (NMI) method. 
Subsequently, a greedy search method based on Random 
Forest (RF) is employed to obtain the optimal set of 
features.

A feature ranking metric, termed as Max-Relevance-
Max-Distance (MRMD), is introduced in Zou et al study8 
that is specifically designed for high-dimensional data 
sets. Contrary to conventional methods that prioritize 
classification accuracy exclusively, MRMD strikes a 
balance between accuracy and stability in the feature 
ranking process. By amalgamating measures of relevance 
and redundancy, MRMD adeptly identifies informative 
features whilst preserving stability. This innovative 
approach tackles the daunting task of dimensionality 
reduction, proving particularly beneficial in domains 
such as bioinformatics and image classification.

An approach is suggested within Analysis of variance 
(ANOVA) to enhance the predictive accuracy of 
mitochondrial proteins in the malaria parasite. Initially, 
protein samples are structured using the g-gap dipeptide 
composition. Subsequently, ANOVA is employed to 
identify the optimal subset of features. Finally, SVM is 
utilized for prediction purposes.9

An Embedded Chaotic Whale Survival Algorithm 
(ECWSA) is introduced in Guha et al,10 where an 
embedded version of the Whale Optimization Algorithm 
(WOA) is used. This algorithm employs a wrapper 
method for accurate classification and a filter method for 
further refinement of the selected subset of features with 
low computational complexity.

In Ramjee and Gamal 11, a computational and efficient 
feature selection method, based on a wrapper entitled 
“Autoencoder and Model-Based Elimination of features 
using Relevance and Redundancy scores” (AMBER), 
is proposed. Initially, features are ranked using a filter 
method, and then redundant and irrelevant features are 
removed using autoencoders.

A hybrid binary method for feature selection based on 
gray wolf optimization and particle swarm optimization 
is proposed in Al-Tashi et al.12 This algorithm combines 
the strengths of both gray wolf optimization and particle 
swarm optimization.

A hybrid feature selection approach for processing 
high-dimensional data is introduced in Venkatesh et 
al.13 This approach, based on mutual information and 
recursive feature elimination, benefits from both of them. 
Hybrid methods reduce data dimensionality by first using 
filter methods, and then using classification methods to 
choose the optimal feature subset.

To avoid classification model overfitting, a hybrid 
method is employed in Kamala et al.14 This method 
benefits from both filter and wrapper methods and finds 
the optimal feature subset. Improved Hybrid Feature 
Selection (IHFS) is proposed in this work that produces 
a learning model. Two filters are considered as the initial 
step to remove redundant and unimportant features. Chi-
square (CHI), FStatistic (FStat), and Mutual Information 
(MI) are the methods that evaluate the importance of 
features.

The Gravitational Search algorithm (GSA) is a 
population-based metaheuristic algorithm. A GSA-based 
algorithm, with evolutionary crossover and mutation 
operators, is proposed in.15 The authors used K-Nearest 
Neighbors (KNN) and Decision Tree (DT) as classifiers. 
A feature selection method, based on a filter called 
ReliefF, a wrapper Support Vector Machines backward 
(SVM-b), and the embedded Random Forest, is proposed 
in Taradeh et al.16 Initially, features are ranked using the 
ReliefF method, and then data are classified using the two 
classifiers.

A hybrid method, based on gray wolf optimization 
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and crow search algorithm, is proposed in Arora et 
al17 to strengthen local search. This method combines 
the strengths of both algorithms to achieve global 
optima. Zheng et al18 claimed that feature selection and 
removing redundant features increase classification 
accuracy and play an important role in data mining and 
pattern recognition. They proposed a feature selection 
algorithm entitled “Maximum Pearson Maximum 
Distance Improved Whale Optimization Algorithm” 
(MPMDIWOA). First, they proposed a filter algorithm 
based on Pearson’s correlation coefficient and correlation 
distance. The modified whale optimization algorithm is 
then used to select features.

A two-step feature selection approach is proposed 
in Amini et al,19 based on a wrapper and an embedded 
method in constructing the optimal feature subset. In 
the first step, GA is used to search for the optimal subset 
to reduce the number of features and prediction errors. 
However, GA does not guarantee the global optimum. To 
address this problem, the second step, based on Elastic 
Net (EN), is added to remove redundant and irrelevant 
features.

A two-step feature selection strategy is introduced 
in Dao et al20 to eliminate redundant and noisy data 
in the identification of the origin of replication in 
Saccharomyces cerevisiae. Initially, feature weights are 
computed using the F-score technique. Subsequently, the 
Minimum Redundancy Maximum Relevance (MRMR) 
technique is applied to enhance the correlation between 
features and class labels while reducing the correlation 
between features themselves.

In El-Kenawy and Eid study,21 a hybrid method based on 
gray wolf optimization and Particle Swarm Optimization 
(PSO) is proposed. In this method, the KNN classifier 
is used for evaluating selected features. Additionally, 
gray wolf optimization is used to search a larger space, 
and PSO is used to increase population diversity and 
maximize production efficiency.

