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Introduction
Dendritic cells (DCs), a subset of antigen-presenting cells 
(APCs), serve as a critical interface between the innate 
and adaptive immune systems, enabling the initiation and 
modulation of specific immune responses to antigens.1,2 
Additionally, DCs are pivotal in promoting and sustaining 
self-tolerance.1 These cells are a complex and diverse 
population, characterized by considerable phenotypic 
variability and functional adaptability.3 In terms of their 
development, DCs originate from common myeloid 
progenitors (CMPs) within the bone marrow. CMPs 
can follow one of two pathways: with the expression of 
the Nur77 transcription factor, they differentiate into 
monocytes, which may then become monocyte-derived 

DCs (moDCs) during inflammatory conditions.4-7 
Conversely, in the absence of Nur77 expression, CMPs 
give rise to plasmacytoid DCs (pDCs) and conventional 
DCs (cDCs).5,8,9 A growth factor termed FMS-like 
tyrosine kinase 3 (FLT3) ligand is often responsible 
for the differentiation of DCs from their bone marrow 
precursors.10,11

The FLT3L is a crucial cytokine involved in the 
differentiation of DCs from bone marrow progenitors. 
Recent research has provided deeper insights into the 
mechanisms by which FLT3L influences DC development 
and the diversification of DC subsets. FLT3L is essential 
for the expansion of DC progenitors in the bone marrow.12 
Studies have shown that FLT3L signaling promotes 

*Corresponding authors: Behzad Baradaran, Email: baradaranb@tbzmed.ac.ir; Mohammad Reza Sadeghi, Email: 
sadegimohammadreza@gmail.com 

 © 2025 The Author(s). This work is published by BioImpacts as an open access article distributed under the terms of the 
Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/). Non-commercial uses of 
the work are permitted, provided the original work is properly cited.

ccess
PPuubblliisshh  FFrreeee

PRESS

TUOMS
BioImpacts

B
PRESS

TUOMS

BioImpacts

B

Abstract
Dendritic cells (DCs) are specialized antigen-
presenting cells (APCs) in linking innate and 
adaptive immune responses. In addition to 
presenting antigens to T cells, DCs must also 
provide co-stimulatory signals along with 
cytokines for T cells to induce an appropriate 
cellular immune response. Tolerance is 
also established and maintained by DCs 
under homeostatic circumstances. There is 
remarkable phenotypic heterogeneity in DCs, 
each with different functional flexibility and 
specific expression of various markers. The 
three primary categories of DCs comprise 
conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs). 
Langerhans cells (LCs) are another type of DCs, which are found in the skin's epidermal layer. 
DCs may be positioned or triggered inappropriately as a result of dysregulation of DC. This 
phenomenon can cause an imbalance in immune responses and even immune-related pathological 
disorders, i.e., autoimmune diseases and malignancies. Herein, by reviewing the ontogeny, biology, 
characteristics, and function of DCs subsets in immune system, we discuss the contribution of 
these cells in the mentioned immune-related disorders.
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the proliferation of these progenitors, leading to an 
increased number of DCs. This is particularly important 
for maintaining a steady supply of DCs in the body. 
FLT3L plays a significant role in the differentiation of DC 
progenitors into various DC subsets, including cDCs and 
pDCs.13,14 FLT3L signaling is critical for the development 
of both cDCs and pDCs, with distinct roles for each subset 
in immune responses. The presence of FLT3L influences 
the functional properties of DCs, affecting their ability to 
present antigens and activate T cells. For example, cDCs 
are efficient in antigen presentation and T cell activation, 
while pDCs are specialized in producing type I interferons 
during viral infections. Mutations in the FLT3 gene, such 
as FLT3-ITD (internal tandem duplication), are associated 
with certain hematological malignancies, including acute 
myeloid leukemia (AML).15

DCs can survey their local environment and then 
convey antigens, activating signals, and cytokines to 
immune cells, facilitating the activation and coordination 
of adaptive immune responses.16 In the steady state, DCs 
are frequently immature and weak APCs, exhibiting 
characteristics including a high antigen-capture capacity, 
limited cytokine production, and low co-stimulatory 
molecule expression.16 The process of DC maturation 
and activation relies heavily on the interaction between 
DC receptors and molecular signals, including pathogen-
associated molecular patterns (PAMPs), damage-
associated molecular patterns (DAMPs), and various 
cytokines, which collectively facilitate the induction of a 
robust immune response.17,18 During DC maturation and 
activation, these cells undergo a significant shift in their 
molecular expression profile, characteristically featuring 
increased levels of major histocompatibility complex 
(MHC) molecules, co-stimulatory molecules (CD80/86), 
cytokines, chemokines, and C-C chemokine receptor type 
7 (CCR7), which collectively enable the DCs to effectively 
interact with and orchestrate the immune response.19 
Following antigen capture, DCs embark on a journey 
from peripheral tissues to the draining lymph nodes, 
where they undergo a crucial transformation, presenting 
intracellular and extracellular antigens to naïve CD8 + and 
CD4 + T cells, respectivel, thereby triggering the activation 
of distinct effector T cell responses.20,21 Upon activation, 
T cells exhibit increased expression of CD40 ligand 
(CD40L), a key molecule that facilitates the maturation 
of DCs, and hence enhances the immune response.22 The 
activation of different types of effector cells, including T 
helper (Th) 1 cells, Th2 cells, Th17 cells, T follicular helper 
(TFH) cells, regulatory T (Treg) cells, and CD8 + cytotoxic 
T-lymphocytes (CTLs), is a result of DCs' ability to 
present diverse antigens.19,23,24 Therefore, DCs have been 
recognized as pivotal players in the development of 
antigen-specific immune responses.25 The main subsets 
of DCs include cDCs, pDCs, and moDCs.25-27 cDCs are 
further categorized into cDC1 and cDC2 subtypes.25 

