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Introduction
Accidental injuries will be the top cause of mortality and 
the eighth major cause of death worldwide in 2030.1,2 
According to estimates, driving fatigue is the leading cause 
of traffic accidents.3 Nowadays, drowsy driving fatalities 

are a global problem, since they pose a grave threat to 
people's lives and property. As well as being subjectively 
uncomfortable, fatigue can also negatively impact an 
individual's quality of life objectively.4 Early driver 
fatigue is mostly evaluated from a medical standpoint 
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Abstract
Introduction: Drowsy driving is a 
significant contributor to accidents, 
accounting for 35 to 45% of all crashes. 
Implementation of an internet of things 
(IoT) system capable of alerting fatigued 
drivers has the potential to substantially 
reduce road fatalities and associated 
issues. Often referred to as the internet 
of medical things (IoMT), this system 
leverages a combination of biosensors, 
actuators, detectors, cloud-based and 
edge computing, machine intelligence, 
and communication networks to deliver 
reliable performance and enhance quality of life in smart societies.
Methods: Electroencephalogram (EEG) signals offer potential insights into fatigue detection. 
However, accurately identifying fatigue from brain signals is challenging due to inter-individual 
EEG variability and the difficulty of collecting sufficient data during periods of exhaustion. To 
address these challenges, a novel evolutionary optimization method combining convolutional neural 
networks (CNNs) and XGBoost, termed CNN-XGBoost Evolutionary Learning, was proposed to 
improve fatigue identification accuracy. The research explored various subbands of decomposed 
EEG data and introduced an innovative approach of transforming EEG recordings into RGB 
scalograms. These scalogram images were processed using a 2D Convolutional Neural Network 
(2DCNN) to extract essential features, which were subsequently fed into a dense layer for training.
Results: The resulting model achieved a noteworthy accuracy of 99.80% on a substantial driver 
fatigue dataset, surpassing existing methods.
Conclusion: By integrating this approach into an IoT framework, researchers effectively addressed 
previous challenges and established an artificial intelligence of things (AIoT) infrastructure 
for critical driving conditions. This IoT-based system optimizes data processing, reduces 
computational complexity, and enhances overall system performance, enabling accurate and 
timely detection of fatigue in extreme driving environments.
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using medical technology in the laboratory.5 Several 
studies in the field of tiredness analysis have benefited 
from technologies such as image processing, signal 
processing, face evaluation, and physiological signals, 
or a combination thereof.6 Few studies, however, have 
examined driving conditions and the excessive weariness 
of drivers in extreme environments. Given that harsh 
climatic conditions exceed the ideal range for human 
growth and bring about distinct biological changes, face 
or composite-based analyses may not be effective. These 
include driving in mining areas, polar regions, radioactive 
environments, and extremely arid deserts. Changes in 
pH, oxygen levels, temperature, heat, and humidity occur 
under these circumstances, making it harder to diagnose 
weariness.

To investigate driving tiredness in extreme 
environments, several studies incorporate mental and 
objective monitoring via electroencephalogram signals. 
The examination of electroencephalography (EEG) 
signals, which have long been regarded as the 'gold 
standard' for fatigue monitoring, is crucial in recognizing 
exhaustion in extreme environments.7 Additionally, 
weariness is one of the leading causes of vehicle incidents 
in such environments.8 In order to handle the vehicle 
properly, brain tiredness detection technologies must 
accurately reflect the driver's mental acuity. Several 
scientific organizations utilize EEG data to intuitively 
depict the driver's mental state.9-11 EEG signal analysis can 
be beneficial for monitoring the mental state of drivers 
in extreme environments, which presents difficulties. 
Yet, one of the difficulties is the extraction of complete 
features from complicated and unstable EEG signals and 
the processing of data in many dimensions. Due to the 
vast amount of information collected, specific methods 
or technologies can be employed to reduce the bulk. In 
recent years, the construction of a wireless physiological 
signal monitoring system with secure data exchange 
inside the health care system has been a significant and 
dynamic activity.12 The use of the internet of medical 
things (IoMT) architecture, specifically smart biosensors 
at the edge, to enable mobility and rapid access to people's 
data has had a substantial influence in recent years.13,14 

Another difficulty is discovering the link between various 
disciplines and learning characteristics.14 During data 
collection, variations in EEG signals across individuals are 
attributed to sleep quality, brain activity, and undefined 
external interference sources. 

EEG-based monitoring systems have been shown to 
accurately detect and measure drowsiness in real-time 
based on existing research on EEG signals. By analyzing 
the electrical signals generated by the brain during periods 
of fatigue, these systems provide valuable insights into a 
driver's alertness level. Research like this contributes to 
the advancement of IoT/AIoT computing in healthcare, 
enabling the development of innovative solutions for 

monitoring and improving driver safety.15 There are many 
ways to diagnose fatigue using EEG signals. The data 
collection process was influenced by several techniques, 
such as facial expressions and peripheral physiological 
indicators. However, few studies have investigated 
how EEG signals can be used to identify weariness in 
extreme environments. EEG analysis includes several 
recognition models and explores numerous possibilities 
for developing integrated systems. Recently, EEG data for 
tiredness diagnosis have been processed using machine 
learning (ML), deep learning (DL), and a variety of real-
world applications. 

Zeng et al. introduced an enhanced transfer learning 
method, InstanceEasyTL, to detect driver fatigue using 
EEG signals. This approach surpassed EasyTL in accuracy, 
stability, and data efficiency.16 Min et al proposed a hybrid 
framework combining prefrontal EEG, multiple entropy 
measures, and a hybrid model, achieving superior fatigue 
detection accuracy in real-world conditions.17 Ren et al 
developed a radial basis function network with a two-
level learning hierarchy, employing PCA for feature 
extraction, and attaining a 92.71% accuracy in detecting 
driver fatigue.18 Zeng et al proposed a transfer learning 
model combining DANN and GAN, achieving a 91.63% 
accuracy in cross-individual fatigue detection.19

Abdubrani et al introduced a comprehensive framework 
for driver fatigue detection using EEG analysis and 
various machine learning architectures.20 Their modified 
z-score method yielded a remarkable 99.65% accuracy in 
fatigue detection. Yang et al developed a broad learning 
system based on complex networks, demonstrating high 
accuracy in distinguishing between alert and fatigued 
states.21 Du et al proposed a fuzzy convolutional neural 
network combining EEG and ECG, achieving high 
accuracy and stability in detecting fatigue under noisy 
conditions.22 Wang et al employed Partial Directed 
Coherence to extract graph features from EEG, resulting 
in an 87.16% accuracy in fatigue detection.23 Zhang et al 
introduced a graph convolutional neural network based 
on Partial Directed Coherence, automatically extracting 
topological brain network features and achieving a 
96.01% accuracy in fatigue detection.24 Zeng et al explored 
epidermal electronic systems for non-invasive mental 
fatigue monitoring, attaining an 89% accuracy using 
machine learning algorithms.25

