
Khorramfard et al., BioImpacts. 2025;15:30468
doi: 10.34172/bi.30468
https://bi.tbzmed.ac.ir/

Predicting drug protein interactions based on improved support 
vector data description in unbalanced data
Alireza Khorramfard, Jamshid Pirgazi* ID , Ali Ghanbari Sorkhi

Department of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran

Introduction
The development of molecular medicine and the 
completion of the Human Genome Project have 
significantly enhanced opportunities to identify new 
target proteins for drug development.1 Traditional 
methods for exploring drug target interactions (DTIs) 
have been costly and time-consuming.2 Therefore, 
predicting DTIs has become crucial in pharmaceutical 
science to streamline drug candidate screening and 
address related issues. Improved biochemical technologies 
have accelerated drug discovery; however, the FDA has 

recently approved only a limited number of drugs due 
to efficacy and safety concerns.3 Advances in protein 
sequencing, drug molecular structure determination, and 
the availability of diverse databases have motivated the 
development of computational approaches for detecting 
potential interactions.4 These databases provide valuable 
experimental interaction data for developing new 
computational methods for large-scale DTI prediction.

Computational methods for predicting DTIs can 
be categorized into ligand-based, docking-based, and 
chemogenomic approaches. Ligand-based methods,5 such 
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Abstract
Introduction: Predicting drug-protein 
interactions is critical in drug discovery, 
but traditional laboratory methods 
are expensive and time-consuming. 
Computational approaches, especially 
those leveraging machine learning, are 
increasingly popular. This paper introduces 
VASVDD, a multi-step method to predict 
drug-protein interactions. First, it extracts 
features from amino acid sequences in 
proteins and drug structures. To address 
the challenge of unbalanced datasets, a 
Support Vector Data Description (SVDD) 
approach is employed, outperforming standard techniques like SMOTE and ENN in balancing 
data. Subsequently, dimensionality reduction using a Variational Autoencoder (VAE) reduces 
features from 1074 to 32, improving computational efficiency and predictive performance.
Methods: The proposed method was evaluated on four datasets related to enzymes, G-protein-
coupled receptors, ion channels, and nuclear receptors. Without preprocessing, the Gradient 
Boosting Classifier showed bias towards the majority class. However, balancing and dimensionality 
reduction significantly improved accuracy, sensitivity, specificity, and F1 scores. VASVDD 
demonstrated superior performance compared to other dimensionality reduction methods, such as 
kernel principal component analysis (kernel PCA) and Principal Component Analysis (PCA), and 
was validated across multiple classifiers, achieving higher AUROC values than existing techniques.
Results: The results highlight VASVDD's effectiveness and generalizability in predicting drug-
target interactions. The method outperforms state-of-the-art techniques in terms of accuracy, 
robustness, and efficiency, making it a promising tool in bioinformatics for drug discovery.
Conclusion: The datasets analyzed during the current study are not publicly available but are 
available from the corresponding author upon reasonable request and source code are available 
on GitHub: https://github.com/alirezakhorramfard/vasvdd.
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as quantitative structure-activity relationship (QSAR),6 
predict interactions by comparing new ligands to known 
protein ligands.7 Kaiser et al developed a ligand similarity-
based method that predicts undiscovered protein targets 
based on chemical compound similarity, using a topology 
network to calculate similarity points.5 However, these 
methods perform poorly when there are insufficient 
known ligands for a protein.7 Docking-based methods 
consider the three-dimensional structures of molecules 
and drug targets to identify potential binding sites. While 
biologically efficient, they are time-consuming and 
inapplicable if the protein's 3D structure is unknown.8,9 For 
instance, G protein-coupled receptors (GPCRs) have few 
known 3D structures.10 Chemogenomic approaches use 
computational methods to predict unknown interactions 
by integrating information from similar drugs and 
proteins.11 These models predict interactions between 
drugs and proteins by combining information from 
similar drugs and proteins.12 Computational methods 
provide a more efficient and affordable approach to drug 
discovery and allow researchers to explore a wider range 
of potential drug candidates in order to predict their 
effectiveness before investing significant resources in 
experimental testing.13 These methods include similarity-
based, kernel-based, and feature-based approaches.