Each of these DC subsets exhibits unique characteristics 
and regulatory profiles, characterized by distinct 
transcriptional factors that will be explored in more depth 
in their corresponding sections. 

The aim of this review is to comprehensively examine 
the ontogeny, biology, and functional characteristics of DC 
subsets, including cDCs, pDCs, moDCs), and Langerhans 
cells (LCs). We seek to elucidate the critical roles these cells 
play in linking innate and adaptive immune responses, 
maintaining immune tolerance, and their involvement in 
immune-related disorders such as autoimmune diseases 
and malignancies. By synthesizing current knowledge 
on DC functionality and dysregulation, this review aims 
to highlight the significance of DCs in immune system 
dynamics and their potential implications for therapeutic 
interventions.

DC subsets
cDCs
cDCs have been recognized as potent APCs within the 
innate immune compartment, playing a crucial role in 
the initiation of immune responses.28 Despite their short 
lifespan of approximately 3-6 days, cDCs are continually 
generated from the bone marrow through the FLT-
3-dependent pathway.29 Human cDCs are commonly 
characterized by the markers CD123-HLADR + CD11c + , 
low levels of CD14 and CD16, and are negative for lineage 
markers including CD3, CD19, CD20, and CD56.30,31 
Another defining marker for human cDC populations is 
CD26.32 Research indicates that significant populations 
of cDCs in the gut, as well as potentially in other organs, 
express CD56.32 cDC population is often divided into two 
distinct subgroups, referred to as cDC1 and cDC2, based 
on their unique characteristics and functional profiles.
cDC1s
Human cDC1s have been identified in various locations, 
including the blood, lymphoid tissues, and non-lymphoid 
tissues.33 These cells are characterized by several markers: 
DEC-205 (dendritic and epithelial cell-205), CLEC9A 
(C-type lectin domain family 9 member A), CADM1 
(cell adhesion molecule 1), and XCR1 (XC chemokine 
receptor 1).34,35 Additionally, the blood dendritic cell 
antigen (BDCA)-3 (CD141) marker is specifically used 
to distinguish the cDC1 subgroup in humans.36 While 
migratory cDC1s and those in non-lymphoid tissues 
express the CD103 marker, cDC1s in lymphoid tissues 
express CD8α.22 CDC1s contain Toll-like receptors 3 and 
9 in their endosomes, which enable the cells to recognize 
and respond to specific patterns of double-stranded RNA 
and DNA, respectively.1,37,38 TLR-11, a crucial receptor 
involved in detecting intracellular pathogens, is also found 
in cDC1s, highlighting their potential role in recognizing 
and responding to parasitic infections.39 The development 
of myeloid cDC1s involves several transcription factors, 
such as GATA2, PU.1, GFI1, ID2 (inhibitor of DNA 
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binding 2), IRF8 (interferon regulatory factor 8), and 
BATF3 (basic leucine zipper transcriptional factor ATF-
like 3).40-46 The ability of cDC1s to cross-present external 
antigens to CD8 + T cells via MHC-I is well established.36,47 
In addition, cDC1s play a role in inducing CD8 + T 
cell responses by promoting Th1-mediated immunity. 
Research by Eickhoff et al has shown that cDC1s are 
essential for enabling CD4 + T cells to collaborate with 
CD8 + T cells, and their absence can result in impaired 
CD8 + T cell memory differentiation during viral 
infections.48 additionally, intracellular parasite infections 
induce Th1 immunity, with BATF3-dependent CD103 + or 
CD8 + cDC1s serving as the primary producers of IL-12 
during such infections.39,49 Furthermore, TLR-9 agonists 
have consistently been shown to elicit antigen-specific 
CD8 + T cell responses in humans.50 cDC1s recognize 
and respond to internalized pathogens by producing IL-
12, which triggers a Th1 immune response.51 In cancer 
immunotherapy, researchers have engineered cDC1s 
to display tumor-associated antigens (TAAs), aiming to 
boost the presentation of these antigens to T-cells and 
stimulate a Th1-mediated immune response.50 In addition 
to their role in T-cell activation, human cDC1s also play a 
crucial part in the elimination of skin infections caused by 
bacteria and fungi by mobilizing neutrophils to the site of 
infection52,53 (Table 1).
CDC2s
Similar to cDC1s, cDC2s are present in blood, as well as in 
lymphoid and non-lymphoid tissues.33 Human cDC2s are 
characterized by the expression of specific surface markers, 
including CD1c, CD11c, and signal regulatory protein 
alpha (SIRPα), which has led to their designation as BDCA-
1 DCs or CD1c-positive dendritic cells.37,54,55 In blood or 
tissues, cDC2s may exhibit low levels of CD14, CD123, and 
CD26, and they are generally negative for CD209 and the 
B and T lymphocyte attenuator (BTLA).37,54,55 Depending 
on their location, cDC2s also express additional markers, 
such as CD1a in the skin’s dermal layer and CD103 in 
the gut.56,57 IRF-4 is believed to be the key transcription 