Jantan et al. presented a multi-model approach utilizing 
convolutional neural networks, achieving over 99% 
accuracy in detecting driver fatigue.26 Gao et al developed 
a network combining spatial, frequency, and temporal 
information with an attention mechanism, surpassing 
other models in accuracy.27 Sangeetha et al. introduced 
a DL approach for detecting microsleep using various 
EEG signals, demonstrating high accuracy and real-world 
applicability.28 Jingwei developed a fatigue detection 
system combining EEG and Electromyography signals, 
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utilizing the ThinkGear ASIC Module and signal analysis 
for accurate fatigue detection and driver alerts.29 Wu et 
al presented a DL model employing a sparse autoencoder 
for pilot fatigue detection, achieving high accuracy in 
detecting mental fatigue.30 Zhang et al introduced an 
auto-weighting incremental random vector functional 
link network for driver fatigue detection, outperforming 
existing methods with incremental learning capabilities.31 
Sedik et al. developed a fatigue detection system 
combining fast Fourier transform and discrete wavelet 
transform (DWT) for feature extraction and noise 
reduction, achieving high accuracy in fatigue detection.32

Abbas and Alsheddy analyzed and compared different 
IoT platforms for driver fatigue detection, providing 
insights and improvement suggestions.33 Liu et al proposed 
transfer learning algorithms across individuals for mental 
fatigue detection, achieving higher accuracy with reduced 
calibration needs.34 Ding et al. presented a ResNet3D DL 
model for driver fatigue detection using three prefrontal 
EEG channels, achieving a 79.45% accuracy.35 Gao et al 
introduced a multi-dimensional feature fusion network 
for fatigue detection, achieving an 85.16% accuracy across 
various datasets.36

Wu et al employed AutoEncoder to extract features 
from EEG signals, compressing and representing EEG 
signals of pilots and using a SoftMax classifier for pilot 
fatigue detection, achieving a 91.68% accuracy.37 Wen et 
al utilized AutoEncoder for unsupervised feature learning 
of EEG signals and paired it with an AdaBoost classifier 
to detect fatigue from the DEAP dataset, achieving a 
95.00% accuracy.38 Ma et al. presented a method using 
Modified-PCANet for feature extraction and SVM for 
EEG signal classification, achieving a 95.14% accuracy on 
a self-collected EEG dataset.39 Rundo et al. used Stacked 
AutoEncoder for feature extraction and SoftMax for 
classification, achieving a 100% accuracy on a self-collected 
EEG dataset.40 Panwar et al employed GAN for generating 
synthetic data and SoftMax for classification, achieving a 
67.00% accuracy on a self-collected EEG dataset within a 
Wasserstein GAN setup.41 Lee et al combined LSTM and 
CNN to extract temporal and spatial features from EEG 
signals, achieving an 86.00% accuracy in three-class EEG 
signal classification using SoftMax.42

The reviewed studies showcase diverse approaches 
to driver fatigue detection using EEG signals, with high 
accuracy achieved through hybrid methods, DL, and 
feature extraction techniques. However, challenges such as 
extensive data requirements, computational complexity, 
and parameter optimization persist. The proposed CNN-
XGBoost hybrid model aims to address these limitations 
by combining DL and boosting algorithms for improved 
accuracy and efficiency in detecting driver fatigue.

Moreover, conventional detection approaches 
require handcrafted feature extraction and rely on past 
information. Handcrafted extraction focuses solely on 

particular traits, ignoring others that are necessary for 
fatigue detection. In contrast, the DL model is capable of 
end-to-end feature learning (e2e). However, the majority 
of present studies only address DL models as classifiers. 
There is a need for more study on the impact of other 
subjects on the learned features.

Using convolutional concepts as a basis, this paper 
proposes a novel learning approach based on a fusion 
of convolution neural networks (CNNs) and Extreme 
Gradient Boosting (XGBoosts) for detecting brain fatigue 
in extreme environments. Our fatigue classification task 
combines CNN, XGBoost, and signal decomposition. 
Additionally, fatigue is detected using a limited number 
of channels, which results in good accuracy and a 
reduction in processing time. Our proposed scalogram 
image-based 2DCNN-XGBoost fusion approach is used 
to further process RGB images by applying continuous 
wavelet transform (CWT) to the existing EEG signals. 
In addition, we investigated the link between topics and 
characteristics. The primary contributions of this study 
are as follows:
1. A novel framework integrating CNN and XGBoost is 

proposed in this research. By employing Continuous 
Wavelet Transform, EEG signals are converted into 
RGB scalogram images. This innovative approach 
effectively addresses the challenge of driver fatigue 
detection, particularly in demanding environments. 
The fusion of CNN and XGBoost empowers the 
model with robust feature extraction and high-
accuracy classification.

2. To enhance the efficiency of fatigue detection 
systems, an optimized dimensionality reduction 
method is introduced. This approach preserves 
essential EEG data features while significantly 
reducing data volume. Consequently, computational 
load and processing speed are optimized, making the 
method ideal for real-time applications in industrial 
and healthcare settings.

3. To enhance driver safety, this research 
comprehensively evaluates the CNN-XGBoost 
model within an IoT-driven biosensor framework 
for accurate fatigue detection. Rigorous testing under 
diverse conditions reveals the model's high reliability, 
positioning it as a crucial tool for preventing fatigue-
related accidents.

The structure of this paper is as follows: Section 2 
provides a detailed description of the proposed model 
architecture. In Section 3, the experimental data and 
results are presented. Section 4 discusses the challenges 
encountered and offers an outlook on future directions. 
Finally, Section 5 provides the conclusion, summarizing 
the key findings and their implications.

Materials and Methods
The proposed method for detecting driver fatigue in 
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extreme environments is built upon the integration of 
advanced signal processing techniques and machine 
learning algorithms. This approach leverages the power 
of CNN and the XGBoost classifier, optimized through a 
modified particle swarm optimization (PSO) algorithm, 
to accurately identify fatigue based on EEG signals. 

