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Abstract

Breast cancer (BC) is a persistent
global health challenge, necessitating
innovative  therapeutic  strategies.
Recently, nanotechnology has appeared
as a transformative methodology to
treat BC, suggesting precise targeting,
controlled drug delivery, and improved
imaging capabilities. This review offers a
current overview of thelatestinnovations
around nanotechnology for BC therapy
in the field of new nanomedicines and
nano-based drug delivery methods by
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Introduction

Breast cancer (BC) is a complicated disorder having
diverse subtypes exhibiting variable responses to the
treatment. It stands second after lung cancer. In 2020,
over 2 million new cases including around sixty-five
fatalities have been mentioned in literature and it is
projected that there will be over 3 million new cases of
breast carcinoma and one million fatalities in 2040.! BC
is a proliferative form of cancer that initiates from breast
tissues which is strongly influenced by both hereditary
and environmental variables.”? Amounts of oestrogen and
androgen are accountable for the development of BC.?
Additionally, it is well known that genetic variations in
the genes for BRCAI, BRCA2, TP53, RB, PIK3, MDM2,
HER2, and TPK53, CDH1, PTEN, STK11, ATM, BRIP1,
PALB2, CHEK2, and NBSI are strongly linked to BC.>**
It is susceptible to numerous other factors also, including
a family history of the disease, obesity, a high-calorie diet,
not breastfeeding, using oral contraceptives, and ingesting
hormones like oestrogen in hormone replacement

carefully examining the utilization of nanoparticles to enhance the effectiveness of both new and
old medications and to enable targeted evaluation using disease markers. Key topics include early
detection, targeted drug delivery, multimodal imaging, and combination therapies. The paper
underscores the probability of using nanotechnology to reshape BC management landscape and
outlines potential future directions.

therapy.® Depending on specific molecular markers
such as the proliferation marker Ki67, human epidermal
growth factor receptor 2 (HER2), the oestrogen receptor
(ER), and progesterone receptor (PR), BC is categorised
as luminal A-like, luminal B-like, HER2 enriched, and
triple-negative BC (TNBC).>” Luminal A-like subtype
shows improved diagnosis than other subtypes.® Luminal
B-like (HER2") tumours are ER and/or PR positive, HER2
negative, and high Ki67 index or low expression of PR.
Luminal B-like (HER2*) tumours are ER-positive while
HER?2 are positive including any PR level and any Ki67
level. HER2-positive, ER and PR-negative tumours are
referred toas HER2-enriched tumours.” ER, PR,and HER2
are all negative in the basal-like triple-negative subtype of
BC." The diagnosis of TNBC patients is frequently poorer
than people affected with other kinds of BC due to the
absence of established therapeutic molecular targets. In
addition, younger women are frequently affected by the
TNBC." Cancer treatment involves the use of radiation,
chemotherapy, hormonal therapy, and removal of cancer
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through surgery. These treatments are not specific as they
may kill normal cells or incomplete removal of tumour
occurs which causes toxicity. Traditional therapies often
lack specificity, leading to systemic toxicity and reduced
efficacy. Now, anthracyclines (doxorubicin, epirubicin),
taxanes (paclitaxel [PTX], docetaxel), platinum drugs
(cisplatin, carboplatin), cyclophosphamide are frequently
employed in BC chemotherapeutic treatment.> Hormonal
treatment aims to inhibit the action of oestrogen or reduce
oestrogen levels, which may promote the development
of BC cells. The primary medications used in endocrine
therapy are aromatase inhibition drugs (Ais: letrozole,
anastrazole, and exemestane), in addition to selective
oestrogen receptor modulators (SERMs: tamoxifen
and toremifene) and selective oestrogen receptor
degraders (SERDs: Fulvestrant ). Currently, tyrosine
kinase inhibitors (neratinib, lapatinib, etc.), anti-HER2
monoclonal antibodies (trastuzumab & pertuzumab),
and antibody-drug conjugates (trastuzumab-emtansine,
or T-DM1) are the primary medications used in HER2
selective treatment."

Furthermore, immunotherapeutic =~ drugs may
also be employed to not solely cure the originally
diagnosed tumour but also lower the risk of relapse
and stop metastatic progression.”” To treat localised or
advanced TNBC patients whose tumours express PD-
L1, atezolizumab, a PD-L1 inhibitor, is administered in
conjunction with nab-PTX.'* Chemotherapeutic drugs
don't seem to be tumour specific. Other side effects
include alopecia, leucopenia, anaemia, easy bruising or
bleeding, motion sickness, vomiting, diarrhoea, ulcers
of the mouth, exhaustion, heightened sensitivity to
contaminations, and myelosuppression.”” The second
challenge facing traditional chemotherapeutic treatments
is drug resistance, which diminishes the efficacy of drugs.
Thirdly, the curative impact of chemo is further gets
decreased by the substantial noxiousness and inadequate
solubility of the chemotherapeutic —medications.
Cardiotoxicity has been linked to the anthracycline
family, notably doxorubicin (DOX) formulations.
Additionally, taxanes (PTX and DOX) can cause several
adverse responses, such as cutaneous reactions, bone
marrow restraint, hypersensitivity responses, and dose-
limiting neurotoxicity.”® The therapeutic efficacy of
chemotherapeutic medications is further compromised
by short half-lives and low chemical stability, which might
hamper the dose-effect and interfere with the transport
and absorption speed in the tumour location.'” Moreover,
maximum chemotherapeutic medications are unable to
penetrate the blood brain barrier (BBB), hence restricting
the beneficial impact of brain metastases from BC.*
Regretfully, metastases account for most of the recurrent
disease in early-stage BC cases (30%).**

Cancer nanomedicine synthesis involves
multidisciplinary approach focussing on the molecular

design, and medical applicability of nanomaterials and
nanotechnology to boost the precision of therapy and
enhance patient outcomes.? Many toxoids, or anticancer
medications, such as PTX and docetaxel, are not absorbed
in the gastrointestinal tract (GIT). When treating
advanced BC, PTX is recommended as both a palliative
treatment and first-line therapy.? It has been established
that PTX-loaded NPs offer a great deal of promise for
chemotherapeutic oral delivery agent, and they can have
a much faster drug release than traditional methods.”
Numerous possible benefits of nanoparticulate-based
delivery methods incorporate amended biocompatibility,
multifunctional encapsulation of active constituents,
reduced blood flow, passive or active directing, effectual
administration, and moderated adverse impact.”
NPs offer several advantages: i) similar size as that of
biomolecules. 1ii) derivatization from biomolecules
which can enter tissues and can be used for therapeutic
treatment of cancerous cells. iii) Incorporating additional
concoction to nanostructures or altering their surfaces
can often alleviate dissolution and stability issues. (iv)
Nanostructures have distinctive physical features, like
optical qualities via quantum dots, that are successfully
applied to bioimaging. (v) Due to their tiny dimensions,
NPs can carry or encapsulate a larger pharmacological
payload (such as radioactive isotopes or chemotherapy
drugs) because they typically have a high surface area.
Once the high-dose therapeutic load is delivered and
recognised by a receptor, it can trigger even further
destruction of tumour cells at the pointed location.
(vi) By using passive or active targeting, nanoparticle
formulations can repeatedly deliver drugs at tumour
spots, significantly reducing indiscriminate cytotoxicity.*
Tumour microenvironment (TME) components include
extracellular matrix, stromal cells, neuroendocrine cells,
blood vessels, signalling molecules, and immune and
inflammatory cells.”* New antigens are produced during
each malignancy because of changes in cancer cells, mostly
brought by genetic anomalies. Apoptosis or tumour
necrosis that releases these antigens causes antigen-
presenting cells (APCs) to become activated. Following
their migration to the lymph nodes, activated dendritic
cells (DCs) release antigens through the tumour-derived
peptide MHC I complex, which helps the T cell receptors
to recognize. This process stimulates and matures B cells
and cytotoxic T lymphocytes (CTL). After that, CTLs
relocate to the TME, where they kill cancerous tissues and
produce more cancer antigens to strengthen the body's
defences against cancer.””*