factor in cDC2 differentiation, although other factors are 
also necessary.58,59 In human cells, the transcription factor 
IRF-8 has been found to have a crucial function in the 
development of cDC2s, influencing their differentiation 
and maturation process.60 The primary function of these 
DCs is to process and present antigens to naive CD4 + T 
cells through the MHC class II pathway, facilitating their 
activation and subsequent immune response.61 Research 
has shown that cDC2s can stimulate a wide variety of 
effector T cell subsets, including Th1, Th2, Th17, Tregs, 
and TFH cells.62-66 Additionally, cDC2s can activate 
CD8 + T lymphocytes, although they are less efficient 
at priming these cells.67 It has been observed that type I 
IFN-responsive cDC2s, also known as ISG + DCs, can 
stimulate CD8 + T lymphocytes by externally presenting 
tumor-derived MHC class I molecules, a process referred 
to as "MHC-I dressing".68 Furthermore, cDC2s express 
various TLRs, including TLR-2, TLR-4, TLR-5, TLR-6, 
TLR-8, and TLR-9.1 Upon activation by TLR signaling, 
cDC2s release a broad range of pro-inflammatory 
cytokines, including TNF-α, IL-1, IL-6, IL-8, IL-12, and 
IL-18.37 Beyond their conventional functions, cDC2s 
have also been found to play a role in shaping immune 
responses in specific tissues, such as inducing Tregs 
in the intestinal mucosa,56 and promoting tolerance in 
the liver.69 As cDC2s represent a more heterogeneous 
population compared to cDC1s, various cDC2 subgroups 
have been identified in both mice and humans during 
inflammation or in a steady state. In line with this, 
research has distinguished two distinct subpopulations 
within the CD1c + subgroup: which have been designated 
as DC2 and DC3.19,37 The CD1c + DC subset has been 
found to comprise two distinct populations, which can 
be differentiated by their surface expression patterns, 
with DC2 and DC3 exhibiting distinct profiles of CD32B 
and CD163/CD36 molecule expression.19,37 The two 
CD2c DC subtypes demonstrate distinct capabilities in 
stimulating naive T cell proliferation, while also exhibiting 
distinct patterns of cytokine production in response 

Table 1. Description of the characteristics of DC subtypes

Subset Markers Location Transcription factor Main function

CDC1s DEC-205, CLEC9A, CADM1, 
XCR1, and BDCA-3

Blood, lymphoid and 
non-lymphoid tissues

GATA2, PU.1, GFI1, 
ID2, IRF-8, and BATF3

Cross-presentation of exogenous antigens to CD8 + T 
cells

CDC2s CD1c, CD11c, SIRPα, and 
BDCA-1

Blood, lymphoid and 
non-lymphoid tissues IRF-4 and IRF-8 Presentation of antigens to CD4 + T cells

pDCs CD123, CD303, CD45RA, 
CD304, and BDCA-2

Lymphoid organs and 
peripheral blood E2.2 Anti-viral defense

moDCs BDCA-1, CD1a, CD11c, 
CD14, and CD172a Inflammatory settings IRF-4 Production of numerous cytokines, 

antigens presentation to CD4 + and CD8 + T lymphocytes

LCs Langerin, CD1a, and 
EpCAM

Epidermal layer of the 
skin ? Potent cross-presenting DC in humans, and 

presentation of glycolipid antigens to CD8 + T cells
Abbreviations: DCs = dendritic cells, DEC-205 = dendritic and epithelial cell-205, CLEC9A = C-type lectin domain family 9 member A, CADM1 = cell adhesion 
molecule 1, and XCR1 = XC chemokine receptor 1, BDCA = blood dendritic cell antigen, GATA2 = GATA binding protein 2, ID2 = inhibitor of DNA binding 2, 
IRF = interferon regulatory factor, BATF3 = basic leucine zipper transcriptional factor ATF-like 3, SIRPα = signal regulatory protein alpha, EpCAM = epithelial 
cell adhesion molecule.
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to various TLR agonists.19,37 Other identified subtypes 
include CD301b + and CD301b− cDC2s,70,71 Notch2-
dependent CX3CR1lowEsamhigh cDC2,72 CLEC12A−