Similarity-based methods assume that similar 
drugs have similar functions and interact with similar 
proteins.14-17 They construct similarity matrices for drugs, 
proteins, or both, which are used in machine learning 
models.18 Kernel-based methods predict unknown 
interactions based on known interaction networks, 
using a pairwise kernel function to measure similarity 
between drug-protein pairs.19 However, finding suitable 
kernels and pairing proteins at high and medium scales 
is challenging.20 Feature-based methods describe proteins 
using physical, chemical properties, subsequence 
distributions, or functional properties, while drugs are 
described using structural properties.21 Machine learning 
models use feature vectors of drug and protein sequences 
as input. Two feature extraction approaches exist: 
statistical and text mining methods, and deep learning 
methods. Deep learning methods, which have gained 
attention, bypass explicit feature extraction by directly 
inputting protein and drug sequences into deep networks 
that extract features across multiple layers.22

Li Z et al converted target protein sequences into Position 
Specific Scoring Matrices (PSSM) to preserve evolutionary 
information.23 Rayhan F et al used the Adaboost model for 
predicting drug-protein interactions.24 Jiang et al coded 
drug-protein pairs using the PaDEL-Descriptor software 
technique and employed kNN (K-nearest neighbor) 
for prediction.25 Mahmud SH et al used Xgboost with 
the SMOTE method to address dataset imbalance and 
predict DTI based on drug chemical structure and 
protein sequence.26 Shi H et al combined PsePSSM and 

fingerprints for feature extraction, balanced the data 
with SMOTE, and used random forest for prediction.27 
Rayhan F et al introduce FRnet-DTI, utilizing an auto-
encoder for feature manipulation and a convolutional 
neural network for drug-target interaction prediction.28 

Wang et al used protein sequences as PSSM descriptors 
and drug molecules as fingerprint feature vectors to 
develop random forest-based methods (RFDT) for DTI 
prediction.29 Khojasteh et al combined various descriptors 
from protein sequences and drug FP2 fingerprints, 
balanced the data with One-SVM-US, and used the FFS-
RF algorithm for feature selection, employing the Xgboost 
classifier for DTI prediction.13

To address previous challenges, a new SVDD-based 
method is proposed. Various features are extracted from 
protein sequences, including Amino Acid Composition 
(AAC), Dipeptide Composition (DPC), Grouped Amino 
Acid Composition (GAAC), Dipeptide Deviation from 
Expected Mean (DDE), Pseudo Amino Acid Composition 
(PseAAC), Pseudo Position Specific Scoring Matrix 
(PsePSSM), Composition of K-spaced Amino Acid Group 
Pairs (CKSAAGP), Grouped Dipeptide Composition 
(GDPC), and Grouped Tripeptide Composition (GTPC). 
Drugs are encoded as FP2 molecular fingerprints, and 
these features are combined. A variety of feature selection 
methods have been employed, showcasing significant 
diversity. Given the limited number of known drug-
protein interactions, the positive class data is much smaller 
than the negative class data. To address this imbalance, a 
robust data balancing method based on SVDD is utilized. 
To enhance the performance of SVDD, a variational 
autoencoder method is employed to reduce and extract 
more effective features, thereby preventing overfitting 
in machine learning models. These reduced features are 
then applied to different machine learning models for 
DTI classification. Using the proposed method, not only 
did accuracy increase, but sensitivity and specificity also 
improved, indicating that our model is unbiased towards 
any class.

Proposed method
In this paper, a new method for predicting drug-protein 
interaction is proposed, called VASVDD_DTI. In the first 
step, different features are extracted from the drug and 
protein sequences. The reason for extracting different 
features from the data is to be able to extract important 
and various information from the drug and protein 
sequence. Furthermore, these features are combined with 
each other. In the next step, considering that the number 
of samples of two classes is unbalanced and the number 
of features of each data is large, it causes overfitting and 
reduces the performance of the machine learning model 
for predicting drug-protein interaction. For this purpose, 
the data of two classes are first balanced by using the 
modified SVDD; then, in the next step, the data is mapped 
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to a new space using the Variational AutoEncoder (VAE), 
and the more important features are identified in the new 
space. By this action, the number of features is reduced. 
Finally, the obtained features are used to train machine 
learning models. Fig. 1 shows the general steps of the 
proposed method. In the following, the details of each 
step will be explained.