Immunotherapy

Immunotherapy, a promising form of therapy for
cancer, uses a variety of techniques including checkpoint
inhibitors, cytokines that stimulate lymphocytes, T cells
that have been genetically altered, and cancer vaccines.
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However, since these treatments can induce serious side
effects like autoimmunity and nonspecific inflammation,
precise regulation of the absolved process is an essential
hurdleforthebroad useof cancerimmunotherapy. Gaining
insight into how it works between the tumour and the
host immune system is essential to increase effectiveness
and reduce side effects. Tumour and immune cells are
being assessed by using new technologies for molecular
and functional analysis of individual cells, that checks
molecular markers and functional immune responses to
treatment. To attain this objective, nano-enabled tools
and materials are carefully used to effectively sort, image,
and thoroughly characterise immune cells.

The cGAS-STING signalling pathway has become
a vital modulator of the natural immune system
response by enhancing anti-tumour immunity through
immunological effects or reactions. Administration of
STING agonist encapsulated nanoparticles (STING-NPs)
offersanalluringapproach toantitumorimmunotherapy.”
Nanomaterials having distinct surface modifications help
to specifically distribute and encapsulate STING agonists
to specific sites, like tumor microenvironments TMEs and
Lymph nodes (LNs). As compared to small molecules,
NPs that transfer STING agonists provide increased
intracellular delivery and better biocompatibility and lead
to increased STING-mediated immune reaction (Fig. 1).

Poly (ethylene glycol)-block- [(2-diethylaminoethyl

Quantum Dots Liposomes

methacrylate)-co-(butyl methacrylate)-co-(pyridyl
disulfide ethyl methacrylate)]) (PEG-DBP) is an
amphiphilic diblock copolymer that has been engineered
to create a polymersome to load STING agonists.***
The breakdown of the PEG-DBP vesicle envelope due to
change in pH further facilitated endosomal escape and
STING agonist cytosolic distribution. Tests conducted
both in vitro and in vivo demonstrated that cGAMP-
loaded PEG-DBP may produce widespread dispersion
in tumor-draining lymph nodes (TDLNs) and extremely
effective absorption by APCs and NK cells. On the other
hand, unencapsulated cGAMP hardly caused a reaction
above baseline, cGAMP-loaded PEG-DBP increased
inflammatory STING-driven expression.*

For the simultaneous administration of DMXAA
and the prodrug of the chemotherapeutic agent SN-
38, Liang et al created a polymeric nanoparticle (NP)
using triblock copolymers (poly (ethylene glycol)-block-
poly-(DTMASN38)-block-poly[2-(diethylamino)-
ethyl methacrylate]) (PEG-PSN38-PDEA).” During
self-assemblage, the structural block of PEG-PSN38-
PDEA produced a hydrophobic interior core, however
it also contained a cleavable prodrug (PSN38) to
initiate redox stimuli in malignancies. This nano-
encapsulation triggered immune-stimulation of the
type I IFN pathway in murine melanoma, which further
enhanced the cellular concentration of DMXAA in APCs.
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Fig. 1. Overview of STING agonists and benefits of administering STING-NP.
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Synergistic antitumor responses may result from the
innovative design concept of these block copolymers for
a co-delivery nanoplatform.” STING Agonist dimeric
amidobenzimidazole (diABZI)-encapsulated liposomes
(dLNPs), having an average particle size of 99.76 +0.230
nm and an encapsulation efficiency of 58.29 +0.53%, were
synthesized. Mice that received dLNPs showed increased
IFN-f and IFN-y expression. The dLNPs were found to
possess anticancer properties and are capable of drawing
CD8+ T lymphocytes to tumor tissue. The dLNPs-treated
mice exhibited the greatest efficacy, with an average
tumor volume of 231.46 mm?, which dropped by 78.16%
and 54.47%, respectively, as compared to the phosphate
buffer saline group and diABZI group.*

STING agonists offer unique possibilities for anticancer
immunotherapyin different phases of medical trials. There
have been about 20 trials conducted so far to evaluate the
clinical use of STING agonists, including phase I and II
trials.”” For instance, a phase I research that demonstrated
systemic immune activation (NCT02675439) assessed the
safety, pharmacokinetics, and effectiveness of synthesized
CDN (MIWS8I15) in patients suffering from advanced or
metastatic malignancies.”® The safety, pharmacological
characteristics, and dose escalation of exoSTING (CDK-
002) in patients with advanced metastatic, recurring,
solid tumours are being examined in phase 1/2 open-label
research (NCT04592484). Additionally, a STING agonist-
delivering microparticle is being studied in patients with
multiple sclerosis and autoimmune encephalomyelitis
(NCT05705986).

Breast tumour subtypes affect the immune reaction
and the spread of immune cells in the tissues of the
tumour, both quantitatively and qualitatively. Patients
with TNBC have the highest levels of T cell penetration
and PD-L1 expression, whereas affected patients show
positive tests for hormone receptors and have the
lowest levels of infiltration. Regardless of the size or
subtype of the tumour, higher grades of malignancy
can show the intrusion of regulatory T (Treg) cells, and
advanced breast tumours are linked to increased CTLA-
4 expression.”” For a subset of patients with advanced
TNBC, immunotherapy is currently approved; however,
there are still significant questions about the safety and
effectiveness of current treatment approaches. The main
peptide found in European bee venom, melittin, exhibits
immunoregulatory and antitumor properties.”’ Recently,
guanosine monophosphate-adenosine monophosphate
(cGAMP) was loaded into a polymerosome and was
delivered to mice in vivo, significantly inhibiting
the growth of melanoma, upgraded the tumour’s
immunological response.*!

Nguyen and colleagues created a dual-scale cancer
vaccine.” It consists of mesoporous silica microrods which
have been loaded with granulocyte-macrophage colony-
stimulating factor (GM-CSF), a chemokine that recruits

cells, ovalbumin- and CpG ODN-loaded mesoporous
silica NPs. Research indicates that this hybrid vaccine
exhibited a significant inhibitory effect on melanoma
growth. Additionally, a synergistic effect against tumour
development was detected when the vaccine was combined
with an immune checkpoint inhibitor.** Furthermore, the
BBB and other biological barriers can be breached by NPs
due to their compact size, opening new therapy options
for BC patients with brain metastases.”> Table 1 outlines
the treatment options for cancer.