Esam + Tbet + cDC2A,71 CLEC12A + Esam−Tbet− cDC2B,73 
and IRF8 + CD64 + inflammatory cDC2s74 (Table 1).

pDCs
pDCs are typically found in lymphoid organs and can be 
detected in peripheral blood circulation. Their migration 
from the bloodstream to lymph nodes, facilitated by 
high endothelial venules, is influenced by chemokine 
receptors such as CCR7,75 ChemR23,76 and CXCR3,77 

as well as adhesion molecules like L-selectin and 
E-selectin.78 pDCs represent a unique subset of DCs that 
play a vital role in antiviral immune responses.79 pDCs 
can be identified by their distinct immunophenotype, 
which is marked by the lack of CD11c expression and 
the presence of various surface markers, including 
CD123, CD303, CD45RA, and CD304.80 Furthermore, 
pDCs display a unique set of surface markers, including 
CD4, BDCA-2, HLA-DR, and immunoglobulin-like 
receptors ILT-3 and ILT-7. Additionally, they possess 
specific TLRs within their endosomes, namely TLR-7 
and TLR-9.81 The transcription factor E2.2 and the FLT-
3 ligand are critical for the differentiation of human 
pDCs.82,83 pDCs are characterized by their capacity to 
produce copious amounts of IFN-α/β and other pro-
inflammatory cytokines, including IL-6 and TNF-alpha, 
in response to TLR-7/9 activation. This characteristic 
highlights their key role in antiviral defense.79 Although 
pDCs display co-stimulatory molecules and MHC-II, 
they are found to have a restricted ability to engage in 
antigen presentation.84 Although pDCs can cross-present 
antigens to activate CD8 + T cells, they are less effective 
in this function compared to cDCs.85 In the context 
of cancer, pDCs have a dual role. On one hand, their 
production of IFN-α has been shown to hinder cancer cell 
growth, metastasis, and angiogenesis.86 In addition, pDCs 
have been shown to possess a direct cytotoxic capacity, 
which involves the production of granzyme B and TNF-
related apoptosis-inducing ligand (TRAIL), leading to the 
elimination of malignant cells.86 The production of type I 
interferons (primarily IFN-α) by pDCs is crucial for the 
local activation of CTLs and NK cells, and for supporting 
the maturation of cDC1s.87,88 In melanoma patients, 
research has shown that CpG B-type oligodeoxynucleotide 
(ODN) PF-3512676 can activate specific immune cells 
in the sentinel lymph nodes through a specific signaling 
pathway, leading to the production of IFN-α production 
and and strengthening the body's response against 
cancer.50 However, pDCs associated with tumors may 
also contribute to immune suppression and tolerance. For 
example, Studies have indicated that the binding of LAG-
3 to MHC-II on pDCs enhances IL-6 production and 
reduces IFN-α release through a mechanism that does 

not involve TLR activation. Additionally, this interaction 
stimulates CCL2 production in monocytes and facilitates 
the development of Tregs from allogeneic CD4 + CD25- T 
cells, contributing to immunosuppression in cancer.89,90 
Moreover, pDCs secrete indoleamine 2,3-dioxygenase 
(IDO), which significantly enhances Treg activation, 
leading to immune tolerance and allowing tumor cells to 
evade immune detection91 (Table 1).

moDCs
During inflammatory responses, a distinct subset of 
dendritic cells, known as moDCs, emerges from the 
differentiation of monocytes that have migrated into 
tissues.92 Monocytes can transform into moDCs under 
both in vitro and in vivo conditions. Research has shown 
that moDCs are present within the microenvironments 
of lung, breast, and colorectal cancers.67,93,94 Apart from 
their role in inflammatory settings, these cells have also 
been observed in a steady-state within the intestines 
and in non-diseased lungs.95,96 In the bone marrow, the 
generation of moDCs is heavily influenced by IRF-4, 
a transcription factor that is similarly essential for the 
development of cDC2s.97 In humans, moDCs develop 
from CD14high monocytes.98,99 Human moDCs express 
a variety of surface markers, including BDCA-1, CD1a, 
CD11c, CD14, and CD172a.1 Functionally, these cells 
are capable of expressing co-stimulatory molecules, 
producing a range of cytokines, and presenting antigens 
to CD4 + and CD8 + T lymphocytes.100,101 Consequently, 
moDCs play a crucial role in guiding the differentiation 
of CD4 + naïve T cells into Th1,102 Th2,103 and Th17 
cells,104 as well as in promoting the differentiation of 
CD8 + naïve T cells into CTLs.105 In vitro, the development 
of moDCs from monocytes is supported by granulocyte-
macrophage colony-stimulating factor (GM-CSF) 
and IL-4 through an IRF4-dependent pathway.106 