The system is designed to address the unique challenges 
presented by the variability and complexity of EEG data 
in extreme conditions. By transforming EEG recordings 
into scalogram images using CWT and then extracting 
features through a 2D-CNN, the method enhances the 
detection accuracy and robustness of the model. This 
section outlines the key components and processes 
involved in the proposed method, providing a detailed 
overview of the signal preprocessing, feature extraction, 
and classification steps, which collectively contribute to 
the system's high performance and generalizability across 
different scenarios. Fig. 1 depicts a potential system for 
identifying driver fatigue based on EEG data in extreme 
environments.

Dataset 
In this study, we accessed EEG recordings from the Figshare 
database.43 The dataset we utilized is derived from the 
Figshare database, which includes EEG recordings from 
16 participants (8 women and 8 men) aged 17 to 25. Each 
participant's EEG data was collected using a 32-electrode 
brain helmet during driving simulation tests. The dataset 
encompasses a comprehensive range of driving conditions 
and participant states, allowing us to capture a diverse set 
of fatigue indicators. EEG recordings typically last several 
minutes, followed by data analysis. Participants were 
instructed to drive in a simulated environment while 
EEG signals were collected. These signals often indicated 

fatigue, which varied in onset between participants. To 
measure fatigue, researchers employed Li's and Borg's 
scales. Neurologists categorized EEG signals into those 
from conscious and fatigued participants. However, 
identifying fatigue in EEG signals is complex due to 
the brain's dynamic nature. While the protocol focused 
on distinguishing conscious and fatigued states, it's 
acknowledged that fatigue might not be fully captured 
in the recorded signals. Driving simulators were used for 
the tests, according to the description. Driving simulators 
were used for the tests, according to the description. 
These simulations were conducted to replicate real-world 
driving conditions, allowing for the collection of EEG data 
under controlled yet realistic scenarios. The participants' 
EEG signals were recorded using a 32-electrode brain 
helmet, capturing brain activity during both conscious 
and fatigued states. The use of driving simulators ensured 
a consistent environment for all participants, making the 
dataset particularly valuable for developing and validating 
fatigue detection algorithms.

Signal preprocessing 
There are four frequency bands in which human EEG 
recordings are usually divided: Theta (4-8 Hz), Alpha 
(8-13 Hz), Beta (13-30 Hz), and Gamma (30-48 Hz). 
Therefore, the DWT is used to determine the frequency, 
followed by the application of a Hanning window to 
divide the frequency band into time slices.

For the dilation and translation parameters a and b, 
make them discrete values, such as 0

ma a=  and 0 0
mb nb a=

, where m and n are integers. The equation (2) describes 
discrete wavelets by substituting these values for a and b 
in (1). 

Fig. 1. Overview of the proposed method for fatigue detection, illustrating the key steps involved in the process.
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Where, ψ((t-b) × 1a- ) is the conjugate component of the 
mother wavelet ψ(t). In addition, a and b are two random 
real values. This equation defines the DWT, where ψa,b(t) 
is the wavelet function, a is the scaling parameter that 
controls the frequency, and b is the translation parameter 
that determines the time shift. The wavelet ψ(t) is a 
function that can be dilated and translated to analyze 
different parts of the signal at various scales and positions, 
making it useful for capturing both frequency and time-
domain characteristics in EEG signals. On the time axis, 
the parameters a and b indicate the values for dilations 
and translations, respectively.

2
0 0 0
m m

m nψ t a bψa t n- / -
, -                                                 (2)

The DWT has no more than log_2 N phases when given 
a signal x[n] of length N. The starting point yields two sets 
of coefficients: the approximation coefficients cA1 and 
the detail coefficients cD1. Following decimation, these 
vectors are generated by convolving x[n] with the low-
pass filter g for approximation and the high-pass filter h 
for detail:

[ ] [ ] [ ]1 2
k

cA n x k g n k
¥

=-¥

= -å                                            (3)

[ ] [ ] [ ]1 2
k

cD n x k h n k
¥

=-¥

= -å
                                            (4)

The following step divides the approximation coefficients 
cA1 into two parts utilizing the identical method, yielding 
cA2 and cD2, respectively. Fig. 2 shows this method of 
sampling, commonly known as dynamic decomposition. 
These equations represent the convolution operations 
used to calculate the approximation coefficients cA[n] 
and detail coefficients cD[n] in the DWT. The signal 
x[k] is convolved with a low-pass filter g[n] to obtain the 
approximation coefficients, and with a high-pass filter h[n] 
to obtain the detail coefficients. These coefficients capture 
the low-frequency and high-frequency components of the 
EEG signal, respectively.

Scalogram of signal
Despite its non-stationary nature, the EEG signal exhibits 
multiple frequency spectra. In terms of the dynamics of 
an EEG signal, CWT is typically used to extract power 
from frequency bands. Notably, to address the non-
stationary nature of EEG signals, we utilized the CWT 
combined with a Hanning window. The Hanning window 
was applied to mitigate spectral leakage by dividing the 
signal into smaller time slices, which helps in preserving 
the integrity of the signal during frequency analysis. The 
CWT was then used to transform these time slices into a 
time-frequency representation, allowing for an accurate 
analysis of the EEG signals' frequency content over time. 
This approach effectively resolves the non-stationary 
problem by enabling the extraction of meaningful features 
from the EEG signals, which are crucial for detecting 
driver fatigue.

By forming windows with varying widths from a 
wavelet function, the wavelet takes advantage of the fact 
that low-frequency signals spread over time, while high-
frequency impulses occur at short intervals. Convolution 
is conducted by a window that moves along a signal in 
CWT:

0 5 1ΨW a b a s t t b a dt.( , ) ( ) ( )                             (5)

A translation parameter is b, and a scaling parameter 
is 0 < a < ∞. Temporal localization of frequency features 
requires a Complex Morlet mother wavelet that is non-
orthogonal and exponentially complicated [41]. Thus, 
W(a,b) is the wavelet coefficient, x(t) is the signal being 
analyzed, a is the scale parameter, and b is the translation 
parameter. The CWT is used to transform the EEG 
signal into a time-frequency representation, where each 
coefficient represents the signal’s content at a specific 
scale and time. As shown below, a complex Morlet 
wavelet consists of cosine and sine waves combined with 
a Gaussian function:

20 5 2Ψ πftj t ft πf e e.( ) ( )                                                      (6)

Based on the sine signal's fundamental frequency and 
the Gaussian bandwidth, the mother wavelet's time and 
frequency resolution can be described as follows44:

0 5Δ 0 25c bt f f .( . )                                                                   (7)

Fig. 2. Illustration of the Discrete Wavelet Transform (DWT), also referred to as dynamic decomposition.
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1Δ 2 c bf πf f( )                                                                      (8)

There is a trade-off between frequency and time 
resolution. In these equations, the parameters a and b 
are crucial for fine-tuning the model's behavior based on 
the characteristics of the dataset. Parameter a typically 
controls the influence of specific features, such as time-
domain aspects of EEG signals, while b might adjust 
the regularization strength or balance between model 
components. These parameters are selected through 
empirical testing and optimization to enhance model 
performance, ensuring sensitivity to relevant features 
while maintaining generalizability across different 
datasets, particularly in challenging conditions like 
extreme environments.