A hybrid method based on PSO with a spiral-shaped 
mechanism for feature selection is proposed in Chen et al.22 
This method makes three improvements: First, it benefits 
from a logistic map sequence to enhance the search 
process. Second, the position quality of the next generation 
is highly improved due to two new parameters. Third, a 
local search operator based on a spiral-shaped mechanism 
is used. In Georges et al study,23 a framework entitled “FS-
Select” is proposed that explores the relationships among 
different FS methods. Different FS methods are evaluated 
according to three criteria: feature reproducibility power, 
average accuracy, and feature stability.

In Abdel-Basset et al study,24 the authors used Harris 
Hawks Optimization (HHO) and Simulated Annealing 
(SA) algorithms for feature selection. A method based 
on HHO, SA, and chaotic maps is used in Elgamal et 
al.25 This method employs chaotic maps to better detect 

hawk positions. They suggested two improvements to 
the standard HHO algorithm: applying the chaotic maps 
to enhance population diversity in the search space and 
using the SA algorithm to find the best solution. The 
particles are then evolved using HHA and SA.

In Bermejo et al study,26 a hybrid method based on a 
metaheuristic and filter method is presented to speed up 
feature selection and improve its accuracy. This paper 
also investigates Grasp-based methods and compares 
them with one another. Various classifier models based 
on filter methods, HHO, and GA are used in this paper 
to efficiently select features and improve the detection 
rate. To this end, important and efficient features are first 
detected using F-Score. This helps reduce computational 
complexity and the search space for selecting the optimal 
feature set.

The ability to search the entire search space is reduced 
due to the nature of the HHO algorithm and a small 
population. To address this issue, crossover and mutation 
operators from GA are used to improve exploration and 
exploitation in this algorithm. The proposed algorithm is 
not trapped in the local optimum and selects the optimal 
feature subset owing to combining these two operators 
with HHO.

The rest of this paper is organized as follows: Section 
2 explains the HHO algorithm; Section 3 elaborates on 
the proposed algorithm; Section 4 examines the proposed 
algorithm from different perspectives and presents 
experimental results on different datasets; Finally, Section 
5 concludes the paper.

Harris Hawks Optimization Algorithm
HHO is a population-based algorithm. In this approach, 
multiple hawks collaboratively attempt to surprise and 
attack their prey from various angles. The algorithm 
operates in three distinct phases: exploration, transition, 
and exploitation. 

Exploration phase
In each iteration of HHO, multiple solutions are 
generated, and the best one is considered as the prey in 
the vicinity of the optimal point. Harris hawks employ 
two strategies randomly. They may opt to perch at a 
vantage point, awaiting the sighting of their prey. If we 
define q as the probability of a hawk choosing to perch 
in each strategy, the hawks’ positioning is determined by 
the location of the prey and the positions of other family 
members, given they are within sufficient proximity to the 
prey, as illustrated in Eq. 1.

( )( )
( ) ( ) 2 ( ) 0.51 2

( 1)
( ( ) ( ) 3 4

X t r X t r X t qrand rand
X t

X t X t r LB r UB LB otherwiseprey m

 − − ≥


+ =   − − + − 
 

  (1)

In Eq. 1, X(t + 1) denotes the position vector of the 
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hawks at iteration t + 1, while Xprey (t) signifies the 
position of the prey. The term X(t) represents the current 
position vector of the hawks. The variables r1, r2, r3, r4, 
and q are random numbers within the interval (0, 1), all 
of which are updated at each iteration. The parameters 
LB and UB correspond to the lower and upper bounds 
of the variables, respectively. Xrand(t) is a hawk that is 
randomly selected from the current population. Lastly, 
Xm symbolizes the average position of the hawks in the 
current population, computed as per Eq. 2.

1

1( ) ( )
n

m i
i

X t X t
N =

= ∑                                                           (2)

Transition phase
The HHO algorithm transitions from the exploration 
phase to the exploitation phase, adopting various 
exploitation behaviors contingent on the escaping energy 
of the prey. The energy of the prey undergoes significant 
depletion during the escape process. The energy of the 
prey is modeled as follows.

02 1 tE E
T

 = − 
                                                                   (3)

In Eq. 3, E denotes the escaping energy of the prey, T 
is the maximum number of iterations, E0 is the initial 
energy, and t is the iteration number at which the energy 
is calculated. As previously stated, the escaping energy 
exhibits a decreasing trend over time. When |E| ≥ 1, hawks 
explore different regions in search of the prey. Conversely, 
when |E| < 1, the algorithm attempts to detect the solution 
neighborhood. The exploration phase commences when 
|E| ≥ 1, and the exploitation phase is initiated when |E| < 1.

Exploitation phase
In this phase, four strategies are conceptualized for the 
hawk’s attack, predicated on the prey’s escaping behavior 
and the hawks’ chasing strategies. Let us denote r as the 
probability of a successful escape by the prey. Hawks 
perform either a soft or hard besiege, irrespective of the 
prey’s reaction.27

Soft besiege
When r ≥ 0.5, the prey retains sufficient energy and 
attempts to deceive the hawks by performing random 
jumps. Concurrently, as the prey exhibits this behavior, 
hawks implement a soft besiege to further deplete 
the prey’s energy, followed by a surprise attack. The 
subsequent Eqs. model this behavior.