Through the development and clinical testing of moDC 
vaccines, this culture method has been instrumental 
in shaping the field of moDC-based immunotherapy. 
Notably, clinical trials have demonstrated the efficacy 
and benefits of moDC vaccines in treating AML.107 In 
a recent study, researchers utilized a novel approach to 
stimulate immune responses in patients who relapsed 
after autologous hematopoietic stem cell transplantation 
(HSCT). By using moDCs loaded with tumor lysates from 
AML patients, the team was able to enhance the ability of 
autologous T cells to activate DCs and mount an effective 
immune response108 (Table 1). Recent studies have 
highlighted the cross-talk between moDCs and pDCs 
during inflammatory responses, revealing its significant 
impact on orchestrating immune responses. One study 
demonstrated that under inflammatory conditions, 
moDCs and pDCs interact closely to enhance the efficacy 
of immune responses.109,110 These interactions involve the 
recognition and response to various DAMPs, which are 
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released during tissue damage or infection. moDCs play a 
crucial role in cross-presentation, where they process and 
present antigens to CD8 + T cells, leading to the activation 
of CTLs.111 This process is essential for initiating strong 
antiviral and antitumor immune responses. On the other 
hand, pDCs are specialized in producing large amounts 
of type I IFNs in response to viral infections. These IFNs 
have potent antiviral properties and can also modulate 
the activity of other immune cells, including moDCs. The 
cross-talk between moDCs and pDCs is facilitated by the 
exchange of cytokines and other signaling molecules. For 
example, pDC-derived IFNs can enhance the antigen-
presenting capacity of moDCs, leading to more effective T 
cell activation.110 Additionally, moDCs can influence the 
function of pDCs by providing co-stimulatory signals and 
cytokines that promote their maturation and activation. 
This synergistic interaction ensures a coordinated and 
robust immune response during inflammation.112

Langerhans cells (LCs)
LCs, a type of dendritic cell, reside in the outer layer 
of the skin, where they play a crucial role in immune 
surveillance.113 First identified by Paul Langerhans in the 
19th century, these cells are now recognized as part of the 
DC family.114 LCs are characterized by a high expression 
of markers such as langerin, CD1a, and epithelial cell 
adhesion molecule (EpCAM), while exhibiting low levels 
of CD11c, CD11b, and CD13.115,116 Predominantly located 
in the epidermis, LCs maintain close interactions with 
keratinocytes but are also found in stratified epithelia.117 
The differentiation of LCs is regulated by transforming 
growth factor-β (TGF-β), a process that is independent 
of FLT-3 and FLT-3 ligand-mediated pathways.118 LCs are 
resistant to radiation and have a lifespan of approximately 
two months, in contrast to other DCs.118 When skin 
inflammation occurs, a cascade of cytokines including 
TNF-α and IL-1β is released, triggering Langerhans 
cells to break away from their epithelial attachment 
and migrate through the basement membrane into the 
lymphatic vessels, ultimately facilitating their entry into 
the lymphatic system.119,120 Despite their long-standing 
reputation as the paradigmatic example of myeloid DCs, 
the distinctive contributions of LCs to immune function 
have proven surprisingly difficult to fully elucidate. In 
humans, LCs can develop into highly efficient cross-
presenting DCs, producing significant amounts of IL-
15, presenting mycobacterial glycolipid antigens, and 
stimulating CD8 + T cells119,120 (Table 1). 

DCs and their association with immune-related 
pathological disorders
DCs play a pivotal role in orchestrating the initiation 
and modulation of immune responses, functioning as 
highly specialized APCs that facilitate the interaction 
between the immune system and foreign antigens.121 

DCs are capable of inducing robust immune responses 
by engaging in a multistep process, which involves 
the uptake of antigens, processing and presentation 
of antigenic peptides alongside co-stimulatory signals 
(CD80 and CD86) and cytokines, ultimately activating 
both CD4 + and CD8 + T cells.122 In contrast, DCs play 
a crucial role in promoting self-tolerance by regulating 
the immune response through mechanisms that include 
suppressing the activation and proliferation of effector 
T cells, generating and activating Tregs, and inducing 
clonal deletion or anergy in autoreactive T cells.121 These 
are among the characteristic features of tolerogenic DCs. 
Hence, two states can be imagined for DCs: immunogenic 
versus tolerogenic. In the context of autoimmune disease, 
while DCs may contribute to tolerance induction, 
their potent antigen-presenting capabilities can also 
inadvertently amplify the activation and differentiation 
of autoreactive T cells, potentially due to faulty signaling 
or compromised negative regulation within the DC 
population.123 Consequently, abnormal immunogenic 
DCs triggering may contribute to human autoimmune 
disorders. Conversely, cancer cells employ regulatory 
mechanisms to subvert the function of DCs, inducing a 
tolerogenic or defective phenotype that ultimately enables 
tumors to evade immune surveillance and promote 
their growth and progression.124 Several mechanisms 
dysregulate DCs. In this section, the association between 
dysregulated DCs and immune-related pathological 
diseases will be discussed.