Early detection and diagnosis

Recognition of cancer cells in the initial stages may
pave the way for effective disease management and
may significantly lower cancer-related mortality.*” For
instance, individuals diagnosed early show about 90% of
5-year relative survival rate, whereas those diagnosed later
have been found to exhibit 27% survival rate.*® Lymph
node, lung, liver, bone, and brain metastases are frequent
causes of BC mortality.” Because of this, individuals with
BC must receive more effective treatment, especially in
advanced stages. Currently, histopathology, cytology, and
imaging tools assist with the diagnosis of cancer at the
early stage. The most common imaging tools, like X-rays,
MRIs, CT scans, endoscopies, and ultrasounds, which
detect cancerous tissue with noticeable modification.
Furthermore, it is impossible to differentiate between
benign and malignant lesions by applying current
imaging methods. Furthermore, it is impossible to use
cytology and histology alone to effectively identify cancer
at the earliest.® Therefore, a significant solution in the
prevention of metastasis is the development of early
cancer detection technology.

The ability and effectiveness of various imaging
techniques for capturing breast tissue varies. For
example, mammography is unsuitable for dense breasts,
while ultrasound and dynamic contrast-enhanced breast
magnetic resonance imaging (DCE-MRI) are appropriate.
The DCE-MRI method is being found to be appropriate
for analysing axillary lesions and the margins of digital
breast tomosynthesis (DBT) tumours. However, before
postoperative surveillance and therapy, Ultrasound helps
assess lymph nodes, inflammatory/malignant lesions,
deep lesions, broad breast, lesions in concealed parts of
breasts and the stage of cancer. Employing NPs to identify
cancers of the breast with several imaging modalities,
particularly magnetic resonance imaging (MRI) may
enhance the signal-to-noise ratio as well as contrast of
breast images.*

Since 2015, nanotechnology has advanced for early
BC detection through the development of novel imaging
agents and techniques to detect cancer biomarkers,
incorporating exosomes, circulating tumour DNA
(ctDNA), and proteins associated with cancer.”* The
high surface area as compared to volume of NPs offers
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a significant advantage by enhancing their sensitivity to aptamers etc. to fix and identify cancer cells (Fig. 2). They
fulfil the requirements of specified biomolecular analysis can also be designed by using a variety of binding ligands
kits.>>>¢ This feature permits the compact covering of the with desired specificity and sensitivity.”

exterior of NPs with antibodies, small molecules, peptides, PTX, a chemotherapy drug, shows non-target

Table 1. Therapeutic options for treatment of cancer

Type of treatment Description References

. Overview of commonly used chemotherapeutic drugs: anthracyclines (doxorubicin,
epirubicin), taxanes (PTX, docetaxel), platinum drugs (cisplatin, carboplatin),
cyclophosphamide.

. Challenges, side effects, and drug endurance in traditional chemotherapeutical treatments.

Chemotherapeutic drugs 4447

. Explanation of hormonal treatment aiming to inhibit estrogen action.

Hormonal treatment ) ) S
. Discussion of aromatase inhibition drugs (Als) and SERMs.

. Overview of medications used in HER2 selective treatment: tyrosine kinase inhibitors, anti-

HER?2 Selective treatment
HER2 monoclonal antibodies, and antibody-drug conjugates.

. Introduction to immunotherapeutic drugs and their potential in BC treatment.
Immunotherapeutic drugs . Discussion on atezolizumab, a PD-L1 inhibitor, in conjunction using nab-PTX care for TNBC 15,16
patients.

Discussion of challenges in traditional chemotherapeutic treatments, including side effects,

Challenges in chemothera ) . . . e . .
& Py drug resistance, and limitations in reaching specific locations such as the brain.

. Explanation of the advantages of NPs in cancer treatment, including their size, properties, and

NPs in cancer treatment . ..
directed release of medicines.

Tumor microenvironmentand * Discussion on TME components and their role in the immune response.
immune response . Activation of immune cells, incorporating DCs and T cells, and their migration to the TME.

27,2839

. Overview of immunotherapy techniques (checkpoint inhibitors, genetically altered T cells,
cancer vaccines) and challenges associated with potential adverse reactions and precise 40,41,42,48
regulation of the immune system.

Immunotherapy techniques
and challenges

Exploration of how breast tumour subtypes affect the immune reaction and their distribution.
TNBC associated with higher T cell infiltration, while hormone receptor-positive tumours have 3
lower infiltration.

Breast tumor subtypes and
immune response

Innovative immunotherapeutic * Discussion on innovative immunotherapeutic approaches, including the use of melittin from
approaches bee venom and loading cGAMP into NPs for improved reaction to immunity barrier.

40,41

. Description of a dual-scale cancer vaccine involving mesoporous silica microrods loaded with
GM-CSF and mesoporous silica NPs loaded with ovalbumin and CpG ODN, showing inhibitory
effects on melanoma growth.

. Combined with an immune checkpoint inhibitor for synergistic effect.

Dual-scale cancer vaccine 42
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Fig. 2. Common imaging modalities for BC diagnosis. Abbreviation: FFDM: Full-field digital mammography; TS: Tomosynthesis; DM: Digital mammography;
CEM: Contrast-enhanced mammography; DCE-MRI: Dynamic contrast-enhanced breast MRI; MRS: Magnetic resonance spectroscopy; DWI: Diffusion-
weighted imaging; MRE: Magnetic resonance elastography.
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harmful impact because of its solubility in water, when
administered alone but in a NP form, it resulted in
increased permeability and retention in the cancer cells.”®
Gold NPs is the most promising contrast agents due to
less toxicity, good X-ray absorption and superior contrast
in different imaging techniques. Gold-coated Fe,O, NPs
exhibited improved tumour optical contrast. Chemically
non-reactive, and powerful near-infrared (NIR) absorber
gold NPs have a genuine chance of being used as an
efficient contrasting agent as well as for other biomedical
applications. Furthermore, gold NPs’ (AuNPs') small size
makes it possible for them to pass through capillaries
and circulate easily inside blood vessels. Gold-embedded
tumour cells can be seen in vivo using two-photon-induced
photoluminescence (TPIP) because of a photophysical
characteristic of the gold nanoshells that makes them light
up brightly.®® Mobile devices with biochemical sensors
can track those suffering from BC quickly, accurately,
and non-invasively, transforming the course of therapy.
By identifying BC at the early stages, such devices could
lower treatment-related mortality and late detection.®

However, several problems such as a small number,
variability in biomarker amounts in bodily fluids, timing
etc. hamper the application of biomarkers.®' Nevertheless
NPs can be used to enhance biosensors response and can
enable accurate targeting.®” Tumour-derived strands of
DNA, present in blood having approximately 100-200 base
pairs are identified as circulating tumour DNA (ctDNA).%
Through cancer-specific genetic mutations, circulating
tumour cells (CTCs) or the primary tumour may release
ctDNA, which may help to diagnose cancer. To identify
a single exon in the BRCAI gene in BC, a DNA silver
nanocluster (NC) fluorescent moiety has been created.®
Recent analysis shows that many cancer types share the
genome methylation landscape suggesting it to be common
biomarker for cancer detection. Based on differences in
DNA-gold affinity and DNA solvation between cancerous
and normal genomes, straightforward, fast, accurate, and
colorimetric one-step assays for recognition of cancer
have been developed.®® Super paramagnetic iron oxide
NPs (SPIONs) have gained importance owing to their
capability to improve distinction in magnetic resonance
imaging (MRI), enabling more accurate tumour
localization.®® Additionally, quantum dots and gold NPs
have shown potential for highly sensitive and specific
detection using optical imaging methods.”