( 1) ( ) ( ) ( )preyX t X t E JX t X t+ = ∆ − −                        (4)

( ) ( ) ( )preyX t X t X t∆ = −                                                 (5)

In Eqs. 4 and 5, ∆X(t) signifies the positional difference 

between the prey and the current position at iteration t. 
J = 2(1 - r5) symbolizes the random jumping strength of 
the prey during the escape process, where r5 is a random 
value within the interval (0, 1). The value of J undergoes 
random changes in each iteration to emulate the natural 
movement of the prey.
Hard besiege
When r ≥ 0.5 and |E| < 0.5, the prey is tired and has a 
low energy for escaping. Therefore, hawks surround the 
prey to perform a surprise pounce. Hawks’ positions are 
updated as follows.

( 1) ( ) ( )preyX T X t E X t+ = − ∆                                      (6)

Soft besiege with progressive rapid dives
When |E| ≥ 0.5 and r < 0.5, the prey has enough energy 
to escape and soft besiege is still used before a surprise 
pounce. In this stage, it is supposed that hawks can identify 
their next movement using Eq. 7 to perform a soft besiege.

( ) ( ) ( )prey preyY X t E JX t X t= − −                                  (7)

The results of each dive are compared with those of the 
preceding one to ascertain the efficiency of the subsequent 
dive. If the forthcoming move is deemed unwise, as in 
instances where the prey exhibits a higher frequency of 
deceptive maneuvers, hawks respond by executing rapid 
and erratic dives, as delineated in the following.

( )Z Y S LF D= + ×                                                              (8)

In Eq. 8, the variable D represents the dimension of the 
problem under consideration, while S denotes a random 
vector of size 1 × D. The Levy flight function (LF) is 
defined as follows in Eq. 9.
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  (9)

Here, u and v are random numbers within the interval 
(0, 1), and β is a constant set to 1.5. The final strategy 
for updating the positions of the hawks during the soft 
besiege phase is given by Eq. (10).

( ) ( ( ))
( 1)

( ) ( ( ))
Y if F Y F X t

X t
Z if F Z F X t

<
+ =  <                      (10)

The variables Y and Z are calculated using Eqs. 7 and 8, 
respectively.
Hard besiege with progressive rapid dives
When |E| < 0.5 and r < 0.5, the prey lacks sufficient energy 
to evade capture. Under these circumstances, a hard 
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besiege is executed before a surprise pounce. This scenario 
mirrors that of the soft besiege, but in this case, the hawks 
strive to minimize the average distance to the prey. The 
position vector of the hawks is updated using Eq. 11.

' '

' '

( ) ( ( ))
( 1)

( ) ( ( ))
Y if F Y F X t

X t
Z if F Z F X t
 <

+ = 
<                       (11)

Z′ and Y ′ are calculated as follows.

' ( ) ( ) ( )prey prey mY X t E JX t X t= − −                          (12)

' ' ( )Z Y S LF D= + ×                                                          (13)

Xm(t) is calculated using Eq. 2. S is a random value in 
the interval (0, 1). HHO is illustrated in Algorithm S1 (see 
Supplementary file 1).27

Proposed algorithm
In the realm of feature selection, numerous methodologies 
have been put forth. However, these methods often grapple 
with a multitude of limitations, including low accuracy, 

high computational complexity, and a lack of applicability 
in scenarios where the sample size is insufficient or the 
class samples are imbalanced. In this paper, we introduce 
a hybrid approach tailored for feature selection in high-
dimensional datasets. Our proposed method incorporates 
the F-score criterion during the filter stage to allocate 
weights to the features. Following this, in the wrapper 
stage, we employ the Harris Hawks and Grasp algorithms, 
which are predicated on the Random Forest, to search for 
the optimal subset of features. The process of selecting the 
feature subset using our proposed algorithm is depicted 
in Fig. 1.

Filtering stage
In this study, as previously stated, a filter method is 
employed to assign weights to features. The rationale 
behind utilizing a filter method is to eliminate redundant 
and unrelated features. The presence of such features in 
a dataset can lead to a decrease in classification accuracy, 
an increase in execution time, and potential overfitting in 
machine learning models, particularly when the number 
of samples is limited. Furthermore, the removal of these 

Fig. 1. The two steps of selecting a subset of features in the proposed algorithm.
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features allows for the selection of appropriate features via 
filter methods, thereby enhancing the convergence speed 
and accuracy of the model. By assigning higher weights 
to relevant and significant features, the accuracy rate of 
the classification model is increased. In this paper, the 
F- Score method, as outlined in Eq. 14, is used to assign 
weights to features.

( ) ( )
( ) ( )

2 2

2 2( ) ( )
, ,

1 1

1 1

i ii i
i n n

k i k ii i
k k

x x x x
F

x x x x

n n

+ −

+ −

+ −
+ −

= =

+ −

− + −
=

− −
+

− −

∑ ∑         (14)

x̄i represents the average of the ith feature. The average 
of the ith feature for negative samples is represented by 
x̄i-, and the value of the ith feature of the kth sample is 
denoted by xk,i

(-). Similarly, x ̄i + and xk,i
( + ) represent the 

average of the ith feature and the value of the ith feature of 
the kth sample, for positive samples respectively. n + and 
n− are the number of positive and negative samples, 
respectively. Upon assigning the weights, several features 
that possess a higher F-Score weight are selected based on 
the number of features in the dataset, while the remaining 
features are discarded.