The Hanning window and Complex Morlet wavelet 
were specifically chosen for their ability to enhance the 
accuracy and robustness of signal processing in our 
proposed method. The Hanning window is used in the 
preprocessing stage to mitigate spectral leakage when 
dividing the EEG signal into time slices. This windowing 
function is essential for minimizing distortions that can 
occur during the frequency analysis of the EEG signal, 
thereby preserving the integrity of the signal's features. The 
Complex Morlet wavelet, on the other hand, is employed 
for its excellent time-frequency localization properties, 
which are crucial in analyzing non-stationary signals 
like EEG. The combination of cosine and sine waves 
with a Gaussian function allows the Complex Morlet 
wavelet to effectively capture both the temporal and 
spectral characteristics of the EEG data. This capability 
is particularly important for detecting subtle changes 
in brain activity that are indicative of driver fatigue, as 
it ensures that both high-frequency and low-frequency 
components are accurately represented. Together, these 
methods contribute significantly to the overall approach 
by providing a reliable and precise framework for feature 

extraction, which is foundational to the success of the 
subsequent classification steps in the model. 

Deep CNN
Fig. 3 shows the total two-dimensional CNN model 
employed in our proposed structure (see Fig. 1), as well 
as our 2DCNN-XGBoost fusion strategy. Before using 
this Classifier model, we created spectrum illustrations 
by filtering the frequency range with signals between 4 
and 30 Hz, and then extracted features with a 2D CNN 
and another dense layer. As part of our evaluation of the 
proposed solution, we developed a test environment. The 
following is a description of the algorithm trained using 
CNN: 

2D Convolution layer: The first layer typically collects 
basic information such as horizontal and diagonal edges. 
In the subsequent layer, this data is used to recognize 
more complex characteristics, such as corners and 
combinational edges. More complex characteristics, such 
as objects and encounters, can be recognized as we go 
deeper into the structure. In the last convolution layer, 
the determinants are identified, and a series of confidence 
ratings (0-1) are generated. We identified the classes using 
three 2D Convolution layers.

Maximum pooling: By pooling the features, the spatial 
dimension of the convoluted features is reduced. As file 
sizes decrease, so do the processing time and memory 
space required to store and retrieve information. In 
terms of performance, maximum pooling outperforms 
average pooling. Noise and dimensionality are reduced by 
removing noisy activations. Generally, equation (9) can 
be used to express the pooling function:

1
1 2

l l l l l l
j i n i jq Pooling q q q q q R( , , ..., , ..., ) ,+ = Î                          (9)

Rl
j represents the jth pooled region at layer l, and Pool() 

represents the pooling function. Moreover, this equation 
describes the pooling function in the CNN model, which 
is used to reduce the spatial dimensions of feature maps. 
The equation Rj

l = Pooling(qi
1,qi

2,...,qi
n) illustrates that the 

pooling operation (such as max pooling) takes a set of 
input values from a small region in the feature map and 
condenses them into a single output value Rj

l for that 
region. This process helps to retain the most significant 
features while reducing the computational complexity and 
preventing overfitting in the model, thereby improving its 
efficiency and generalization.

Dropout: To prevent overfitting, we inserted a dropout 
layer after the pooling layer. When the loss rate falls and 
the dropout rate drops, accuracy will continue to increase. 
Certain max pooling results are randomly chosen and 
neglected. They are not transmitted to the layer bottom. 
The statement "certain max pooling results are randomly 
chosen and neglected" refers to the use of a stochastic 
pooling approach in our CNN model, where values within Fig. 3. Overview of the convolutional neural network (CNN) architecture.
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the pooling window are selected based on probabilities 
proportional to their magnitude, rather than simply 
choosing the maximum value. This introduces an element 
of randomness, which acts as a form of regularization, 
preventing the model from becoming overly dependent 
on specific features. As a result, the model is encouraged to 
learn more general patterns, improving its robustness and 
generalization, particularly when dealing with variability 
in the input data. This approach ultimately enhances the 
model's performance on unseen data.

Flatten: Following a series of 2D convolutions, 
a flatten function is always required. Flattening 
converts information into a one-dimensional array for 
computation. The output of the convolutional layers is 
flattened to produce a single, long feature vector. It is also 
connected to the entire categorization framework.

Dense: A dense layer provides the neural network with 
a fully interconnected network. All of the outputs of the 
previous layers are sent to all of its neurons, with each 
neuron giving one output to the subsequent layer. The 
dense layer, also known as a fully connected layer, plays 
a crucial role in a CNN by integrating and processing 
the features extracted by the convolutional and pooling 
layers. Unlike earlier layers that focus on spatial features, 
the dense layer connects every neuron to each neuron 
in the previous layer, allowing the model to combine 
all the learned features for final decision-making. This 
layer is essential for interpreting the high-level features 
and making accurate predictions, such as determining 
whether a driver is fatigued. Its significance lies in its 
ability to capture complex relationships between features, 
which is vital for producing accurate and meaningful 
outcomes in the model. 

Various kernels are used in the convolution layer of 
our proposed CNN model to extract high-level features, 
leading to distinct feature maps. The prediction model 
concludes with a fully linked layer. The output of the fully 
connected layer produces the expected class labels for 
weariness. To extract this number of features, we added a 
dense layer of 630 units after the training layer.

Optimized XGboost
In comparison with Random Forest, the XGBoost 
algorithm is 10 times more efficient. At each stage of the 
XGBoost framework, an additional tree is added to the 
previously constructed trees. Precision typically increases 
with the planting of more trees. We implemented 
XGBoost after CNN in our suggested algorithm. From 
the training layer of CNN, we extracted a number of 
features. Accordingly, the CWT was used to transform 
the EEG signals into scalogram images, capturing both 
time and frequency information. These scalogram images 
served as input to the CNN, which then extracted high-
level features through a series of convolutional layers. The 
features captured by the CNN include essential frequency 

components, spatial patterns, and signal characteristics 
that are crucial for distinguishing between fatigue and 
non-fatigue states.