Jia et al discovered that the human BC cells MDA, MB
231 and ZR 75 1 showed increased chemosensitivity and
radiosensitivity when single-walled an oxygen-carrying
tombarthite-modified folic acid conjugated chitosan
(RO2 FACHI) SWCNT nanocarrier, were administered
in combination with chemotherapy or radiotherapy.®®

Multimodal imaging
Innovations in nanotechnology have steered to the

advancement of multimodal imaging agents that combine
various imaging modalities. These agents, often integrated
with therapeutic payloads, allow real-time monitoring
of medication response and amended anatomical and
functional insights.® The integration of MRI, positron
emission tomography (PET), and fluorescence imaging
within a single nanoparticle has enabled more accurate
disease characterization. Superparamagnetic contrast
agents, having ferromagnetic superparamagnetic iron
oxide NPs (SPIONs), and paramagnetic contrast agents,
which are made of gadolinium””' and manganese’ exhibit
low signal intensities on T2-weighted images, are the two
types of nanoprobes that are frequently used.””® NP-Neu,
a SPION triggered by anti-Neu receptor antibodies, was
created.”

When NP-Neu was administered to animals, the T2
relaxation time of the breast tumours have been decreased
dramatically due to the precise bonding of NP-Neu to
breast cancerous cells, which greatly improved the MRI
contrast. A range of studies have explored the use of
multi-modal imaging for BC detection. An Al system
designed for BC detection has been found to be robust
and accurate, regardless of the mammography unit
manufacturer or patient demographics.” Yang developed
a digital platform using stimulated Raman scattering
microscopy and multi-instance learning for quick and
programmed identification of tumours on unprocessed
breast core-needle biopsies, achieving a 95% diagnostic
accuracy.” Tower reported a case of mixed metaplastic
breast carcinoma, highlighting the importance of accurate
diagnosis and treatment.** Bobowicz proposed a deep
learning system for the classification of BC, achieving
high accuracy and potential for generalizability.® Thus
recent research validates the potential of multi-modal
imaging in improving BC detection and diagnosis.

Targeted drug delivery

Recent years observed remarkable improvements in
nanomaterials' design for drug transfer to directed
cancerouscells. Antibody-conjugatedliposomes, polymer-
based nanoparticles, and exosome-derived nanovesicles
have been engineered to distribute chemotherapeutic
agents and targeted therapies directly to the swelling
cancer locations.®® For an efficient nano drug delivery
system, NPs should be innocuous and biocompatible
having size between 10-200 nm. The medications (>50
mol%) ought to be enclosed in the NPs and shielded
against unintended breakdown or removal while in the
bloodstream. These medications or active chemicals under
extrinsic or biological control are released in the required
dose. Surface functionalization of the nanomaterial should
be resilient to conglomeration brought on by changes in
temperature, macromolecular interactions, ionic strength,
and pH in the normal physiological setting to prevent
accumulation in organs or membranes. Good circulation
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time and maximum therapeutic absorption intensity is
required within the targeted areas to minimise negative
consequences on normal tissues. The nanoparticle
vehicle must have clearance pathways after performing
its purpose. This is essential to prevent progressive and/
or permanent systemic adverse reactions, such as possible
disruption with biological activities. These nanocarriers
enhance drug bioavailability, minimise off-target effects,
and overcome drug endurance.®

NPs can impact BC through active, passive or stimuli-
responsive targeting. NP accumulation in tumour tissues
due to augmented penetrability and holding effects
result of vascular leaking in the TME, which causes
passive targeting.®® Typically, rapidly expanding tumour
cells neovascularize in response to hypoxic conditions.
The new blood channels frequently have larger holes
when compared to normal vessels, which worsens the
penetrability and selective nature of tumour vessels.*
When tumour cells expand swiftly, the exterior of vascular
endothelial cells typically releases certain antigens or
receptors abnormally. The alteration in the surface of
NPs with appropriate antibodies or ligands boosts their
concentration into the tumour tissues and provide them
the potential to deliver medications at specific locations.”
Alteration of ligands leads to the active targeting at tumour
vasculatures, tumour stroma, tumour cells, immune cells,
and the subcellular level.

Nanoparticle's dimensions, form, strength, and charge
on the surface are responsible for passive targeting and
the addition of a chemical or biological component to a
nanoparticle's surface that bonds specifically to receptors
or other cellular characteristics that are extensively
expressed by cells in a target organ results in active
targeting.

While passive targeting makes use of NPs' intrinsic
qualities, such as increased permeability and retention

Active targeting

(nanosizing PEGylation), active targeting NPs use
antibodies, peptides, ligands, or carriers (Fig. 3). Passive
targeting involves non-specific delivery, which may result
in drug buildup in other tissues and cause effects that are
not intended. The EPR effect is not always successful in all
tumours. Decreased performance may result from drug
release into the extracellular matrix rather than cancer
cells.®

Active targeting is more difficult to execute,
necessitating the development of appropriate ligands
and surface modification of the drug carrier. Certain
malignancies may not respond well to ligand-receptor
interactions, which can be influenced by variables such
as receptor density and expression. If the ligand attaches
to receptors on different tissues, it may lead to off-target
consequences.”