Wrapper stage
In the wrapper stage, Harris Hawk and Grasp algorithm 
based on Random Forest, are employed to identify 
effective feature subsets. The HHO serves as the principal 
algorithm in this procedure. During the implementation 
of the HHO algorithm, the Grasp algorithm is invoked 
for feature selection and the elimination of redundant 
features. The ensuing stages of the wrapper phase are 
elaborated below. 

Particle Initialization: In the process of generating each 
particle (hawk), a distinct set of weighted, random features 
is derived from the features preserved during the filtering 
phase. Specifically, in every iteration, m particles are 
produced, and for each particle, d features are randomly 
chosen based on their corresponding weights. In the 
proposed methodology, due to the weighted random 
selection procedure, features with higher weights have 
an increased probability of being selected, while those 
with lower weights have a diminished chance of selection. 
Consequently, each particle consists of a subset of features 
randomly selected from the original dataset’s feature set.

The quantity of features is dictated by the size of the 
dataset’s features.

Following the selection of each particle’s features, the 
Grasp algorithm is utilized to remove redundant features 
from each hawk. Upon the execution of this algorithm, 
the fitness of each particle is calculated. The fitness of each 
particle is determined using the available features, bearing 

in mind that the feature removal operation was performed 
based on the Grasp. Consequently, the accuracy of the 
Random Forest is regarded as the fitness measure for each 
particle.

During the construction phase of the Grasp algorithm, 
the Random Forest algorithm is used to eliminate 
redundant features associated with each particle. 
Subsequently, a classifier is trained based on each particle, 
and the particle exhibiting the highest accuracy is selected 
as the best particle for the current iteration and proceeds 
to the local search phase. In the local search phase, the 
best particle obtained in this iteration is merged with the 
particle selected from the previous stage (initially, the 
selected particle is devoid of any features). The redundant 
features of the merged particle are independently removed 
using Random Forest methods, and the classifier is trained 
with the remaining features. At this stage, the Random 
Forest classifier assigns importance scores and weights to 
the features, with low-weight features being considered as 
redundant and subsequently removed. If the accuracy of 
the classifier generated with the merged particle exceeds 
that of the selected particle, then the merged particle 
replaces the selected particle. This process is repeated 
until all iterations are completed, and ultimately, the best-
selected particle is introduced as the final particle.

Evaluation criterion: A pivotal element in any feature 
selection algorithm is the evaluation criterion that plays 
an important role in effectively selecting relevant features. 
There have been many attempts to evaluate selected 
features. In this paper, the accuracy criterion is used for 
evaluating each particle. Several classifiers are used in 
each generation in order to evaluate the accuracy of each 
particle. SVM, KNN, DT, RF, and Naive Bayes (NB) are the 
classifiers used in this paper according to the essence of the 
feature selection problem. The criteria used in all classifiers 
are accuracy, sensitivity, specificity, and balance rate.

The accuracy criterion is used for particle evaluation 
and is calculated as shown in Eq. 15.

TP TNaccuracy
TP TN FP FN

+
=

+ + +                                 (15)

Termination condition: The algorithm’s termination is 
contingent upon several conditions. One such condition 
is the number of iterations, which is user-determined. In 
this paper, the optimal number of iterations is set to 200 
or 500 with respect to the given dataset that is obtained 
based on experimental results. Another condition that 
precipitates the termination of the algorithm is the 
stability of the average particle detection rate over several 
generations. Given the high number of parameters 
inherent to the Harris Hawks algorithm, it necessitates a 
correspondingly high number of iterations. This aspect 
is further elaborated upon in the results section. The 
implementation of an extensive number of iterations 
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guarantees the robust establishment of these parameters’ 
optimal values, thereby augmenting the efficacy of the 
proposed methodology.

Applying Harris Hawks Optimization Algorithm: As 
introduced in Section. This algorithm has three phases: 
exploration, transition, and exploitation. Within each 
phase, hawks attempt to besiege the prey, which is 
represented by the best particle within each generation. 
This attack is based on simulated mathematical models, 
with the fitness function guiding the hawks’ actions. The 
specific phase that the algorithm enters is determined by 
the energy level of the prey at the commencement of each 
iteration.

During each phase of the HHO algorithm, a set of 
random values is initially generated. These include the 
probability of a hawk successfully taking down its prey, 
the likelihood of the prey escaping, the remaining energy 
of the prey, and the prey’s jumping power. 

It is important to note that the energy level of the 
prey, its chances of escape, and its jumping power are all 
dependent on the number of iterations. As the algorithm 
progresses through its iterations, these values decrease 
accordingly.

In the context of the algorithm’s execution, the phase 
it enters dictates the update of all particle features. 
Following each particle’s update, redundant features are 
removed via the Grasp method, and the fitness function 
is subsequently recalculated. Moreover, during phases 
where a new feature is generated based on a predefined 
formula, if the feature value exceeds the specified range or 
is repetitive, it is replaced by a new feature selected from 
the highest F-scores. The objective of this methodology 
is to optimize the search throughout the entirety of the 
problem space.

At the end of this phase, should an updated hawk exhibit 
a fitness value superior to that of the prey, it will supplant 
the prey. Consequently, hawks of the ensuing generations 
will endeavor to besiege this newly established prey. The 
accuracy value of each hawk is calculated based on various 
classification methods. Given that the classification of test 
and training data varies with each execution, the accuracy 
of each hawk is calculated five times. The average value is 
then considered in order to achieve a precise evaluation 
criterion for each classifier. This approach ensures a robust 
and accurate assessment of the algorithm’s performance.