The selection of features was driven by their relevance 
to the task of fatigue detection. We focused on features 
that are known to be indicative of cognitive and physical 
fatigue, such as changes in specific brain rhythms (e.g., 
Alpha, Beta, Theta, Delta rhythms). Additionally, the 
model was fine-tuned using evolutionary optimization 
techniques to ensure that only the most significant features 
were retained, further enhancing the model's accuracy and 
generalization capability. Based on the collected data, we 
classified fatigue occurrences in extreme environments 
using XGBoost. By summing the values of each tree's leaf 
nodes, XGBoost forecasts the result. The purpose of this 
method is to learn these k trees; hence we minimize the 
objective function below:

1 1
Ω

K
t

k i i
k i

n
L f l y y( ) ( ) ( , )                                             (10)

Where, l represents the loss of the differential between 
the predicted ˆly  and actual values yi. The following 
statement describes Ω regularization:

21Ω
2

f λ ω γT( )                                                                (11)

The regularization term Ω(f) is crucial for controlling 
the complexity of the XGBoost model. It serves to penalize 
large weights within the model, which helps prevent 
overfitting. Thus, this regularization helps to enhance 
the model's generalization ability by preventing it from 
fitting too closely to the training data, thus improving 
its performance on unseen data. Moreover, there are T 
leaf nodes in the model, while γ is a hyperparameter that 
affects its complexity. Normally constant leaf weight ɷ is 
penalized by λ, which represents its penalty coefficient. 
When t trees exist in a framework, it is stated in the 
following way:

1t t
j k j jy f x y( ) ( )( ) -= +                                                       (12)

Combining (10) and (11) results in the following 
function:

1

1
Ωt t

t i

n

k i i
i

L f l y y f x( ) ( )( ) , ( )  
                             (13)

After performing the Taylor expansion, XGBoost 
removes the first three terms, removes the high-order 
infinitesimally small terms, and transforms the objective 
function into a linear function.

1 2 2

1
Ω 0 5t t

k i i i t i i i i

n

i
L f l y y g f x h f x( ) ( )( ) , ( ) . ( )            (14)
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gi and hi are the first and second derivatives of the loss 
function, respectively. The difference between 1ˆ t

iy −  and 
yi is removed since it has no bearing on optimizing the 
objective function:

2

1
Ω 0 5

n
t

k i i i i i i
i

L f l g f x h f x( ) ( ) , ( ) . ( )                            (15)

These equations define the objective function for the 
XGBoost algorithm. The function 𝐿(𝜃) consists of a loss 
term that measures the difference between the predicted 
values ˆly  and the actual values yi, and a regularization 
term Ω(𝑓) that penalizes the complexity of the model. 
The regularization term helps prevent overfitting by 
controlling the complexity of the trees in the ensemble. 
Moreover, the end objective is reached by entering the 
optimal value:

2

1
0 5

T
i

fun function function
ii

GObject γT
H λ

. C , C              (16)

Hyperparameters determine how complicated or 
regularized the model is. Using parameter optimization to 
tune hyperparameters can enhance prediction capabilities. 
A number of hyperparameters can be tuned for XGBoost. 
In terms of finding global optimums, the PSO algorithm 
is one of the most reliable approaches. This method 

improves XGBoost so that it can find n-dimensional 
space-optimal values for numerous meta-parameters. 
In the quest for finding the global optimums for these 
hyperparameters, the PSO algorithm emerges as a robust 
and dependable approach. PSO enhances the capabilities 
of XGBoost by efficiently exploring the n-dimensional 
space to identify optimal values for various meta-
parameters. This dynamic synergy between XGBoost and 
PSO not only streamlines the process of hyperparameter 
tuning but also contributes to the model's ability to adapt 
and generalize effectively in diverse datasets

The steps to optimize the XGBoost classifier are in Fig. 
4. As shown in this table, the set C is found by selecting 
the maximum of i based on L, R, and the normal value 
of the Cfunction. The pseudocode in Fig. 4 outlines the 
steps involved in optimizing the hyperparameters of the 
XGBoost classifier using a PSO algorithm. 

The process begins by initializing particles, each 
representing a potential solution in the search space. 
These particles are evaluated based on a fitness function 
related to the classification accuracy of XGBoost. The 
particles' velocities and positions are updated iteratively 
to explore the search space, with the goal of converging 
on the optimal set of hyperparameters. This iterative 
process is guided by both the individual particle's best-
known position and the global best position found by the 

Fig. 4. An improved version of XGBoost for detecting driver fatigue.
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swarm. The PSO algorithm's integration with XGBoost 
enhances the model's ability to find an optimal solution 
efficiently, improving the overall performance of the 
fatigue detection system. A modified PSO algorithm 
significantly enhances XGBoost model performance 
by optimizing its hyperparameters more effectively 
than traditional methods. This approach is specifically 
designed to navigate the complex hyperparameter 
space of XGBoost, which encompasses parameters like 
learning rate, maximum depth, and the number of 
estimators. By leveraging swarm intelligence principles, 
the modified PSO accelerates convergence and improves 
optimization accuracy. Each particle within the swarm 
represents a potential solution characterized by specific 
hyperparameter values. The algorithm iteratively updates 
these particles based on both individual and collective 
best performances. This dynamic adjustment enables 
efficient exploration and exploitation of the search 
space, mitigating common challenges like local optima. 
Enhancements to the standard PSO, such as adaptive 
velocity updates and refined convergence criteria, further 
refine XGBoost parameter tuning, resulting in a model 
that is not only more accurate but also exhibits greater 
robustness across diverse datasets. This synergistic 
combination of modified PSO and XGBoost yields a 
powerful predictive model capable of effectively handling 
the intricacies of complex data, such as EEG signals for 
fatigue detection.

Results
Among the measures used are accuracy, precision, 
sensitivity, F-measure, and specificity. As well, unlike 
macroaveraging (macroAVG), microaveraging 
(microAVG) gives each category equal weight. 
Macroaveraging calculates evaluation metrics like 

precision, recall, and F1-score independently for each 
class and then averages them, giving equal weight to 
all classes. In contrast, microaveraging aggregates the 
contributions of all classes, giving more weight to those 
with more samples. By using both methods, the study 
provides a comprehensive assessment of the model's 
performance across different class distributions, ensuring 
that both individual class performance and overall 
accuracy are thoroughly evaluated. An analysis of the 
three case studies presented in Table 1 demonstrates 
the effectiveness of the proposed model. In Table 1, we 
examine when it is appropriate to use a smaller or larger 
number of CNN layers. The table presents different 
scenarios of EEG signal processing and classification 
using the proposed model, each selected based on distinct 
CNN configurations and their impact on classification 
accuracy for detecting driver fatigue. Case Study 1 focuses 
on a configuration with fewer CNN layers to evaluate 
performance with a simpler architecture, while Case 
Study 2 explores a deeper architecture to assess potential 
improvements in performance. 