Autoimmunity
The organization and function of DCs are altered in 
autoimmune disorders, making them important players 
in these diseases. Research has demonstrated that 
autoimmune patients exhibit distinct changes in the 
distribution of DC subtypes, with a decrease in their 
presence in peripheral circulation and an increase in their 
accumulation in affected tissues, compared to healthy 
individuals.125-127 Elevated migration to the lymphoid 
organs or inflammatory tissues, as well as reduced 
generation or release from the bone marrow, are some of 
the mechanisms that contribute to this phenomenon.125-127 

For example, systemic lupus erythematosus (SLE) 
patients have reduced quantities of pDCs in their 
blood, however, these cells are mostly prevalent in skin 
lesions, indicating that pDCs are preferentially attracted 
to the inflamed skin128,129 via chemerin76 and CCL19130 

chemokines. Increased auto-reactive T cell priming and 
SLE pathogenesis may result from pDC accumulation in 
lymph node T cell regions as a result of increased CCL19 
reactivity.131

Notably, rheumatoid arthritis (RA) patients exhibit 
altered circulating levels of conventional DCs (cDCs) 
and pDCs, with lower numbers in peripheral blood and 
higher numbers in synovial fluid, suggesting a possible 
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shift in DC distribution.127 Myeloid DCs isolated from 
RA synovial fluid show an active state, with up-regulated 
expression of co-stimulatory and HLA-DR molecules. In 
the context of inflammatory processes, these cells activate 
T cells that recognize self-antigens, leading to immune 
responses in the affected tissues.132 Due to their capacity 
to release pro-inflammatory mediators, these myeloid 
DCs potentially contribute to promoting synovial 
inflammation.132,133 Because of their capacity to release pro-
inflammatory mediators, these myeloid DCs potentially 
contribute to the promotion of synovial inflammation.131 
Moreover, myeloid DCs are more frequently found in 
the CNS in the multiple sclerosis (MS) early stages, and 
they are present within demyelinating lesions, indicating 
their involvement in the activation of autoreactive T 
lymphocytes to myelin.134 In addition to dysregulation in 
the organization of DCs, their functions, i.e., phagocytosis 
and cytokine secretion are also dysregulated in 
autoimmune diseases. DCs play a role in SLE-associated 
defects in apoptotic cell clearance. It has been shown that 
SLE-related genetic alterations increase the exposure 
of DCs to nuclear autoantigens by impairing immune 
complex absorption.135-137 Notably, mice that lack the Mer 
tyrosine kinase gene, which plays a crucial role in the 
clearance of apoptotic material by macrophages, develop 
a systemic autoimmune response and produce antibodies 
against nuclear antigens, underscoring the importance 
of this gene in maintaining immune tolerance.135 The 
abnormal exposure to autoantigens caused by a defect in 
the removal of apoptotic cells may be the cause of SLE. 
This change in turn causes DCs to continue to be activated, 
which in turn causes type I interferons to be produced.138 

Besides, apoptotic cells that are not immediately cleared 
generate blebs that contain SLE auto-antigens and cause 
DC to mature. Such DC can trigger T cells to produce 
IL-2, IFN-γ, and particularly IL-17, which support 
autoimmune reactions.139 In murine studies, the deletion 
of MFGE8 leads to the development of autoimmune 
symptoms reminiscent of lupus, which is characterized 
by an accumulation of apoptotic cells and an infiltration 
of CD8 + T cells at affected sites. This phenomenon may 
be attributed to an augmentation of cross-presentation 
by DCs, resulting in amplified CD8 + T-cell activation.140 
In addition, alterations in the cytokine secretion pattern 
of DCs can also occur in autoimmune diseases. In line 
with this, assessments of myeloid DCs in MS patients' 
peripheral blood showed that these cells have a greater 
capacity to release pro-inflammatory cytokines compared 
with DC from healthy donors.141 These stimulated myeloid 
DCs can directly differentiate naïve CD4 + T cells into 
effector cells that secret IFN-γ.141 As a result, myeloid DCs 
in MS patients are vastly immunogenic and associated 
with the initiation and development of the disease. 
Furthermore, myeloid DCs present in psoriatic lesions 
are a significant source of pro-inflammatory cytokines, 

including TNF-alpha, IL-12, and IL-23, which contribute 
to the inflammatory response in the affected tissue.142,143 
These mediators cause keratinocytes and fibroblasts to 
release IL-1 and IL-6, which stimulate effector Th1 and 
Th17 lymphocytes, causing epidermal hyperplasia and 
the dermal inflammation that is a psoriasis hallmark.144,145 
Studies have revealed that plasmacytoid dendritic cells 
(pDCs) obtained from the peripheral blood of patients 
with ulcerative colitis and Crohn's disease during active 
flare-ups demonstrate elevated levels of CD40 and CD86 
surface molecules, as well as increased TNF-α production, 
when compared to pDCs from healthy individuals (Fig. 1).