To enhance the explorability of the proposed algorithm 
and to more effectively search the feature space, a pair of 
superior hawks are selected as parents via the application 
of crossover and mutation operators. Subsequently, two 
offspring are generated and replace the two least effective 
members of the previous generation at the end of each 
generation. If a redundant feature is produced during the 
crossover or mutation operation, a random value from 
the highest F-Score is utilized instead of this feature. This 
process preserves randomness and helps to search more 

comprehensively in the problem space. The proposed 
algorithm is delineated in Algorithm S2 (Supplementary 
file 1).

Experimental evaluation
This section presents an in-depth examination of 
the algorithm proposed, ensuring its robustness and 
applicability. It encompasses an introduction to the 
datasets employed, the criteria for evaluation, the 
initialization of parameters, the influence of these 
parameters on efficiency, and a comparative analysis of 
classifier accuracy. This meticulous analysis serves to 
validate the effectiveness and practicality of our research 
findings. 

Datasets
The algorithm proposed herein has been subjected 
to rigorous testing across multiple datasets. Detailed 
descriptions of these datasets are as follows.

Colon Dataset: This dataset encompasses 2000 genes 
across 62 samples, with 40 samples indicative of colon 
cancer and the remaining 22 deemed normal.

Arcene and Prostate1 Datasets: These datasets comprise 
100 and 88 data points, respectively. Each class within 
these datasets has a high feature count of 10,000 and 
12,625, respectively, which is substantial given the limited 
number of samples.

Diffuse Large B-cell Lymphoma (DLBCL) Dataset: 
This dataset includes 5469 genes and 77 lymphoma tissue 
samples. Of these samples, 58 are classified as large cell B, 
with the remaining 19 identified as Follicular lymphoma.

Lung Dataset: This dataset contains 181 samples, each 
with 12533 features. It should be noted that there is an 
imbalance in the number of samples between class 1 and 
class 2 in this dataset.

Dorothea Dataset: This dataset is composed of 800 
samples, each with a dimensionality of 10000. An 
imbalance is observed in the number of samples across 
the two classes.

Prostate Dataset: This dataset, with a feature count of 
12600, includes 77 entries in class 1 and 59 entries in class 2.

Central Nervous System (CNS) Dataset: This dataset 
comprises 7129 genes and 60 samples. Among these 
samples, 21 are benign and 39 are malignant.

Leukemia Dataset: This dataset, containing 7129 genes 
and 72 samples, categorizes blood cancer diseases into 
two sets: Acute Lymphoblastic Leukaemia (ALL) and 
Acute Myeloid Leukaemia (AML). The dataset includes 
47 ALL and 25 AML samples.

Breast Dataset: This dataset, with a high feature count of 
24481, is noteworthy due to the small number of samples.

Evaluation criteria
Different criteria are used to evaluate the proposed 
algorithm. It should be noted that each criterion 
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demonstrates the strength of the proposed algorithm 
from a specific point of view.
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In the application of feature selection methods, it is 
imperative to ensure that there is no overlap between 
the training and test data. Cross-validation (CV) has 
been identified as an effective technique for partitioning 
data, which aids in the evaluation of feature selection and 
classification methodologies. This strategy assesses the 
effectiveness of the proposed methods based on multiple 
categories derived from the original dataset.

Initially, the entire dataset is partitioned into k subsets in 
a random manner for the purpose of training and testing. 
Throughout k iterations, k-1 subsets are employed for 
model training, while one subset is set aside for testing. 
In each iteration, the features and parameters required for 
testing the model are obtained from the training phase, 
utilizing samples from the training subsets. The overall 
effectiveness of the proposed method is then determined 
based on the outcomes from the k iterations of the training 
and testing phases.

In this study, we employ the CV method to train and 
subsequently test classifiers using selected features. The 
aim is to determine the recognition percentage of test 
data, with k set to 10. Given that the 10-fold CV method 
involves the random partitioning of samples into 10 
categories, the results can vary depending on the grouping 
of samples. To mitigate this variability, the samples are 
randomly divided into 10 groups in an iterative manner, 
repeating the process 10 times. This approach ensures a 
more robust evaluation by reducing the influence of the 
initial grouping on the results.

The final count of features is determined by the average 
number of selected features, while other criteria are 
established by averaging the metrics within the selected 
subset after executing the proposed method 10 times. The 
performance metrics of the proposed method are also 
derived from the average of 10-fold CV repetitions.

Initialization of hyperparameters in the proposed 
algorithm
To enhance the efficiency of the proposed algorithm, 
it is essential to optimize various parameters. The 
algorithm’s performance is directly contingent on the 

value of each hyperparameter, necessitating their optimal 
configuration. These hyperparameters have been selected 
after conducting numerous tests and remain consistent 
across all datasets. The Random Search method is 
employed to ascertain the optimal values for these 
hyperparameters. This process involves selecting a set of 
hyperparameters, constructing a model using the training 
data, and subsequently evaluating its performance on 
the evaluation data. This iterative process is repeated 
with different sets of hyperparameters until the optimal 
configuration is identified. The initial values of the 
hyperparameters for the proposed method are as follows:
The number of hawks in each generation: 10
The number of features of each hawk: 5-40
The number of features produced from datasets with 
respect to the F-Score algorithm: 300
The number of hawks produced using crossover and 
mutation operations: 2

Impact of hyperparameters on the efficiency of the 
proposed algorithm
Considering the inherent characteristics of HHO, the 
number of iterations and the population of hawks exert 
substantial influence on the performance of the proposed 
method. This section is dedicated to examining the 
effects of these parameters on the implementation of the 
proposed method.