Feature extraction and composition
At this stage, due to the predication of drug-protein 
interactions, different features of drugs and proteins have 
been extracted. This feature extraction allows us to have a 
more detailed knowledge of interactions. In this section, 
we divide feature extraction into two categories: 

Drug-related feature which includes fingerprints, and 
protein-related features that include AAC, DDE, PseAAC, 
PsePSSM, and CKSAAP features. In this paper, methods 
have been chosen to extract features from drugs and 
protein sequences, which show different aspects of the 
data. Then, the features extracted from drugs and proteins 
are combined with each other. If in the gold standard the 
pair of drug and protein interacts with each other, the 
label is assigned one; otherwise, zero is assigned. The study 
employed a comprehensive set of features categorized into 
drug and target groups. The drug feature group consisted 
of a molecular fingerprint with 256 features. For the target 
feature group, various types were utilized: Feature group 
A included 20 features based on amino acid composition 

(AAC); Feature group D comprised 400 features derived 
from dipeptide deviation from the expected mean 
(DDE); Feature group E contained 28 features related 
to pseudo amino acid composition (PseAAC); Feature 
group F included 220 features from the pseudo-position-
specific scoring matrix (PsePSSM); and Feature group G 
encompassed 150 features based on the composition of 
k-spaced amino acid group pairs (CKSAAGP).

Data balancing
In this step, VASVDD_DTI method is used. This method 
is an unsupervised learning method to balance data 
in obstacles with unbalanced classes. In this method, 
a hypersphere is created, and this hypersphere should 
contain the most data with minimal comparison. 
Moreover, the points that are outside of this sphere are 
considered as noise or anomalies. Considering that 
the issue of predicting drug-protein interactions is an 
unbalanced data classification problem, that the data of 
one class (interaction between drug and protein) is less 
than the other class (non-interaction between drug and 
protein), In this paper, in the worst case, the ratio is one to 
one hundred. For this purpose, the paper aims to reduce 
the number of majority class data by using the improved 
VASVDD method.

In SVDD, all the features are used to build the 
supersphere because some features are extra, noisy, and 
unrelated. This makes the constructed supersphere not 

Fig. 1. The workflow of the proposed model to predict drug-target interactions
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include the data that are representative of the majority 
class. Due to this, in the next phases, where the goal is to 
classify the data of two classes, machine learning models 
do not have an acceptable performance. However, to 
solve this problem, in this paper, a method is presented 
to create a supersphere by SVDD using encoder-decoder. 
Fig. 2 shows the general steps of the balancing method.

In this method, the characteristics of each data are 
considered as the input of the encoder. In the output 
layer of this encoder, the latent representation is specified 
for each data. This latent representation is a reduced 
dimensional version of the data that contains effective 
information from the data. In this step, this latent 
representation is used to construct the supersphere in 
SVDD. In this case, to demonstrate the appropriateness 
of this latent representation, a decoder has been used. 
At this stage, the encoder and decoder are in the form 
of h(.) and g(.) functions. The decoder takes the sample 
x and produces the latent representation z. z = h (x; θe) 
Therefore, this latent representation is used as input to the 
decoder to obtain the reconstructed output  x̂  = g (z; θd). 
In these functions, θe and θd are the encoder and decoder 
parameters, respectively.

Subsequently, in order to build the supersphere with 
SVDD, the distance of the sample (latent representation) 
to the center of the supersphere is calculated. Therefore, 
by using the combination of the reconstruction error and 
the distance of the latent representation from the center 

of the hypersphere, the anomaly score of each sample x is 
calculated as equation (1).
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In equation (1), c is the center of the supersphere, and γ 
is a superparameter that shows the balancing contribution 
of the two terms; hence, in order to find the appropriate 
data, we seek to minimize the following equation.
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In equation (2), the first term is the reconstruction error, 
which specifies how our input data is made differently 
based on the encoder and decoder. The second term 
also shows the effect of latent representation in SVDD. 
Particularly, in the second term of the objective function, 
the goal is to build a hypersphere that includes only 
suitable data. Considering that the presented educational 
stage includes encoder and decoder training as well as 
building a supersphere, for this purpose in each stage, 
the data is divided into two parts. One part is used for 
training the center with the supersphere and one part is 
used for training θe and θd. The following equation is used 
to calculate the center. In this regard |B| is the size of the 
handle.

The latent representation of batch samples can be used 
to calculate the optimal center, which in equation (3), c 
is the center of the hypersphere and |B| is the size of the 
handle.
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Reducing the dimensions of features
In general, after balancing the data of two classes, 
machine learning models are used to predict drug-protein 
interactions. However, due to the fact that the number of 
features of the data is large and it causes overfitting of 
machine learning models, it is necessary to identify the 
effective features.