Cancer
DCs that infiltrate the tumor microenvironment 
(TME) frequently exhibit defective or tolerogenic 
characteristics and aid in the development of tumors. 
These characteristics in the TME are caused by several 
mechanisms.124 For instance, according to research on 
pancreatic cancer, DCs that have infiltrated the TME 
directly interact with Tregs, which causes these DCs 
to adopt a tolerogenic state. They've also shown that 
reducing Tregs causes tumor-infiltrating DCs to exhibit 
an immunogenic phenotype rather than a tolerogenic 
one, promoting the activation of CTLs.146 They've also 
shown that reducing Treg causes the tumor-infiltrating 
DCs to have an immunogenic phenotype rather than a 
tolerogenic one, which promotes the activation of CTLs.146 
Myeloid-derived suppressor cells (MDSCs) have been 
shown to impair the function of dendritic cells through 
various mechanisms, including diminishing the ability 
of DCs to internalize antigens, inhibiting the migration 
of immature and mature DCs, reducing the capacity of 
DCs to stimulate T cells to produce IFN-γ, and altering 
the pattern of cytokine production by DCs.147,148 Studies 
conducted by Challier et al have found that adenosine 
and cAMP-mediated signaling pathways can induce 
human DCs to differentiate into a tolerogenic phenotype, 
characterized by a reduced ability to stimulate CD8 + T 
cell priming and activation. Since the TME contains 
a significant amount of adenosine, this process may 
contribute to the development of DCs with a tolerogenic 
phenotype in cancer.149 Research by Bekeredjian-
Ding et al has demonstrated that the administration of 
prostaglandin E2 (PGE2) and transforming growth factor 
beta (TGF-β) to pDCs induces a tolerogenic phenotype, 
characterized by a reduction in CD40 expression and 
an increase in CD86 expression.150 Additionally, IL-10 
can produce tolerogenic DCs with limited expression 
of co-stimulatory and MHC molecules and the capacity 
to release a significant quantity of IL-10. It has also 
been demonstrated that TGF-β stimulates the release of 
immunosuppressive cytokines from DCs, resulting in 
the generation of tolerogenic DCs that inhibit the growth 
of anti-tumor T cells and support the differentiation of 
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T cells into Tregs.151 It has also been demonstrated that 
TGF-β stimulates the release of immunosuppressive 
cytokines from DCs, which results in the generation 
of tolerogenic DCs, which inhibit the growth of anti-
tumor T cells and support the differentiation of T 
cells into Tregs.152,153 In cancer patients, it has been 
demonstrated that functionally deficient DCs are related 
to excessive IL-6 production.154 Dendritic cells are pivotal 
in orchestrating immune responses, particularly in the 
TME. Various inhibitory immune checkpoints, such 
as PD-1, PD-L1, and LAG3, significantly impact the 
functional state of DCs. These checkpoints can induce a 
tolerogenic phenotype in DCs, which supports the growth 
of malignant cells.155 The interaction between PD-1 on 
T cells and PD-L1 on DCs inhibits T cell activation and 
promotes immune tolerance. LAG3 engagement further 
inhibits DC-mediated T cell activation, enhancing the 
tolerogenic signals from DCs. Tolerogenic DCs promote 
the differentiation of Tregs, which suppress anti-tumor 
immune responses. This leads to a decreased ability of 
the immune system to recognize and eliminate malignant 
cells.156 Immunosuppressive cytokines like TGF-β and 
IL-10 in the TME reinforce the tolerogenic state of DCs. 
These cytokines contribute to Treg differentiation and 
inhibit CTL activation. Understanding how inhibitory 

immune checkpoints induce a tolerogenic phenotype in 
DCs is crucial for developing effective immunotherapies. 
Targeting these pathways could enhance the efficacy of 
treatments by reversing the immunosuppressive TME.157 
Various inhibitory immune checkpoints can induce the 
tolerogenic phenotype in DCs and support the growth of 
malignant cells17 (Fig. 1). Recent clinical trials targeting DCs 
for therapeutic purposes have identified several potential 
side effects and risks, particularly concerning immune 
overactivation. One of the primary concerns is immune 
overactivation, where the immune system becomes 
excessively active, leading to autoimmune responses and 
inflammation.158 This can result in conditions such as 
cytokine release syndrome (CRS), where a large number 
of cytokines are released into the bloodstream, causing 
fever, fatigue, and severe inflammation. Targeting DCs 
can sometimes trigger autoimmune reactions, where the 
immune system attacks healthy tissues and organs. This 
can lead to a range of autoimmune diseases, depending on 
the tissues affected. Combining DC-based therapies with 
other treatments, such as immune checkpoint inhibitors, 
can enhance the efficacy of the treatment but also increases 
the risk of adverse effects. These combination therapies 
can lead to more pronounced immune overactivation 
and other side effects.159 Patients receiving DC-based 