The first step focuses on the influence of the iteration 
count on the efficacy of the proposed algorithm. To 
investigate this, the algorithm is applied to four distinct 
datasets, each with a varying number of iterations. The 
results, depicted in Fig. 2, are derived from the execution 
of the algorithm across a range of iterations on these 
datasets.

Given the inherent tendency of the HHO algorithm to 
randomly select a large parameter set during its initial 
phase, it is recommended to consider a high number 
of iterations for more effective parameter learning and 
optimization. As evidenced by the results, optimal 
performance is achieved when the iteration count is set to 
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Fig. 2. Comparison of highest accuracy based on the number of iterations.
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either 200 or 500. This high iteration requirement aligns 
with the nature of the HHO algorithm, which necessitates 
numerous iterations to reach convergence.

It is important to note that the results presented in 
this section pertain to the Random Forest classifier, 
which emerged as the superior classifier based on the 
experimental evaluation of the proposed algorithm.

In the next step, the proposed algorithm is evaluated 
with respect to the number of particles. As depicted 
in Fig. 3, the algorithm exhibits optimal performance 
when the particle count is either 7 or 10. Given the 
cooperative nature of hawks during prey besiegement, it 
is advantageous to maintain a minimal hawk population. 
Contrary to other evolutionary methods, the experimental 
results demonstrate that the proposed algorithm 
enhances performance with a reduced particle count. It 

is noteworthy that when the particle count escalates to 40 
or beyond, there is a significant decline in both execution 
speed and peak accuracy.

Accuracy of different classifiers
Given that the proposed algorithm is a hybrid and its 
performance is contingent on the classifier employed, 
it is imperative to evaluate its efficiency with various 
classifiers. This section of the experiment is conducted 
to ascertain that appropriate feature selection does not 
significantly impact the method’s efficiency, irrespective 
of the classifier used. The proposed algorithm was 
implemented using a range of classifiers, specifically 
K-Nearest Neighbors (KNN), Decision Tree (DT), 
Support Vector Machine (SVM), Random Forest (RF), 
and Naive Bayes (NB). These classifiers were applied 
across four distinct datasets. The evaluation was carried 
out based on multiple criteria, the outcomes of which are 
delineated in Table 1. Owing to its generalizability, the RF 
classifier outperforms in nearly all datasets. RF conducts 
feature selection in an embedded manner and eliminates 
a substantial number of redundant features. Furthermore, 
RF is a hybrid method that reaps the benefits of estimates 
from multiple classifiers. DT also exhibits relatively 
high generalizability compared to other classifiers. The 
number of neighbors for the KNN classifier is set to three, 
and this classifier demonstrates satisfactory accuracy 
in this experiment. As depicted in Table 1, the accuracy 
of the proposed algorithm consistently surpasses 85%,  
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Fig. 3. Comparison of highest accuracy based on the number of particles.

Table 1. Evaluation criteria of the proposed method using different classifiers

Dataset Classifier Feature No. Accuracy Sensitivity Specificity Balance Rate

Colon

SVM 7 93.88 89.46 98.67 94.06

KNN 7 92.34 88.21 97.82 93.02

DT 7 94.36 89.87 99.37 94.62

RF 7 95.12 90.23 100 95.12

NB 7 92.45 88.45 97.78 93.13

CNS

SVM 9 95.09 89.76 98.32 94.04

KNN 9 94.44 89.83 97.83 93.83

DT 9 95.21 90.43 98.96 94.7

RF 9 95.89 90.81 99.73 95.27

NB 9 93.92 89.13 97.15 93.14

DLBCL

SVM 8 98.96 98.07 98.56 98.31

KNN 8 98.64 97.32 97.87 97.59

DT 8 99.86 98.34 99.18 98.76

RF 8 100 100 100 100

NB 8 98.73 97.86 98.67 98.26

Breast

SVM 7 86.1 80.00 95.23 87.61

KNN 7 85.96 79.67 94.46 87.06

DT 7 87.71 81.56 97.08 89.32

RF 7 89.46 82.19 97.18 89.68

NB 7 87.12 80.67 96.14 88.40
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regardless of the dataset and classifier utilized. These 
results suggest that the algorithm’s performance is not 
dependent on the classifier, maintaining high accuracy 
consistently. In addition, the values of other criteria are 
also advantageous for the proposed algorithm, indicating 
that it is not biased toward the majority class.

As a result, the proposed algorithm demonstrates 
resilience when dealing with imbalanced datasets. 

In this study, each dataset is split into two distinct 
subsets: a training set and an independent set. The training 
set, constituting 80% of the original data, is selected at 
random, while the remaining 20% forms the independent 
set. The training set serves the purpose of training, 
evaluating, and validating the proposed methodology, 
while the independent set is reserved for the ultimate 
performance assessment.