At this stage, in order to prevent the increase of 
computing time, to increase the performance of 
classification models and to discover effective features, 
among all the features, dimensionality reduction based 
on VAE has been used. 

The dimensional reduction model is based on VAE and 
is composed of two parts: encoder and decoder, which are 
also called transition functions and represented by f, g. 
Furthermore, x is considered as input data. By applying 
the transfer function f on the data, a latent representation 
z is constructed. In fact, this latent representation is a Fig. 2. Proposed balancing model.
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reduced version of the features. This representation is 
used as decoder input to reconstruct the data. Indeed, 
the more important the latent representation is, the 
more accurately the data is reconstructed. This latent 
representation, which is the output of the encoder, is used 
as dimensionality-reduced features. 

Afterward, by applying the transfer function g, the data 
is reconstructed. equations (4), (5), and (6) clearly refer 
to it.

 : f X z→                                                                            (4)

 :g z X→                                                                            (5)

,, arg min ( , ( , , ))f g x x xϕ ψ ϕ ψ= 
                                (6)

In the above equation, ψ and φ are encoder and decoder 
parameters, ( ), ,x xϕ ψ  is the reconstruction of the input 
vector x. ( )( ), , ,

x D
L x x xϕ ψ

∈
=∑ 
  is the total error, 

which is calculated as the total reconstruction error of L 
in the dataset D.

Apart from this, VAE is used in this paper. VAE replaces 
deterministic functions in the encoder and decoder with 
stochastic mappings. Meanwhile, the objective function 
is calculated based on the density functions of random 
variables: 

( ) ( ) ( )( ) ( )( ) ( )( )( )|, , | log |
pKL q z xx D q z x p z p x zϕ θ θϕ θ = −     (7)

In equation (7), q is an approximating of the true latent 
distribution of z. φ, θ are considered as distribution 
parameters.

In the proposed method, there are 5 layers in the 
encoder phase. As previously mentioned, the first 
layer is the input. On the other hand, the reduction 
of these features in the next layer is clearly visible, so 
that the features are reduced from 1074 to 512. In the 
following, this process continues until it is reduced from 
128 features to 64 in the last layer. As can be seen, the 
length of the obtained latent layer has 32 features and 
in the next phase, a decoder is used. This decoder, like 
the encoder, contains 5 layers, and its increasing trend 
is such that in the first layer, it has increased from 32 
features to 64 features. this process will continue until 
it reconstructs the input by using the latent layer. As a 
result, in the last layer, the output has 1074 features. In 
the presented method, firstly, the model has been trained 
with epoch 20, then feature reduction has been done in 
the test phase. According to this paper, there are 1074 
features of drugs and proteins, which were reduced to 32 
by using dimension reduction methods. Fig. 3 shows the 
architecture of VAE. 

Algorithm 1: Under Sampling by VASVDD
Input: X_train, c(0), θ(0) = ( ) ( )0 0{ , }e dθ θ , max_epochs, n, γ, κ
Output: c*, θ* = * *{ , }e dθ θ

1: Initialize Network Parameters θ = {θe, θd} and hyper-
sphere center c
2: for each epoch in range(max_epochs) do
3: Select κ percent of the samples for the batch
4: Optimize θ for epoch (j + 1) to minimize the combined 
loss function:

5: 
( ) ( )2 1 2
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6: Select the remaining (1 - κ) percent of the samples
7: Optimize c for epoch (j + 1) to minimize the loss 
function:

8: ( ) ( )1 1 2
C
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n
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i e
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Loss h x cθ + +
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Predicting drug-protein interactions 
After reducing the dimensions of the data, machine 
learning models are used to predict drug and protein 
interactions. For this purpose, first, the data is divided 
into two training and independent testing parts. In such 
a way that 20% of the total data is used as independent 
test and 80% as training and validation data. In order to 
better optimize parameters and calculate reliable results, 
the cross-validation method is used. It is noteworthy, in 
this essay, the value of K is equal to 5. Additionally, the 
classifier models include Gradient Boosting Classifier, 
Random Forest, SVM, and MPL. 

Fig. 3. The architecture of VAE.
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Results
In this section, the proposed method is examined using 
various datasets and evaluated from multiple perspectives. 
The model is compared against existing models, focusing 
on two key aspects: balancing and dimensionality 
reduction. The results of this comparison demonstrate 
the superiority of the proposed model.