Genexol®-PM, also known as PTX, doped with poly
(D, L-lactic acid), is an antimitotic chemotherapeutical
medication that averts microtubule depolymerization,
triggering a cell cycle stoppage and mitotic suppression.”
Clinical research has shown that Genexol-PM can
provide PTX at larger doses than typical chemotherapy
without producing significant dose-limiting effects.”
Similar observations have been reported with nab PTX
(Abraxane).” In adjuvant care, Doxorubicin-doped
human serum albumin NPs (DOX-NP) having surface
functionalization by trastuzumab through covalent
bonds (DOX-NP-trastuzumab) have been synthesized
which is frequently used solely or in combination with
other drugs to lower the probability of malignancy
relapse and enhance the general survival rate of those
diagnosed with HER2-positive BC.** PEGylated
liposome containing DOX hydrochloride, is a potential
therapy for metastatic BC that lowers systemic toxicity,
preserves DOX's antitumour effects, and lengthens its
duration in flow to prevent early ejection.”” Moreover,
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Fig. 3. Mechanism of Active and Passive targeting by nanoparticles
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liposomes can be employed as co-delivery platforms for
inhibitors and chemotherapy agents, thereby increasing
the susceptibility of cancerous cells to antineoplastic
medications. It was discovered that co-condensed DOX
and verapamil liposomes might lessen the noxiousness
of non-target organs significantly in addition to helping
BC cells escape P-gp-mediated multidrug resistance.” To
combat HER2-positive BC, nanocrystal micelles made
up of Herceptin-conjugated PTX stacked with PCL-PEG
have been designed.”” The study demonstrated that the
PTXs have a particular focus on HER2 -positive tumour
cells and stay stable in TME while protecting healthy
cells from their harmful impacts. AuNPs can transform
the energy of NIR radiations into heat energy, which kills
cancerous tissues due to their outstanding effectiveness
of photothermal transformation.”® Surface-functionalized
groups for instance biotin, PEG, and rhodamine B linked
B-cyclodextrin can modify PTX attached with AuNPs,
which can be advantageous for treating BC without killing
non-cancerous cells and can be employed as theragnostic
agents.” When two or more chemotherapeutic drugs are
combined, such as when trastuzumab is added to PTX
NPs for specific chemotherapeutic treatment of malignant
breast cells, multifunctional polymeric NPs are created.
These kinds of NPs have several benefits, including the
ability to formulate anticancer medications without
the need of hazardous adjuvants, produce synergistic
therapeutic effects, lessen anticancer medication adverse
effects, and deliver cancer medications precisely where it is
needed.'” Enhanced radiosensitivity and chemosensitivity
of human BC cell lines were detected, when unique
functionalized single-walled carbon nanotubes loaded
with DOX were used which resulted in to enhanced
programmed cell death, DNA destruction, and oxidative
stress.'”! One significant advancement is the use of PTX.
Abraxane represents an additional instance of precisely
aimed drug administration to breast tumors; referred
to as nab-PTX.!”” Human albumin proteins were loaded
to create a single-walled carbon nanotubes (SWNT-
HAS) as drug transfer transporters. In MCF-7 BC cells,
this combination demonstrated 80% intracellular drug
delivery along with suppression of growth of tumour,
demonstrating better efficacy.!”® For BC patients, the
use of poly (d,1-lactide-co-glycolide) (PLGA) having
cisplatin has established notable effectiveness.'® To co-
deliver DOX and cisplatin, poly amido amine (PAMAM)
dendrimer NPs tailored with hyaluronic acid (HA) (HA@
PAMAM-Pt-Dox) have been synthesized which has
established that HA@PAMAM-Pt-Dox is highly potent in
enhancing the cisplatin and DOX chemotherapy's ability
to destroy BC cells.!”® Management through monoclonal
antibodies opposed to the HER2 receptor offer an
effective targeted remedy.' Antibody-drug conjugates
that actively target the protein tyrosine kinase 7 (PTK7)
receptor, ephrin receptor-4, zinc transporter LIV-1,

trophoblast cell-surface antigen 2 (Trop-2) and NMB
glycoproteins in TNBC have also been researched. The
term "stimuli-responsive tumour targeting” signifies the
careful release of the medicine at cancer sites, which boosts
its effectiveness and lowers its systemic noxiousness.'®
Payload is released by activating NPs at cancer tissues
because of alterations in redox potential, enzyme activity,
pH, temperature, ultrasound, electric field, photodynamic
treatment etc.'?”'*® HA modified carbon dots prepared by
self-aggregation of DOX@HA-CD, is a size-shrinkable,
pH-responsive drug delivery system.'” In neutral pH,
it may show self-aggregation to form a raspberry-like
structure but due to fluctuations in charge, hydrophilic,
and hydrophobic behaviour at simulated pH 6.5, it quickly
crumbles to shotgun-like CD monomer encumbered with
DOX, improving cellular uptake and infiltration in the
BC cells, and significantly increasing the effectiveness
of chemotherapeutic treatment.'® Chen et al developed
bimetallic Prussian blue analogues for DOX delivery at the
intracellular level, demonstrating superior drug loading
capability and exceptional therapeutic efficacy."! Zhang
et al engineered hollow mesoporous silica NPs for dual-
responsive delivery of methylene blue and DOX, achieving
accurate targeting and exhibiting the remarkable ability
to kill tumour cell**"* Maddiboyina et al optimized
poly (lactic-co-glycolic acid) nanomaterials packed with
raloxifene, showing high entrapment efficiency and
stability.'” Subhan and Torchilin discussed the potential
of biopolymer-based nano systems for siRNA-targeted
drug administration to solid BC cells, highlighting their
stimuli-responsive properties and controlled-release
capabilities.'* These studies collectively underscore the
promise of NPs in targeted drug transfer to BC cells.

Combination therapies

Recent years have witnessed the exploration of
nanotechnology-enabled combination therapies for BC.
Co-delivery of chemotherapy agents, targeted therapies,
and immunomodulators using multifunctional NPs has
demonstrated synergistic effects, leading to enhanced
therapeutic outcomes."'>"'¢ NPs can be designed to
release different agents at specific time points, optimizing
treatment sequences.

Co-delivery nano systems

Advanced drug delivery platforms called co-delivery nano
systems for BC are made to deliver several therapeutic
medicines to the tumour site at once. These systems seek to
address issues such as medication resistance, diminution
systemic toxicity, and advance the therapeutic efficacy.
An outline of co-delivery nano systems for the treatment of
BC is provided below:

(a) liposomes: Amphiphilic lipid bilayer-based spherical
vesicles having high biocompatibility and their
competence to capture hydrophilic and hydrophobic
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medications e.g. DOX, a chemotherapy drug, to prevent
tumour development and metastasis. They can readily
fuse with the cell membrane because of their structural
resemblance. Liposomal anthracyclines like liposomal
daunorubicin and pegylated liposomal DOX offer
effectual drug encapsulation, substantial anticancer
behaviour, lesser cardiotoxicity, with greatly prolonged
circulation. Pegylated liposomal DOX has demonstrated
significant effectiveness in treating BC when used alone
or in conjunction with conventional therapeutics.'”
Liposome-based methods designed to attack BC cells
encompass enzymes, receptors on the outside, inside,
and across membranes, for dual-targeting of these
cancers.'"® Clinically available liposome-based treatments
for manging breast carcinoma include Doxil, Myocet,
Lipodox, Lipusu.'® The liposomes also present chances for
developing site-specific treatment by altering the liposome
exterior with targeting ligands, reducing the non-specitfic
impact of conventional chemotherapeutic medications.
The treatment results are significantly improved by the
latest generation liposomes incorporating activating
properties, which even offer exact control over payload
discharge.'”

(b) Polymeric nanoparticles: Biodegradable and
biocompatible NPs having polymers for instance
poly (lactic-co-glycolic acid) (PLGA) are co-loaded
with rapamycin (a mTOR inhibitor) and PTX (a
chemotherapeutic drug) to target the propagation of
cancer cells. They exhibit high stability and controlled
medication release. DOX-loaded PNPs exhibit a
favourable interaction with healthy cells and show strong
effectiveness towards estrogen-dependent MCEF-7 cells,
even at modest DOX application levels.'?

(c) Micelles: A very efficient drug transporter, polymeric
micelles are created by the self-assembly of hydrophilic
shells and hydrophobic cores. These micelles can
improve the invasion of the malignant vascular system.
Amphiphilic molecules having core-shell structures by
self-assembling encapsulate the antioxidant quercetin
and the chemotherapeutic medication docetaxel to
improve therapeutic efficacy and lower drug resistance.
They show easy functionalization and a high drugloading
capacity. Lipids, polymers, inorganic, and peptide-
based nanomedicines with a range of functions have
been employed to create an array of nanoformulations.
Therefore, it is crucial to have a thorough understanding
of such smart nanomedicines for highly intriguing drug
delivery methods. Since polymeric micelles (PMs) are
often simple to make and have high solubility, they seem
like a desirable substitute for other nanosystems.*?!