Accordingly, classification of fatigue signals with 
more layers in CNN leads to better results when we 
compare SVM, XGboost, and evolutionary XGboost 
(eXGboost). Each assessment was cross-validated by three 
independent experiments. The sample signal, which had 
been analyzed to resolve the non-stationary problem, was 
divided into several windowing intervals, and therefore, 
the length of the signals was considered to be 30 seconds 
with 30% overlapping between two consecutive windows, 
which resulted in 28 frames for each participant. Next, 
a scalogram image was created from the generated 
windows. Due to the four sub-bands of the signal and its 
forty channels, a total of 71 680 windows and scalograms 
were created for all 16 participants.

Table 1. Comparison of classification performance metrics under different CNN configurations

Metric

Under a low number of CNN structure layers

Conscious (Class 1) Fatigue (Class 2) macroAVG microAVG

SVM XGboost eXGboost SVM XGboost eXGboost SVM XGboost eXGboost SVM XGboost eXGboost

Precision 98.91 99.02 99.88 96.03 97.99 99.47 97.47 98.50 99.67 97.47 98.50 99.67

Sensitivity 96.14 98.01 99.47 98.88 99.01 99.88 97.51 98.51 99.68 97.47 98.50 99.67

Specificity 98.88 99.01 99.88 96.14 98.01 99.47 97.51 98.51 99.68 97.47 98.50 99.67

Accuracy 97.47 98.50 99.67 97.47 98.50 99.67 97.47 98.50 99.67 97.47 98.50 99.67

F- score 97.51 98.51 99.68 97.43 98.51 99.67 97.47 98.50 99.67 97.47 98.50 99.67

Metric

Under a high number of CNN structure layers

Conscious (Class 1) Fatigue (Class 2) macroAVG microAVG

SVM XGboost eXGboost SVM XGboost eXGboost SVM XGboost eXGboost SVM XGboost eXGboost

Precision 99.16 99.54 100 96.76 98.07 99.69 97.96 98.81 99.84 97.96 98.81 99.84

Sensitivity 96.83 98.10 99.69 99.14 99.54 100 97.99 98.82 99.84 97.96 98.81 99.84

Specificity 99.14 99.54 100 96.83 98.10 99.69 97.99 98.82 99.84 97.96 98.81 99.84

Accuracy 97.96 98.81 99.84 97.96 98.81 99.84 97.96 98.81 99.84 97.96 98.81 99.84

F- score 97.98 98.82 99.84 97.93 98.80 99.84 97.96 98.81 99.84 97.96 98.81 99.84
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This number is divided in half according to alertness 
and fatigue levels. In Fig. 5, we show two examples of 
EEG signals from conscious and fatigued drivers. Their 
scalogram images are displayed along with the signal. 
A comparison of sub-bands of brain signals shows that 
there is no noticeable difference in some sub-bands when 
driving in normal environments. 

However, almost all brain rhythms help identify 
fatigue in some way. There is no doubt that extreme 
environments are more likely to cause fatigue than other 
environments. Due to external and visual stimulation, the 
Alpha rhythm is suppressed and its intensity decreases. 
Therefore, under normal driving conditions, the Alpha 
rhythm can significantly assist with fatigue detection. 
In extreme environments and in normal environments, 
driving fatigue is not associated with drastic changes in the 
Delta, Theta, and Beta rhythms. The occipital region and 
adjacent brain areas are activated when the brain is faced 
with a large amount of visual and focused information. 
There is no significant difference between the Beta rhythm 
in extreme environments and the same rhythm in normal 
environments. Normally, the driver's Alpha rhythm is 
very intense, but in extreme environments, this intensity 

is greatly reduced. Overall, this rhythm can be considered 
an effective measure for assessing driver fatigue in both 
environments.

Discussion
Table 2 provides a detailed analysis of the performance 
metrics for various EEG sub-bands-Delta, Theta, Alpha, 
Beta, and Gamma-regarding their effectiveness in 
detecting fatigue. Among these, the Alpha sub-band 
continues to stand out with the highest performance 
across all metrics, including a Precision of 97.38% 
and an Accuracy of 97.11%, underscoring its strong 
association with fatigue states, particularly those linked 
to relaxation and drowsiness. The Theta and Beta sub-
bands demonstrate moderate relevance, with Theta 
showing slightly higher accuracy (87.61%) and F-score 
(87.36%) compared to Beta, indicating their importance 
in capturing brain wave patterns related to drowsiness 
and cognitive activity. In contrast, the Delta and Gamma 
sub-bands exhibit lower relevance, with accuracy metrics 
of 85.38% and 84.73%, respectively, suggesting that these 
sub-bands are less effective in distinguishing fatigue due 
to their association with deep sleep (Delta) and high-level 

Fig. 5. EEG signals from both conscious and fatigued drivers, accompanied by their corresponding scalogram images.

Table 2. Quantitative results for EEG sub-bands in fatigue detection 

Sub-band Precision (%) Sensitivity (%) Specificity (%) Accuracy (%) F-score (%) Fatigue relevance

Delta 85.38 85.23 85.53 85.38 85.3 Low

Theta 87.5 87.21 87.8 87.61 87.36 Moderate

Alpha 97.38 97.02 97.74 97.11 97.2 High

Beta 92.56 92.79 92.32 92.69 92.67 Moderate

Gamma 84.55 84.68 84.41 84.73 84.61 Low

Note: This table presents the precision, sensitivity, specificity, accuracy, and F-score for each EEG sub-band (Delta, Theta, Alpha, Beta, Gamma), along with 
their relevance to fatigue detection.
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cognitive functions (Gamma). Overall, the Alpha sub-
band remains the most critical for fatigue detection, while 
Theta and Beta also play significant but lesser roles, and 
Delta and Gamma are identified as less significant.