Data set 
In this paper, four data related to enzymes (EN), Protein-
coupled receptors (GPCR), ion channel (IC) and nuclear 
receptors (NR) published by Yamanishi et al9 have been 
used to predict drug-target interactions in the proposed 
model. This entire collection was retrieved from http://
web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. 
Yamanishi et al9 have extracted information about 
drug-protein interactions from DrugBank,34 KEGG,32,33 
BRENDA30 and Super Target.31 As a consequence, The 
study utilized several gold standard datasets, each with 
varying numbers of interactions, targets, and drugs. The 
EN dataset comprised 2,926 interactions involving 664 
targets and 445 drugs. The GPCR dataset included 635 
interactions with 95 targets and 223 drugs. The IC dataset 
consisted of 1476 interactions among 204 targets and 210 
drugs. Lastly, the NR dataset contained 90 interactions 
with 26 targets and 54 drugs.

Evaluation criteria
In order to check the effectiveness of the proposed 
method, the criteria of accuracy, sensitivity, specificity 
and f1 score based on equations (8), (9), (10), (11) have 
been used.

TP TNACC
TP FP TN FN

+
=

+ + +                                             (8)

    TPSEN
TP FN

=
+                                                              (9)

   TNSPE
TN FP

=
+                                                             (10)

21     
2

TPF
TP FP FN

=
+ +                                                   (11)

In this paper, in discussing the composition of the 
extracted features, we utilized several feature extraction 
methods, including those mentioned in the article as well 
as additional methods like dipeptide composition and 
grouped amino acid composition. Through experiments 
conducted on the obtained data, we discovered that the 
combination of features from these six extraction methods 
yielded the best performance and achieved higher verified 
accuracy compared to other combinations. Additionally, 
our classifier demonstrated less bias towards the majority 

class. considering that the importance of the proposed 
work is balancing and reducing dimensions, the proposed 
method is examined from different aspects. In order to 
make the proposed method more effective, first, the 
extracted features are given to the Gradient Boosting 
Classifier (GBC) classification model without pre-
processing and balancing. The results of this experiment 
are shown in Fig. 4.

As it is clear from the results, the GBC model has an 
acceptable classification rate. Considering that the data of 
the two classes of the dataset used are clearly unbalanced, 
other criteria should be considered such as specificity and 
sensitivity. As it is obvious, the specificity has a good rate, 
but the sensitivity has a very low rate. This shows that the 
model has a low recognition rate in the classification of 
data with the minority class, but it predicts the majority 
class data well. This condition can be stated that the 
classification model is biased towards the majority of 
class. The combination of features can be used for causes 
a significant increase in sensitivity, f1 score, Area Under 
the Precision-Recall curve (AUPR) and Area Under the 
Receiver Operating Characteristic Curve (AUC-ROC), 
but it also shows the ability to use feature combination as 
a proposed method. consequently, Performance increases 
by using that. 

In order to better analyze, Fig. 5 shows the confusion 
matrix of the GBC model for the EN dataset. As can 
be seen, the classifiers incorrectly predict the minority 
class (class 1) as the majority class (0). Fig. 5 shows the 
confusion matrix for the GBC bundle model based on the 
extracted features. Figure (a) is related to the combination 
of features, and (b) is related to the features extracted by 
the PseAAC method. As can be seen, machine learning 
models do not predict minority class samples well, in fact, 
the 463 data that should predict interaction are predicted. 
As can be seen, machine learning models do not predict 
minority class samples well, in fact, 463 of the data that 
should predict interaction predict as none interaction. 
Actually, the machine learning model is biased towards 

Fig. 4. Bar chart of comparison between extracted and combined features.

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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the majority class. The same problem exists in figure b, 
but the performance of the machine learning models 
is slightly improved when the feature combination is 
performed. Therefore, to increase the performance of 
machine learning methods, the data of two classes should 
be balanced.

Analysis of data balancing methods
In order to investigate balance methods and their 
effect on the performance of classification methods, 
Table 1 shows the results of GBC on balanced data for 
different datasets. Undoubtedly, unlike when balancing 
is not done, in this case the classification model has an 

acceptable performance in all criteria such as accuracy, 
sensitivity, specificity and f1 score. It is clear that the 
model predicts the data of two classes significantly based 
on the criteria of specificity and sensitivity. Hence, it is 
not biased towards any class. The reason for increasing 
the efficiency of removing is outlier and noisy data from 
the majority class. In addition, the data which obtained 
in two classes have considerable distinctive features. 
Along with this, in order to evaluate the performance of 
the proposed method, it has been compared with other 
common balancing methods such as Synthetic Minority 
Oversampling Technique (SMOTE), Edited Nearest 
Neighbors (ENN), random under-sampling and random 

Fig. 5. The confusion matrix of GBC A) training based on combined features, B) training based on PseAAC features.