Nevertheless, there are other strategies to enhance
medication delivery using micelles. Micelles may have
targeted ligands added to them that precisely identify and
adhere to receptors that are overexpressed in tumour cells.
Micelles can also be tracked in vivo for biodistribution

investigations by chelating or incorporating imaging
molecules. Furthermore, regulated micelle breakdown
and controlled drug release are made possible by block
copolymers, which show sensitivity to pH, temperature,
ultrasound, or light.'*»!**

(d) Dendrimers: Branched, tree-like nanostructures with
several functional groups can be co-loaded with DOX and
tamoxifen to target BC that has hormone receptors. They
exhibit accurate control over drug targeting and release.
These NPs are made up of three components: an outer
surface functional group, repeated branching units, and a
centre core. Drugs, targeting ligands, and imaging agents
can all be complexed with chemically altered outer surface
functional group. Poly (L-lysine) (PLL) dendrimers,
polypropylene imine (PPI) dendrimers, polyamidoamine
(PAMAM) dendrimers, and PAMAM-organosilicon
dendrimers (PAMAMOS) are among the dendrimers that
are frequently employed for cancer therapy.'*

Drug-delivery dendrimer-based nanosystems are
generally synthesised from PAMAM dendrimers,
which are loaded with medicines and contrast agents.
Furthermore, dendrimers are effective conjugates that
transport many drugs at once. The generation of new
molecular frameworks for medical diagnosis and therapy
has spurred the prospect of producing dendrimers with
many roles.'”® Because of their great loading ability and
capacity to distribute medications precisely, dendrimers
produce fewer negative consequences.'?

(e) Hybrid nanoparticles: To maximise delivery,
several components (such as lipids and polymers) are
combined. For instance, lipid-polymer hybrid NPs that
deliver docetaxel and trastuzumab (an antibody that
targets HER2) simultaneously. Hybrid nanocarriers may
encapsulateavarietyof cargos,andaugmentencapsulation,
stability, circulation time, and structural fragmentation.
Hybrid nanocarriers are been used in breast carcinoma
for scanning platforms, chemotherapy, gene therapy,
photodynamic and photothermal treatment (PTT), and
combinational therapy.'” To improve the packaging
effectiveness, anti-cancer efficacy of caffeic acid (Caff),
and folic acid (FA) for the treatment of BC, salicylic acid
(SA) was doped into poly(3-hydroxybutyrate) (PHB), and
nanoparticles were synthesised.'*®

(f) Exosomes: Cell-derived vesicles that occur naturally
help in the co-delivery of PTX and siRNA via exosomes
for chemotherapeutics and the suppression of genes.
The benefits include the capacity to transcend biological
constraints and inherent biological compatibility.
Exosomes generated from tumours have been investigated
to be key regulators in the setting off malignant
tumours, influencing the behaviour of immune cells and
accelerating the disease's progression.'>>'*

(¢) Nanostructured lipid carriers (NLCs): Lipid
mixtures, both liquid and solid, make up NLCs. Because
of their many components, NLCs have an unstructured
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matrix.”® Due to their unstructured characteristics

and crystallisation flaws, NLCs in the liquid state offer
additional room for drug disintegration and delivery.'*
Several NLC loaded with methotrexate/ chlorambucil/
ellagic acid have been synthesised, which are found to
be effective against BC cells.’**'*® NLC encumbered with
either Ribociclib or curcumin have been found to exhibit
better bioavailability and enhanced cytotoxic effects,
respectively.’**'¥” Tetrahydro curcumin- chitosan-coated
NLC, Dexibuprofen loaded NLC, Cabazitaxel loaded
NLC have been found to show better skin permeation,
prolonged drug release.”** NLC having Luteolin/
Imatinib/Raloxifene/Docetaxel have also been prepared,
which demonstrate better efficacy for management of
BC.114 Psoralen-loaded polymeric lipid nanoparticles
enhance PTX's antimetastatic and curative effects on both
in vitro and in vivo TNBC.'*

(h) Carbon nanotubes (CNTs): Carbon nanotubes are
cylindrical structures having multiple coaxial layers of
graphite with dimensions in the nanometre range.'*
Medications are confined in carbon NPs through n—n
stacking due to their intrinsic hydrophobicity.'"” Because
of its huge surface area and special optical, electrical, and
mechanical properties, CNTs can carry heavy loads.'*® As
a result, carbon nanotubes can be utilised as biosensors,
contrast materials for breast tumour diagnostics and
detection, and tools for the delivery and discharge of
targeted medications.'*

Carbon nanomaterials such as graphene and CNTs are
perfect for PTT as they possess high electrical conductivity,
enormous surface area, and biocompatibility. By
absorbing near-infrared light, carbon nanomaterials
allow for deep tissue penetration and precise heating of
tumour tissues, which causes necrosis and apoptosis.
Additionally, carbon nanomaterials enhance therapeutic
results by increasing tumour vascular permeability, which
encourages the buildup of chemotherapy drugs.'*

Carbon dots (CDs) functionalised with doxorubicin
(CDs-DOX), showed superior anti-tumour effectiveness
on MCF-7 cells and a higher cellular absorption than free
DOX.»!

To enhance the targeted medication absorption by the
cancerous cell, click chemistry was used to modify the
CNPs' surface with folate. Tamoxifen (TAM) discharge
at the designated region has been effectively triggered
by the pH variation among cancer and normal cells.
Approximately 74% of the TAM medication was released
by CNPs in an acidic pH after six hours of incubation.'
carbon nanotubes are also used for the early detection of
cancer.'”

(i) AuNPs: AuNPs show several uses such as high
photothermal conversion effectiveness, imaging contrast
ratio, biocompatibility, versatility, and the ease of surface
alteration.””*'>> AuNPs are therefore effective agents for
PTT." AuNPs can destroy cancer cells by converting

light energy in the NIR into heat energy due to their high
photothermal conversion efficiency.'”’

AuNPs show promise as a therapeutic option when
used in conjunction with radiation therapy.”*® The study
emphasizes how the PEG chain contributes to AuNPs'
effectiveness in sensitizing cells to ionizing radiation.