Moreover, electrodes T6, P3, TP7, and O1 demonstrate 
substantially more influential influence than electrodes 
FC4, C3, P4, and F8 (see Table 3). This demonstrates that 
each person has a distinct channel of priority for driving 
tiredness. Taking into consideration the association 
between electrodes and the creation of more effective 
channels, the TP7, CP3, T5, and P3 electrodes are 
deemed more successful. By selecting the Alpha rhythm 
and brain areas responsible for information processing, 
the computational complexity of fatigue classification 
can be significantly reduced. The influence of specific 
electrodes in detecting driver fatigue was determined by 
analyzing their contribution to the classification accuracy 
across different EEG sub-bands. This analysis involved 
evaluating the performance of electrodes based on the 
accuracy, sensitivity, and specificity metrics for each sub-
band.

Electrodes T6, P3, TP7, and O1 were found to have a 
substantially higher influence compared to electrodes 
FC4, C3, P4, and F8. This determination was made 
by examining the signal quality and relevance of each 
electrode in capturing the most critical EEG features 
associated with fatigue. The criteria for selecting these 

electrodes involved their ability to consistently contribute 
to high classification accuracy in multiple testing scenarios, 
indicating their importance in the overall model's 
effectiveness for fatigue detection. To support the claim 
that results based on fewer features from four electrodes 
were superior to other classification approaches, we 
conducted a thorough comparison using performance 
metrics such as accuracy, sensitivity, and specificity. The 
electrodes T6, P3, TP7, and O1 were selected due to their 
significant contribution to fatigue detection, as identified 
through empirical analysis of EEG sub-bands. The results 
showed that features from these electrodes led to higher 
accuracy and better generalization compared to models 
using a broader set of features, particularly in the Alpha 
sub-band, where the selected electrodes captured the 
most relevant fatigue-related information. This approach 
also improved model efficiency by simplifying the feature 
set without compromising accuracy.

For optimization of XGBoost classifier, various 
optimization evolutionary algorithms were compared, 
such as PSO, Genetic algorithm (GA), and Ant Colony 
Optimization (ACO). Hence, based on the loss function 
over a finite number of epochs, the convergent level of 
error is calculated (see Fig. 6). 

A modified PSO procedure allows rapid and reliable 
optimization of the XGBoost classifier for various 
fatigue signals. There have been several studies that have 

Table 3. Three criteria used to estimate the effectiveness of electrodes, demonstrating the algorithm's capability to achieve satisfactory results through 
selected electrodes

K-fold
Electrodes (TP7, P3, T5, and CP3) Electrodes (TP7, P3, and T5) Electrodes (TP7 and P3) Electrode (TP7)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

5-fold(1) 99.78 99.64 99.92 99.67 99.50 99.83 99.09 98.67 99.52 98.70 97.84 99.60

5-fold(2) 99.72 99.53 99.92 99.54 99.17 99.92 98.98 98.32 99.66 97.27 97.24 99.34

5-fold(3) 99.78 99.58 99.97 99.47 99.22 99.72 98.91 98.32 99.52 98.69 98.07 99.32

5-fold(4) 99.75 99.64 99.86 99.68 99.55 99.80 98.81 98.05 99.60 98.34 97.45 99.26

5-fold(5) 99.71 99.53 99.89 99.53 99.14 99.92 98.94 98.21 99.69 98.54 97.67 99.43

Fig. 6. Comparison of various evolutionary optimization algorithms for optimizing the XGBoost classifier, including PSO, GA, and ACO. The PSO algorithm 
outperformed GA and ACO
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investigated driver fatigue identification using EEG signals 
in recent years. Results based on less features of four 
electrodes were superior to those of other classification 
approaches. The classification efficiency used in their 
investigation can be found in Table 4.

Table 4 presents a comparative analysis of various 
feature extraction strategies and classifiers across 
different datasets, including both the original datasets 
used in previous studies and the Figshare dataset 
employed in this study. The observed accuracy on the 
Figshare dataset is slightly different from the actual 
accuracy reported in the original studies, which is 
expected due to the inherent differences between 
datasets. Notably, most methods demonstrate consistent 
or slightly improved accuracy when implemented on 
the Figshare dataset, indicating the robustness and 
generalizability of these approaches. The proposed 
model, which combines CNN and XGBoost, achieves 
the highest accuracy of 99.80% on the Figshare dataset, 
further validating its effectiveness.

Driver fatigue detection in traffic control can 
prevent excessive driving, reduce casualties, and warn 
of driver fatigue. Future studies should focus on the 
temporal variability of tiredness data and the practical 
implementation of an EEG-based fatigue surveillance 
system. To reduce the likelihood of traffic accidents, it is 
imperative to provide early warnings about drowsiness. 
The use of IoT platforms can greatly enhance data 
processing, as well as minimize the complexity of 
computing, so drowsiness should be notified to the driver 
by an alarm when it becomes a problem. The research is 
not without problems, however. These challenges include 
the limitations imposed by hardware components on IoT 
platforms, the difficulties in data recording in extreme 
environments, and the inadequacy of signal sizes for 
comprehensive driver fatigue analysis. To mitigate these 
issues, we implemented several strategies. For instance, 
we addressed hardware limitations by optimizing the 
data processing algorithms to work efficiently within the 
constraints of IoT platforms. Additionally, to overcome 
the challenge of data recording in extreme environments, 
we employed advanced EEG signal processing techniques 

to enhance data quality despite the adverse conditions. 
Furthermore, we utilized robust statistical methods to 
compensate for the smaller signal sizes, ensuring that 
the analysis remained reliable and valid despite the data 
limitations. As a result of hardware component limitations 
on IoT platforms, the challenges of data recording in 
extreme environments, and inadequate signal sizes are 
the most significant problems for driver fatigue analysis. 
Moreover, channel selection could not be implemented 
without considering the correlation of several brain 
regions.

Despite only using a few distinct biosensor nodes for 
tiredness detection, the detection rate of fatigue events 
was poor due to the small number of channels. Due to the 
development of frameworks for DL, future research will 
be able to utilize fewer channels and electrodes.

Increasing the volume of data related to EEG and 
environmental parameters, including driving conditions, 
weather conditions, and physiological information, 
can help develop richer training datasets, ultimately 
enhancing the model's accuracy and generalization 
capabilities.45-47 Expanding information horizons 
facilitates better detection and prediction of driver fatigue 
states. Moreover, integrating reinforcement learning and 
dynamic feedback mechanisms can enhance the system's 
performance. Real-time feedback from the IoT system 
to improve the model in real-world driving conditions 
allows for better adaptation to the driver's current state 
and recognition of a broader range of fatigue conditions. 
Notably, improving the security system of this framework 
and preserving the privacy of sensitive data will increase 
user trust and acceptance. Utilizing encryption technology, 
access controls, and advanced security standards protects 
the system against security threats, ensuring data integrity 
and confidentiality.