Table 1. Compare between the proposed balancing method with other methods

Dataset Sampling method ACC F1 SPE SEN

EN

RandomOverSampler 0.8826 0.1245 0.8835 0.8016

RandomUnderSampler 0.8472 0.1032 0.8471 0.8538

EditedNearestNeighbours 0.9914 0.3389 0.9988 0.2288

SMOTE 0.9364 0.1704 0.9388 0.6819

SVDD Deep 0.9977 0.9929 1 0.9860

GPCR

RandomOverSampler 0.8690 0.2127 0.8759 0.6302

RandomUnderSampler 0.7679 0.2040 0.7666 0.8025

EditedNearestNeighbours 0.9702 0.2921 0.9963 0.1897

SMOTE 0.9676 0.3800 0.9859 0.3471

SVDD Deep 0.9868 0.9650 0.9967 0.9452

IC

RandomOverSampler 0.8574 0.2830 0.8580 0.8426

RandomUnderSampler 0.8036 0.2305 0.8021 0.8456

EditedNearestNeighbours 0.9687 0.3092 0.9957 0.2137

SMOTE 0.9363 0.3550 0.9498 0.5376

SVDD Deep 0.9905 0.9729 0.9959 0.9664

NR

RandomOverSampler 0.9323 0.5581 0.9398 0.8

RandomUnderSampler 0.7259 0.3063 0.7276 0.7083

EditedNearestNeighbours 0.9252 0.4615 0.9436 0.6

SMOTE 0.9217 0.3125 0.9806 0.2272

SVDD Deep 0.9537 0.8484 0.9888 0.7777
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over-sampling. Although the proposed method performs 
more significant in comparison with other methods in all 
evaluation criteria, the only model that can compete with 
the proposed method is the ENN method.

Considering that a deep neural network is used in 
the proposed model, for this reason, the convergence 
process of the proposed method is shown in Fig. 6 of the 
loss diagram for different datasets. As it is known, the 
proposed method reduces the amount of loss decreases 
during the training process. 

Analysis of the dimension reduction method
At this stage, after balancing the data to increase the 
efficiency of the classification models, according to the 
high number of features, the features are reduced using 
the Variational autoencoder method, then they are given 
to the classification models. The results are shown in 
Table 2. As is clear, the results are improved compared 
to the balancing mode. Dimensionality reduction has 
been done in EN, IC, GPCR and NR datasets using a 
variational autoencoder model subsequently so that the 
number of features has been reduced from 1074 to 32 
features in each dataset. However, by using the GBC, the 
performance of the proposed model was evaluated in 
terms of accuracy, AUROC, AUPR and etc. Also, in order 
to ensure the efficiency of the proposed model, using the 
GBC, the obtained results, which are before and after 
dimension reduction in EN, IC, GPCR, and NR datasets, 
are compared using the accuracy measurement criteria.

The results show that, in the EN dataset, accuracy 

increased from 0.9977 to 1, in the GPCR dataset from 
0.9868 to 1, in the NR dataset from 0.9537 to 1, and in 
the IC dataset from 0.9905 to 1. Admittedly, the results 
did not increase incrementally. With this in mind, in 
the previous stage, in the VASVDD model, the features 
have been selected and the proposed model in that has 
balanced the data based on the selected features. 

In order to investigate dimension reduction methods 
and its impact on the performance of classification 
methods, the results of GBC classification on 
dimensionality reduction data are shown in Fig. 7 for 
different datasets. Obviously, when the dimensions are 
reduced, in this case, the classification model has an 
acceptable performance in all criteria such as Accuracy 
(ACC), Sensitivity (SEN), Specificity (SPE), and F1 score 
(F1). The results show that the performance of the model 
has improved compared to before the implementation 
of dimension reduction. In order to evaluate the 
performance of the dimension reduction method in the 
proposed method, this method has been compared with 
other common dimension reduction methods such as 
Kernel PCA, Non-Negative Matrix Factorization (NMF), 
Principal component analysis (PCA), truncated singular 
value decomposition (Truncated SVD) and FastUS.37 As 
is clear, the proposed method has better performance 
rather than other methods in all evaluation criteria The 
important point in this comparison is to pay attention 
to the values of specificity and sensitivity criteria in 
some methods. Some methods perform dimensionality 
reduction in such a way that the dimensionality-reduced 

Fig. 6. Loss value of the proposed balancing model on different datasets.
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data or data with new dimensions do not increase but 
decrease the performance of classification models, and 
the model will be biased towards the majority class. This 
means that in some methods, the obtained features do not 
have good distinguishing features in two classes. 