Fig. 1. This Figure illustrates the dual roles of DCs in the TME and their involvement in autoimmunity. On the left, it highlights the defective or 
tolerogenic phenotype of DCs, characterized by decreased expression of co-stimulatory molecules (CD40, CD80, MHC, CD86) and increased levels of 
immunosuppressive factors (TGF-β, IL-6, IL-10). This state promotes regulatory T cell differentiation and inhibits anti-tumor T cell responses. Conversely, 
the right side depicts the immunogenic state of DCs, which enhances the activation of autoreactive CD4 and CD8 T cells, leading to increased production 
of pro-inflammatory cytokines and migration to lymph nodes. This figure emphasizes the complex role of DCs in balancing immunity and tolerance within 
the TME and autoimmune contexts.
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therapies may experience infusion-related reactions, such 
as chills, fever, and allergic reactions. These reactions are 
typically mild to moderate but can be concerning for some 
patients. There is a potential risk of long-term immune 
dysregulation, where the immune system remains in a 
state of heightened activity even after the treatment has 
ended. This can lead to chronic inflammation and other 
immune-related issues. In cancer patients, DC-based 
therapies can sometimes lead to tumor lysis syndrome, 
where the rapid destruction of tumor cells releases large 
amounts of cellular debris into the bloodstream, causing 
metabolic disturbances. Despite these potential side 
effects, DC-based therapies hold significant promise 
for treating various diseases, including cancer. Ongoing 
research aims to optimize these therapies to minimize 
risks while maximizing therapeutic benefits.

Other diseases 
Dendritic cells play a crucial role in the development and 
regulation of hypersensitivity reactions, particularly in 
allergic responses. In allergic reactions, DCs capture and 
process allergens, presenting them to naïve T cells. This 
can lead to the differentiation of T cells into Th2 cells, 
which produce cytokines like IL-4, IL-5, and IL-13. These 
cytokines promote IgE class switching in B cells, leading 
to the production of allergen-specific IgE antibodies. DCs 
also release pro-inflammatory cytokines and chemokines 
that recruit other immune cells, such as eosinophils and 
mast cells, exacerbating the allergic response. In terms of 
hypersensitivity types, type I (Immediate hypersensitivity) 
involves DCs in the sensitization phase and the 
subsequent allergic response, while type IV (Delayed-type 
hypersensitivity) sees DCs presenting antigens to CD4 + T 
helper cells, leading to a delayed inflammatory response, 
as seen in contact dermatitis.160,161

Dendritic cells are pivotal in the immune response 
to various infections, acting as a bridge between innate 
and adaptive immunity. They express PRRs that detect 
pathogens through PAMPs.162 This recognition triggers 
DC activation and maturation. Once activated, DCs 
migrate to lymph nodes, where they present processed 
antigens to T cells. This is essential for initiating 
adaptive immune responses, including the activation 
of CD4 + helper T cells and CD8 + cytotoxic T cells. 
DCs produce various cytokines that shape the immune 
response, such as IL-12, which promotes Th1 responses 
critical for combating intracellular pathogens, and IL-10, 
which can have immunosuppressive effects.163

Dendritic cells have a dual role in transplantation, 
influencing both graft acceptance and rejection. They can 
present donor antigens to recipient T cells, leading to an 
immune response against the transplanted tissue, which 
is a critical factor in acute rejection episodes. Conversely, 
DCs can also promote tolerance to transplanted 
organs. Regulatory DCs can induce the differentiation 

of regulatory Tregs, which help suppress the immune 
response against the graft. In hematopoietic stem cell 
transplantation, donor DCs can present recipient antigens 
to T cells, leading to graft-versus-host disease (GVHD). 
Understanding the role of DCs in this context is crucial 
for developing strategies to minimize GVHD while 
preserving graft-versus-tumor effects.164,165

Conclusion
DCs play a crucial role in the immune system as a type 
of APC, serving as an indispensable link between the 
innate and adaptive immune responses. By modulating 
the balance between immune activation and tolerance, 
DCs help maintain homeostasis. However, in immune-
related disorders, the normal function of DCs is disrupted 
through various mechanisms, which has been previously 
described. Understanding the underlying mechanisms that 
contribute to the dysfunction of DCs in immune-related 
disorders may provide a promising avenue for therapeutic 
intervention. By targeting and modulating these 
mechanisms, it is possible to develop effective treatments 
that can help restore the normal function of DCs and 
alleviate the symptoms of these disorders. There is also an 
alternative perspective on this scenario. In order to treat 
autoimmune disorders and cancer, it may be beneficial 
to investigate strategies for suppressing and boosting the 
immune system, respectively. Since immunogenic DCs 
are contributed to developing anti-cancer immunity by 
triggering antigen-specific T cell responses, therapeutic 
implications of these DCs have received great interest 
among other cancer immunotherapies. Furthermore, 
a potential benefit of tolerogenic DCs is their ability to 
induce tolerance and hence therapeutic applications in 
autoimmune diseases. Hence, due to the special capacity to 
either activate or suppress immune responses, both states 
of DCs have emerged as very potential immunotherapy 
approaches for immune-related disorders. DCs occupy a 
complex and nuanced position in the immune system, as 
they can both contribute to the development of immune-
related disorders and be leveraged as therapeutic agents 
to combat these same diseases. This dual functionality 
highlights the potential for DCs to be both a driving 
force behind disease pathology and a valuable tool for 
treatment.
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