A gold atom in the inner core of AuNPs is adorned
with a negative charge on the surface. The site-specific
localization of AuNPs with targeted therapeutic payload
distribution is ensured by designing particle with various
biomolecules (proteins, enzymes, or DNA). Nanospheres,
nanoclusters, nanorods, nanocubes, nanocages, nanostars,
and nanoshells are some of the many morphologies of
AuNPs. They ensure pharmacological response in targeted
delivery, photodermal and photothermal therapy, SERS-
based imaging, photo-electronics, clinical management
of cancer, microbial infections, contrast agents and
field enhancers, chemical and biochemical sensors, and
radiosensitizers.'*

(j) Mesoporous silica NPs (MSNs): Due to their huge
surface area, customizable pore size and release qualities,
high drug content capability, zero premature release, and
diverse competencies, MSNs have evolved into devices
for drug delivery.'®*'! Because of their functionalization
and size-shape-driven versatility, MSNPs have recently
attracted attention as carriers of drugs.'®® MSNs loaded
with chemotherapeutic drugs such as docetaxel, DOX,
and PTX have demonstrated potential in preclinical
investigations. These medications can be encased in the
tiny openings of MSNs or placed on their outer layer,
enabling regulated delivery patterns and supporting
various pharmacological characteristics. ~Targeted
molecules, including folic acid, HER2/neu antibodies,
and aptamers, may be affixed to the MSNs to improve
selectivity. MSNPs can increase medication release and
absorption, which boosts anticancer activity.'™® MSN-Res,
or resveratrol-modified mesoporous silica nanoparticles,
have been produced by chemical methods, which are more
successful than Res therapy alone as they block the NF-«xB
signalling pathway, thereby, slowing the advancement of
breast carcinoma.'**

Gingerol (Gin) and Letrozole (Let), anticancer
medications were loaded on mesoporous silica
nanoparticles (MSNs) functionalized with zinc, amine,
and graphene oxide (GO) (MZNG). Let and Gin-loaded
MZNGs are spherical in shape having mean diameter
of 210 nm. Utilizing a pH-dependent extended-release
characteristics, the MZNGs offered excellent Let and Gin
retention rates. The suppression of tumour cell growth
and cell detention in the GO/G1 stage was triggered by
controlling gene expression, thereby greatly improving
their efficiency.'®®

After DOX had been introduced into the tiny holes
of mesoporous silica nanoparticles (MSN-COOH),
polyethyleneimine (PEI) and anisamide (AA) were added
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to the mesoporous silica surface to create DOX@MSN-
PEI-AA (DMPA). Through the process of AA-mediated
receptor endocytosis, DMPA particularly got into the
cancer cells. PEI was protonated, which caused it to split
away from the MSN surface in the acidic atmosphere of
cellular lysosomes/endosomes. This led to a consistent
discharge of the encased DOX from the MSN pores in the
intended target cells' cytoplasm exhibiting targeted and
efficient delivery.'s

(k) Quantum dots (QDs): These are semiconductors at
the nanoscale, measuring from 2 and 10 nm.'"” To increase
the luminescence performance of single quantum dots,
core-shell quantum dots have been developed. Their
use in sensors is made possible by extracting them into
water-based solutions and covering their exteriors with
organic ligand.'® QDs can be employed for biosensing,
biolabeling, and bioimaging because of their unique
optical characteristics, broad excitation spectrum, and
extremely small symmetrical intensity distribution.'®

A flexible ultrasmall AgTe QDs for photonic
tumour heating have been developed for guided
by high-performance computed tomography (CT)
imaging. Furthermore, in xenograft animal models,
these Ag TeQDs with little toxicity and outstanding
biocompatibility have demonstrated a significant tumour
suppression rate (94.3%) on 4T1 cells due to their high
photo-thermal conversion efficacy (50.5%)."7°

The nano systems show synergistic therapeutic effects
by following specific pathways, better targeting, decreased
side effects, overcoming drug resistance, controlled release
of medication to achieve long-lasting therapeutic benefits.

Table 2. Types of nanoparticles used for breast cancer treatment

However, formulation, scalability, biocompatibility, and
regulatory approvals are the issues that need to be tackled.

The Food and Drug Administration considers a few
nano drug delivery systems for BC treatment, including
Genexol-PM (PTX micellar formula), Myocet (DOX
liposomes), Lipusu (PTX liposomes), and Doxil (pegylated
DOX liposomes). Table 2 and Fig. 4 illustrate several
potential approaches considering the various kinds of
NPs that have been investigated thus far.

Combination with PTT

Three therapeutic drugs—DOX, CpG, and indocyanine
green as a photothermal agent—were loaded on layered
double hydroxide NPs.'® In the 4T1 BC mouse model,
this multifunctional nanoparticle exhibited a highly
efficient response in eliminating the tumour and averting
tumour relapse and metastasis."® Analogous outcomes
were observed with a nanoparticle that incorporates
glycol chitosan as an immune stimulatory agent and IR
820 as a photothermal agent.'®® An outstanding antitumor
effect against BC was demonstrated by gold NPs having
anti-PD-1 peptide.'* In the 4T1 mouse model, Fe,O, NPs
combined with reduced-graphene oxide NPs activate
immunogenic cell death (ICD) and DCs to eradicate the
tumour."” Furthermore, an improved copper sulphide
nanoparticle capable of inducing photothermal effects
was prepared.” The induction of systematic immune
responses led to a suppression of primary and distant
tumours in the 4T1 tumour model after the in vivo
transfer of copper-based NPs in combination with an
anti-PD-L1.

NDDS Size (hm) Drug Cell line Reference
AntiCD44 antibody and
Multi-functionalized iron oxide magnetic NPs (MNPs) 93 m . .an foody an CD44-positive cancer cells 71
gemcitabine (GEM)
) DOX and monoclonal Murine breast adenocarcinoma 17
PEGylated magnetic NPs 50 antibodies to VEGF a1
Collagen -Gold NPs (Col-AuNP) 227 Berberine (BB) Her-2 BC cell lines 73
Liposomes and HA combine in a phospholipid— 3546 DOX TNBC cell lines (MDA-MB-231 and 17
polysaccharide NPs (PHYN) B MDA-MB-468).
Liposomal nanozymes (MP@H-MnO2-Col NPs) 220 DOX 4T1 cells 75
Polymeric nanocarrier with chitosan (Meth-Cs-NPs) ~143 Methotrexate (MTX) TNBC (MDA-MB-231) 176
N . ) CD44-positive MDA-MB-231 cells 177
Polymeric micelles with HA 200 Harmine (HM) and CD44-negative MCF—7 cells
Collagen-Binding Nanoparticles (nanostructured
lipid carrier core with a poly(N-isopropylacrylamide) 140 Paclitaxel (PTX) MCF-7 cells and T-47D cells 178
(pNIPAM) shell)
Trast b (Tz d
Dendrimer <2um ras L.Jz-uma (1Z)an SKBR-3 (HER2-positive) BC cell line 79
neratinib
Dendrimer (fluorinated dendrimers) 220-280 TZ Her-2 positive cells (MCF-7) 180
PEGylated N-(2 hydroxypropyl) meth acrylamide 20-70  DOX 4T1, MCF-7 and TNBC cell lines 11
polymeric micelles
Po.lymerlc micelles (Folic acid grafted mixed polymeric 35.01£1.20 Tamoxifen citrate (TMXC) MCF-7 cell line 18
micelles)
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Fig. 4. Target of various nanocarriers via conjugation to treat breast cancer

Combination with photodynamic therapy (PDT)

PDT encompasses the usage of a photosensitizer (PS)
which is either administered locally or the targeted
tissues are subjected to electromagnetic rays at a certain
wavelength that is compatible with the PS."* The popular
way to strengthen the anti-cancer efficacy is to combine
chemotherapy with PDT. For instance, a liposomal system
called nano-Pt/VP@MLipo containing verteporfin (VP),
a clinical Photosensitizer, and platinum NPs (nano-Pt) in
the lipid bilayer was designed to provide photodynamic
therapeutic action.' A cancer-targeted nano-platform
(PFTT@CM) has also been synthesized using Fe’*tetrakis
(4-carboxyphenyl) porphyrin (TCPP), and the hypoxia-
activable prodrug tirapazamine (TPZ).”* A PLGA-
based therapeutic nanoplatforms (IDPNs) was created
to distribute near IR dye indocyanine green (ICG) and
the chemotherapy medication DOX simultaneously.'?
The IDPNs displayed excellent on-demand drug
release behaviour, photothermal effect, stability, and
biocompatibility. The chemo-photothermal combination
therapy effectually inhibited tumour progression in mice
bearing BC cells with no systemic toxicity and produced a
preferential in vitro chemical-photothermal combination
management.