One of the important criteria in evaluating classification 
models is the use of the Receiver operating characteristic 
(ROC), which is performed on dimensionally reduced 
data. This curve shows the efficiency of the proposed 
method, and in other words, it determines the false 
positive value of the classification model. In this case, 
the greater the area under the curve, show the more 
effective the proposed method. Fig. 8, show the ROC of 
the proposed method based on different classifiers. As it is 
known, the area under the ROC of the proposed model is 
high in all datasets for different classifiers. This shows that 

the proposed model is not dependent on the classifier, 
and its performance is acceptable in all various classifiers. 

The variance of the proposed method in Accuracy 
values is shown in Table 3. As can be seen, EN, IC, GPCR, 
and NR datasets have been checked using Random Forest, 
support vector machines (SVM), multilayer perceptron 
(MLP), and GBC classification methods in k-fold cross-
validation with k = 5. Particularly, by using the mentioned 
classifiers, their average and variance have also been 
obtained. In addition to this, the average is close to the 
Accuracy, and the variance of the proposed method is 
low. This shows the optimal performance of the proposed 
method.

Comparison of the proposed method with other methods
In recent years, various methods have been proposed 

Table 2. Performance of the different classifiers without and with dimensionality reduction method

Dataset Classifier Dimension reduction AUROC AUPR ACC SEN SPE F1

EN

GBoost
without 0.9930 0.9882 0.9977 0.9860 1 0.9929

with 1 1 1 1 1 1

MLP
without 0.9767 0.9496 0.9906 0.9562 0.9972 0.9707

with 0.9981 0.9881 0.9980 0.9982 0.9979 0.9939

RF
without 0.9903 0.9839 0.9968 0.9807 1 0.9902

with 1 1 1 1 1 1

SVM
without 0.9152 0.8508 0.9712 0.8321 0.9982 0.9040

with 0.9851 0.9515 0.9911 0.9761 0.9941 0.9736

GPCR

GBoost
without 0.9709 0.9422 0.9868 0.9452 0.9967 0.9650

with 1 1 1 1 1 1

MLP
without 0.8463 0.6330 0.9120 0.7397 0.9529 0.7632

with 0.9856 0.9502 0.9895 0.9794 0.9918 0.9727

RF
without 0.9520 0.9224 0.9816 0.9041 1 0.9496

with 1 1 1 1 1 1

SVM
without 0.6564 0.3883 0.8543 0.3356 0.9772 0.4688

with 0.9183 0.8087 0.9566 0.8561 0.9805 0.8833

NR

GBoost
without 0.8833 0.7629 0.9537 0.7777 0.9888 0.8484

with 1 1 1 1 1 1

MLP
without 0.7234 0.3564 0.8888 0.5 0.9468 0.5384

with 0.9483 0.7637 0.9629 0.9285 0.9680 0.8666

RF
without 0.8571 0.7513 0.9629 0.7142 1 0.8333

with 1 1 1 1 1 1

SVM
without 0.6572 0.2817 0.8796 0.3571 0.9574 0.4347

with 0.8465 0.6322 0.9444 0.7142 0.9787 0.7692

IC

GBoost
without 0.9811 0.9523 0.9905 0.9664 0.9959 0.9729

with 1 1 1 1 1 1

MLP
without 0.9102 0.7535 0.9505 0.8489 0.9715 0.8532

with 0.9888 0.9599 0.9926 0.9832 0.9945 0.9782

RF
without 0.9661 0.9408 0.9881 0.9328 0.9993 0.9636

with 1 1 1 1 1 1

SVM
without 0.7687 0.5799 0.9159 0.5469 0.9905 0.6863

with 0.9378 0.8454 0.9700 0.8892 0.9864 0.9090
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Fig. 7. Compare the prediction results on balanced data using Variational autoencoder against other dimension reduction methods.