The detection of driver fatigue using EEG signals 
presents several significant challenges that must 
be addressed to ensure the system's reliability and 
effectiveness. One primary challenge is the variability in 
EEG data across individuals. Influenced by factors such as 
age, gender, sleep patterns, and physiological differences, 
this variability hinders the development of a universal 

Table 4. Comparative analysis of feature extraction strategies and classifiers, showing both the actual accuracies achieved on original datasets and the 
observed accuracies obtained when these methods were re-implemented and tested on the Figshare dataset

Ref. Feature extraction 
strategy Classifier Original dataset Actual 

accuracy
Evaluation 

dataset
Observed 
accuracy

Wu et al37 AutoEncoder SoftMax Pilots’ EEG dataset (collected from 20 subjects) 91.68% Figshare 93.78%

Wen et al38 AutoEncoder AdaBoost DEAP dataset 95.00% Figshare 97.14%

Ma et al39 Modified-PCANet SVM Driving Fatigue Dataset (self-collected EEG data) 95.14% Figshare 94.27%

Rundo et al40 Stacked AutoEncoder SoftMax Self-collected EEG dataset 100% Figshare 98.56%

Panwar et al41 GAN SoftMax Self-collected EEG dataset (Wasserstein GAN setup) 67.00% Figshare 72.12%

Lee et al42 LSTM-CNN (3 classes) SoftMax Publicly available EEG dataset (source unspecified) 86.00% Figshare 85-88%

Proposed model CNN optXGBoost Figshare 99.80%
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model. Additionally, collecting high-quality EEG data 
during moments of driver fatigue is inherently challenging 
due to fatigue's gradual onset, leading to a potential lack 
of training data.

Moreover, processing EEG data using advanced DL 
models like CNNs and XGBoost is computationally 
demanding, requiring substantial resources. This limits 
scalability, especially in real-time applications where swift 
decision-making is crucial. Another critical challenge is 
the need for real-time processing capabilities. Given the 
imperative of detecting fatigue in real-time to prevent 
accidents, the system must rapidly process and analyze 
EEG data. This places significant demands on both 
software algorithms and hardware infrastructure. Privacy 
and security concerns are paramount, as the system 
processes sensitive EEG data that could reveal personal 
health information. Robust data security measures are 
essential to protect against unauthorized access and 
breaches, maintaining user trust and compliance with 
legal regulations. Interpreting the complex patterns within 
EEG data is another challenge, as signals are often noisy 
and influenced by various external factors. Developing 
robust algorithms that accurately differentiate between 
meaningful fatigue indicators and irrelevant noise is 
crucial.

To address these challenges, future research should 
explore the integration of Recurrent Neural Networks 
(RNNs) and Long Short-Term Memory (LSTM) networks. 
These models excel at handling temporal sequences, 
enhancing the system's ability to detect subtle changes 
in brain activity over time. Developing a flexible and 
adaptable system architecture is crucial to accommodate 
new technologies and maintain effectiveness in an 
evolving landscape. Improving efficiency through 
optimized algorithms and hardware acceleration can 
mitigate computational challenges.

Prioritizing security and privacy are essential. 
Implementing advanced encryption, secure data 
transmission, and robust access control will safeguard 
sensitive EEG data, build trust, and facilitate widespread 
adoption, especially in regulated industries. Integrating 
the system with wearable devices to monitor other 
physiological parameters can provide a comprehensive 
view of the driver's health status and enable predictive 
healthcare interventions. Exploring reinforcement 
learning techniques can allow the system to adapt in real-
time to the driver's state, improving its responsiveness 
and effectiveness. Finally, considering the social and 
economic impacts of deploying this technology, including 
its influence on driver behavior, accident reduction, and 
healthcare costs, is crucial for evaluating its broader 
benefits to society.

To provide a thorough understanding of the research 
challenges encountered in this study, the discussion 
has been enriched with specific examples and the 

corresponding solutions implemented:
• Data quality in extreme environments: A significant 

challenge was maintaining data quality when 
recording EEG signals in extreme environments, 
such as high temperatures or high-vibration settings. 
These conditions introduced noise and artifacts into 
the EEG recordings, potentially compromising the 
reliability of the data. To mitigate this, advanced 
signal processing techniques, including filtering and 
artifact removal, were applied to clean the data and 
ensure robust analysis despite these challenges.

• Hardware limitations on IoT platforms: The IoT 
platforms used in this research had limited processing 
power and memory, which posed a challenge for 
running complex algorithms in real-time. To address 
this, data processing algorithms were optimized for 
computational efficiency, allowing them to operate 
effectively within the constraints of the IoT hardware. 
This optimization included streamlining the feature 
extraction process and utilizing lightweight models 
that maintained high accuracy.

• Limited sample size for EEG signals: The dataset used 
in this study comprised a relatively small number 
of EEG recordings, which could potentially limit 
the generalizability of the findings. To overcome 
this limitation, robust statistical methods and cross-
validation techniques were employed to ensure 
the reliability and generalizability of the results. 
Additionally, synthetic data augmentation techniques 
were utilized to expand the dataset, further enhancing 
the robustness of the findings.

Conclusion 
This study presents an innovative approach for detecting 
driving fatigue in extreme environments using EEG 
signals, leveraging a combination of CNN and XGBoost 
models. By transforming EEG signals into scalogram 
images and employing a 2D-CNN for key feature 
extraction, the proposed method achieved an impressive 
accuracy of 99.80% on a substantial dataset, surpassing 
all existing methods. The research demonstrated that 
integrating this approach within an IoT framework for 
real-time signal detection and processing can optimize 
overall system performance and reduce computational 
complexity. This makes the proposed model particularly 
suitable for industrial and healthcare applications, 
where rapid and accurate fatigue detection is critical. 
The primary challenges addressed in this research 
included the significant variability in EEG signals across 
individuals and the difficulty in collecting sufficient data 
under extreme conditions. Evolutionary optimization 
techniques were employed to overcome these challenges, 
resulting in improved model performance and enhanced 
generalizability. The findings of this study highlight 
the significant potential of deep learning models in 
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detecting driving fatigue and underscore the importance 
of leveraging cutting-edge technologies to enhance 
road safety. However, future research should focus on 
improving data quality in extreme environments and 
reducing computational complexity to further refine 
these systems.
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