To ascertain robustness and reliability, the samples 
undergo random partitioning into two groups, a process 
repeated ten times. The outcomes are then averaged across 
these ten iterations. The results of these experiments 
are encapsulated in Table 2. The findings corroborate 
the robustness of the proposed method and its ability 
to achieve a high accuracy rate. As a result, the method 
proves its effectiveness in classifying gene expression data 
with remarkable precision.

To investigate the meaningfulness of the results of the 
proposed method, the violin plot for the Random Forest 
classifier is shown in Fig. 4. The length of the violin in this 
plot is inversely proportional to the variance in the results 
of the proposed method. A shorter violin length signifies 
less variance, which in turn indicates the significance 
of the results and negates the possibility of them being 
randomly generated. As observed in Fig. 4, the detection 
rate variance for the Random Forest is low, thereby 
affirming the reliability and meaningfulness of the results.

The datasets employed in this study are characterized 
by their high-dimensionality and the challenge of 
class imbalance. In this situation, the majority class, 
encompassing a considerable number of data points, 

stands in contrast to the minority class, which includes 
markedly fewer data points. Consequently, the proposed 
model is designed to not only diminish the number of 
features but also to exhibit satisfactory performance on 
imbalanced data. Under these circumstances, there is a risk 
that the classifier may exhibit bias towards the majority 
class. Therefore, an evaluation criterion is required for the 
proposed method that accurately reflects its performance 
in these conditions. To this end, the receiver operating 
characteristic (ROC) curves for various classifiers are 
depicted in Fig. 5. As observed, the area under both the 
ROC curves is substantial and approximates one for all 
classifiers, indicating that the proposed model maintains 
a low false positive rate across all classifications. 

Convergence of the proposed algorithm
Convergence is indeed a prevalent concern in evolutionary 
algorithms. The convergence process is shown in Fig. 6. It 

Table 2. Performance results of the proposed method in training and independent data

Training data Independent data

Accuracy Sensitivity Specificity Balance rates Accuracy Sensitivity Specificity Balance rates

Colon 96.72 97.82 96.26 97.04 94.38 95.5 91.21 93.355

Arcene 96.81 93.45 97.44 95.445 95.72 92.78 95.84 94.31

Prostate1 91.06 89.84 93.72 91.78 89.08 88.34 92.43 90.385

DLBCL 100 100 100 100 100 100 100 100

Lung 99.43 99.93 99.91 99.92 98.24 99.86 99.79 99.825

Dorothea 94.17 94.42 92.18 93.3 92.86 92.43 90.08 91.255

Prostate 96.71 99.24 94.73 96.985 95.09 96.78 92.56 94.67

CNS 96.43 94.69 98.80 96.745 95.24 93.27 96.89 95.08

Leukemia 99.78 100.00 98.92 99.46 98.67 99.23 98.54 98.885

Breast 89.34 93.77 89.63 91.7 88.44 90.23 87.43 88.83

Fig. 4. Violin plot for random forest classifier on different dataset.
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presents the accuracy of the SVM classifier across various 
datasets over the course of 500 iterations. Given the 
iterative nature of the HHO algorithm and its numerous 

random parameters, a substantial number of iterations 
are necessitated to attain convergence. The experimental 
results reveal a high degree of random movements during 

Fig. 5. ROC curve for the proposed method using various classifiers on the breast (a) and Lung (b) datasets.

Fig. 6. Maximum and average accuracy for 10 hawks in 500 iterations in colon (a), breast (b), lung (c), and Dorothea (d) datasets.
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the initial iterations, attributable to the multitude of 
random parameters inherent in the HHO algorithm. The 
fluctuation and randomness of the algorithm’s behavior 
diminish after the initial iterations, and following 250 
iterations, the algorithm exhibits an upward trend in 
accuracy.

Comparison of the proposed algorithm with other 
methods
This section provides a comparative analysis of the 
proposed algorithm against a range of existing methods, 
evaluating both accuracy and the number of selected 
features. In this following tables, acc refers to the accuracy 
and atts refers to the number of selected features. The 
comparison is structured in three parts: (1) a comparison 
with non-evolutionary algorithms, (2) a comparison 
with evolutionary algorithms, and (3) a comparison with 
HHO-based algorithms. Table 3 presents a comparison 

of the proposed algorithm with non-evolutionary and 
evolutionary algorithms. As evidenced by the results, 
the proposed algorithm demonstrates superior accuracy 
compared to the other algorithms. The superior 
performance of the proposed algorithm can be attributed 
to its feature selection process, which is based on inter-
feature relationships, and its utilization of a combination 
of two efficient search algorithms.

While deterministic and non-heuristic algorithms 
are capable of accurately identifying the optimal feature 
set, they lack efficiency when dealing with complex 
optimization problems. 