Fig. 8. ROC curves of the proposed method with different machine learning models on different datasets.
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to predict DTIs in the form of machine learning. Most 
of the methods are used from the dataset proposed by 
Yamanishi et al.9 In order to show the effectiveness of 
the proposed method, it is compared with other methods 
using the AUROC evaluation criterion. The results of 
this comparison are given in Table 4. As can be seen, 
the AUROC of the proposed model is superior to other 
methods.

The AUROC values in the proposed model were obtained 
in all datasets using the GBC model. The proposed model 
demonstrates high generalizability, as it achieves superior 
performance with only 32 features compared to using all 
1074 features. This not only improves the computational 
efficiency but also makes the model compatible with 
various classification methods, including XGBoost, GBC, 
and random forest, allowing these classifiers to perform 
effectively in predicting DTIs. 

The model was evaluated using a subset of data from 
four different datasets designated as independent test sets 
to ensure unbiased performance assessment. The results 
demonstrated high accuracy, especially in scenarios 
involving new drugs and new targets, proving the 
model's robustness and effectiveness in drug discovery 

and development. The performance of different datasets 
evaluated using accuracy (ACC) is as follows. The EN_
ADEFG dataset achieved an accuracy of 0.9943. The 
IC_ADEFG dataset performed slightly better with an 
accuracy of 0.9962. The GPCR_ADEFG dataset showed 
the highest accuracy at 0.9986. Finally, the NR_ADEFG 
dataset had an accuracy of 0.9649.

Conclusion
In this paper, a four-step method for Predicting drug-
protein interactions is presented. These steps include 
feature extraction, data balancing, data dimensionality 
reduction and classification. For this purpose, Respectively, 
SVDD deep and VAE have been used to balance and 
reduce the dimensions of the data. The performance of 
the offending classifiers has been evaluated on different 
datasets and the results indicate that the proposed model 
is not dependent on the classification methods and the 
balancing has been executed effectively.

In addition, the results demonstrate that the proposed 
method outperforms other balancing methods. Furthermore, 
this method proves to be more effective than other methods 
in the field of drug-protein interaction prediction. 

Table 3. Comparison of Accuracy values under the 5-Fold cross-validation on datasets

Datasets

EN GPCR

Fold GBOOST MLP RF SVM GBOOST MLP RF SVM

1 1 0.9978 1 0.9882 1 0.9950 0.9983 0.9639

2 1 0.9953 1 0.9868 1 0.9885 0.9967 0.9655

3 1 0.9985 1 0.9886 1 0.9967 1 0.9688

4 0.9992 0.9967 1 0.9882 1 0.9950 1 0.9786

5 0.9996 0.9975 1 0.9857 0.9983 0.9901 1 0.9720

Mean 0.9997 0.9972 1 0.9875 0.9996 0.9931 0.9990 0.9698

Std 0.0002 0.001 0.0 0.0010 0.0006 0.0031 0.0013 0.0052

IC NR

Fold GBOOST MLP RF SVM GBOOST MLP RF SVM

1 1 0.9936 1 0.9781 1 0.9885 0.9885 0.8735

2 1 0.9964 1 0.9738 1 0.9540 1 0.8965

3 1 0.9943 1 0.9788 1 1 0.9767 0.8837

4 1 0.9957 1 0.9604 1 0.9767 0.9883 0.9186

5 1 0.9950 1 0.9618 1 0.9883 1 0.8720

Mean 1 0.9950 1 0.9706 1 0.9815 0.9907 0.8889

Std 0.0 0.0009 0.0 0.0079 0.0 0.0155 0.0086 0.0172

Table 4. Comparison of proposed model with existing methods on four datasets

Dataset Mousavian 
et al21 Li Z et al23 Meng et al35 Wang et al29 Mahmud 

et al4 Wang et al36 Mahmud et 
al37

Khojasteh 
et al13

Proposed 
method

EN 0.9480 0.9288 0.9773 0.9150 0.9808 0.9172 0.9656 0.9920 1

IC 0.8890 0.9171 0.9312 0.8900 0.9727 0.8827 0.9612 0.9880 1

GPCR 0.8720 0.8856 0.8677 0.8450 0.9390 0.8557 0.9249 0.9788 1

NR 0.8690 0.9300 0.8778 0.7230 0.9198 0.7531 0.8652 0.9329 0.968
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