Following this, the proposed algorithm is compared 
with evolutionary algorithms. Grasp is a renowned 
algorithm in this domain. Despite the fact that the 
number of selected features in the proposed algorithm is 
less than others, the accuracy and the convergence rate 
of the proposed algorithm are markedly superior to other 

Table 3. Comparison of the proposed algorithm with non-evolutionary and evolutionary algorithms

Method\Dataset Colon Arcene Prostate1 DLBCL Lung Dorothea Prostate CNS Leukemia Breast Mean

IWSS
Acc 80.65 70 76.23 83.11 97.2 93.5 77.9 85.2 87.5 69.21 82.05

Atts 3.8 13.4 12.8 3.2 2.7 7.4 11.1 3.2 2.5 11.1 7.122

IWSSr
Acc 83.87 72 77.42 81.23 97.2 92.9 78.7 86.1 87.5 70.21 82.71

Atts 2.8 6.2 8.3 2.7 2.4 6.3 7 3.1 3 9.2 5.1

LFS
Acc 80.8 73 73.12 88.67 93.6 90.3 75.4 83.2 93 70.43 82.15

Atts 4.1 4.5 3.6 4.1 2.5 5.5 4.5 3.4 3.2 10.1 4.55

BARS
Acc 85.7 74 85.34 75.21 98.3 93.8 86.8 89.1 90.5 72.81 85.15

Atts 3 4.9 4.1 2.8 3 7.3 3.7 2.8 2.3 9.34 4.32

FCBF
Acc 95.12 95.86 89.21 100 99.2 93.42 95.76 95.9 99.71 89.46 95.36

Atts 14.6 34.2 32.4 56.2 115 92.8 35.8 42.2 45.8 107.3 57.65

PCA
Acc 72.5 - 59.12 68.11 85.6 - 57.35 77.3 79.1 63.1 70.27

Atts 28.9 - 37.1 42.7 125 - 36.6 44.1 53.8 96.3 58.09

HC
Acc 81.1 80 80.45 85.65 95.6 93.3 77.8 91.5 92.6 79.63 85.75

Atts 3 5.7 4.3 2.1 2.2 3.7 5 2.6 2.7 4.3 3.56

Grasp IWSS
Acc 79.6 79.3 79.12 84.6 95.1 93.3 78.6 93.1 93.7 80.11 85.65

Atts 3.4 6 4.1 2.2 2.2 4.2 5.7 2.8 2.7 3.1 3.6

Grasp IWSSr
Acc 82.2 78.5 78.49 85.61 95.7 92.9 77.5 87.3 91.6 78.38 84.82

Atts 3.1 5.7 3.7 2.1 2.4 3.8 4.6 2.8 2.8 3.5 3.45

Grasp BARS
Acc 80 79 81.12 89.11 96 93.5 78.6 92.1 93.3 81.24 86.4

Atts 2.9 5.2 4.7 2.2 2.3 5 5.1 3.1 2.8 2.7 3.6

SFS
Acc 80 79.3 78.43 85.7 96.2 93.2 78.1 91.1 93.6 80.91 85.65

Atts 3.5 6.3 6.3 2.4 2.4 4.4 5.6 3.1 3.3 3.6 4.09

FICA + IWSSr
Acc 93.6 93.4 - 99.1 98.9 75.8 92.4 - 99.6 - -

Atts 4.5 7.1 - 4.5 3 3 4.4 - 1.8 - -

F-Score
Acc 83.74 73.25 68.74 93.11 82.2 76.24 54.33 66.5 75.57 73.82 74.74

Atts 55 110 105 100 105 310 250 90 70 120 131

SVM-RFE
Acc 93.7 89.11 82.71 95.23 98.7 84.32 92.2 77 100 86.09 89.9

Atts 9.8 13.5 17.2 15.7 9.4 21.7 14.4 16.3 8.6 17.3 14.39

Proposed 
method

Acc 95.12 95.86 89.21 100 99.2 93.42 95.76 95.9 99.71 89.46 95.36

Atts 6.7 9.2 7.3 8.1 5.4 7.9 9.2 8.2 7.5 13.2 8.27
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algorithms.
The next step involves a comparison of the proposed 

algorithm with HHO-based methods. Table 4 provides a 
comparison of the proposed algorithm with two HHO-
based algorithms. The comparative experimental results 
indicate a relative superiority of the proposed algorithm 
over the other methods. The HHO Algorithm-Based 
Simulated Annealing (HHOBSA) algorithm employs 
a combination of HHO and SA algorithms for feature 
selection.24 The primary drawback of this algorithm is the 
excessive number of selected features. Furthermore, the 
convergence time of HHOBSA is significantly high due 
to the utilization of two evolutionary algorithms. The 
Chaotic Harris Hawks Optimization (CHHO) algorithm25 
finds application in the pharmaceutical domain.

As the iterations advance, two factors in the proposed 
algorithm, namely the jumping strength and the escaping 
chance, exhibit a decreasing trend. The experimental 
results underscore that this process exerts a positive 
influence on the performance of the HHO algorithm. 
Furthermore, the crossover and mutation operators 
significantly contribute to the efficiency of the proposed 
algorithm. 

Conclusion
This paper presents an efficient feature selection approach 
that combines filter and wrapper methods. Initially, the 
F-Score is employed to assign weights to features and rank 
them. Subsequently, the HHO and GRASP algorithm is 
utilized to select the optimal feature subset. To enhance 
the search capability of the HHO, crossover and mutation 
operators from the GA are incorporated. The proposed 
algorithm is evaluated against both evolutionary and non-
evolutionary methods using various criteria. Experimental 
results demonstrate the efficacy of the proposed algorithm 
in successfully selecting the optimal feature subset.
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