A substantial efficacy for BC control by delivering
zinc phthalocyanine photosensitizer to cancer cells via
mitochondria-targeted NPs was observed.”® In a related
study, photochlor, a different photosensitizer, was also
loaded into a nanoparticle to strongly stimulate host
antitumor immunity, which in turn inhibited tumour
development and metastasis in the 4T1 murine BC model."**
Additionally, it was noted that the 4T1 tumour model's
primary and distant tumours are inhibited when an antigen-
capturing agent called maleimide is added to photothermal/
phototherapeutic-based nanoparticles. This improvement

occurs after ICD is induced by the nanoplatforms, greatly
increasing antigen presentation to DCs.'*®

Chemodynamic therapy (CDT)

CDT is an effective technique to cure cancer. It can
generate extremely cytotoxic hydroxyl radicals, causing
significant oxidative impairment and cell killing. The
CDT relied on the Fenton catalysts rather than oxygen
or external energy input.” To create hydroxyl free
radicals for CDT, a nanoparticle DMH NPs that could
undergo a Fenton-like reaction in the presence of H,O,
was designed.”” According to research, chemotherapy
and CDT together could effectively cause the death of
MCEF-7 cells, improve anticancer activity, and lower
cytotoxicity.”” The R848 (an immune-regulator) and
DOX (a chemotherapeutic) nanoparticle systems were
created as a twofold pH-reactive multifunctional structure.
HA-DOX/PHIS/R848 NPs dramatically suppressed
cancer expansion by modulating tumour resistance and
destroying tumour cells."”® SWCNTs conjugated with
PEG and thioaptamer were synthesized,' and their
impact on targeted PTT for BC was studied both in vitro
and in vivo. The results demonstrated that SWCNT-PEG-
TA dramatically reduced the viability of the cells. Another
study investigated MDA-MB-231 cell death induced by
SWCNTs-Dox.*® NIR irradiation sped up the release of
DOX from SWCNTs. The release of DOX from SWNTs-
DOX was found to be efficiently localized into the nucleus
of MDA-MB-231 cells, accumulate within the cells at high
concentrations, and encourage programmed cell death
through mitochondrial interruption and production of
reactive oxygen species (ROS) (Fig. 4, Table 3).

Potential toxicity of co-delivery system
A few nanocarriers may have the potential to be harmful
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Table 3. Therapeutic Approaches for the use of nanoparticles in cancer treatment

Therapeutic
approach

Nanoparticle/Plam

Loaded agents

In vitro/in vivo
model

Outcome

Reference

Combination with
photothermal
therapy (PTT)

Layered Double

Doxorubicin, CpG,
Indocyanine Green

4T1 BC Mouse

Elimination of primary tumor, avert

Hydroxide Nanoparticle (Photothermal Agent) Model tumor relapse and metastasis

Nanoparticle with Glycol  Glycol Chitosan, IR 820 . . 202

Chitosan and IR 820 (Photothermal Agent) Similar antitumor effects

LTZ-BBR@AA-AUNPS. Entrapment of both MDA-MB-231 MDA-MB-231 cytotoxicity against 203
LTZ and BBR cells.

Fe-rGO/DOX DOX MDA-MB-231 Fe-rGO/DOX effectiveness for PTT 204

(IR780/1-methyl-
tryptophan loaded
PAMAM dendrimer

(IR780/1-methyl-
tryptophan

4T1 Tumor Model

The (PDT)/(PTT) activity of IR780 and
IDO which inhibit the pathway

205

Combination with
PDT

Bi,Se,-RSL3/diABZi (DP-
HBN/RA)

FITC-labeled DP-HBN/
RA

TNBC

nanomedicine enhances antitumor
therapy by inducing X-ray radiation

206

FCSP@DOX MOFs

DOX

4T1 and MC3T3-E1
cells

TME-activated MOFs for non-
apoptotic ferroptosis therapy

Ce6/PTX-H/P NPs

chlorin e6 (Ce6) and
PTX.

B16F10, FaDu, and
HEK-293 cell lines

Ce6/PTX-H/P NPs exhibited
photodynamic therapeutic effects in
solid tumors.

Zinc Phthalocyanine
Photosensitizer via
Mitochondria-Targeted
Nanoparticles

Zinc Phthalocyanine

Significant improvement in BC
treatment

209, 210

4T1 Murine BC

Nanoformulation Stimulate the

Chemo dynamic
therapy (CDT)

GO-PEG-HPPH %4Cu labeling of HPPH  Model and Athymic tumor immunity and inhibits growth 2
nude mice and metastasis
SNPs@ZrMOF@RB Soft X-ray ligh 411 Tumor growth 2

inhibition

DOX@FA-RHPs-SA

RHPs and DOX

chemo-immunotherapy for TNBC to
enhance tumor targeting

Other approaches

SWCNTs Conjugated with

PEG and Thioaptamer

In Vitro and In Vivo

Targeted PTT for human BC

SWCNTs-DOX-HA

Doxorubicin

MDA-MB-231 Cell
Death

Nanomaterials effect to inhibit the
growth of cancer cells

to healthy tissues, resulting in their inflammation
and other unintentional side effects. They may cause
an immunological reaction, due to the formation of
antibodies, thereby reducing their efficacy. When several
medications are administered together, there may be
unanticipated interactions that change the toxicity or
effectiveness of the medications. To ensure the safety of
the nanocarrier and build up in the body, their ability to
degrade and eliminate must be meticulously considered.
The biological distribution, cellular absorption, and
possible cytotoxicity of nanoparticles can all be influenced
by their size and form. When nanoparticles' surfaces
are altered by adding targeted ligands, for example,
new hazards such as toxicity and immunogenicity may
arise. Moreover, Co-delivery nano system design and
manufacturing offer a challenge in scaling the production
and maintaining the quality.?'6*"

Strategies to reduce toxicity
Selecting biocompatible and biodegradable materials
Biologically compatible and biodegradable nanocarriers

can mitigate the toxicity and drug resistance by covalently
binding with the targeting moieties. They can also be used
in conjunction with synthesized chemotherapeutic drugs
and an herbal anticancer bioactive chemical.*'®
Optimized formulation

Nanoparticles' size, shape, and surface characteristics
impact the ability of the nanoparticle to functioning.
Developments in AI and machine learning may forecast
how changes in NP formulations' size, shape, and surface
alterations would impact their behavior in biological
systems.?"

Targeted and controlled delivery

Targeting cancer cells with ligands or antibodies can
increase therapy effectiveness and lessen the time duration
to which medications are exposed to healthy tissues. As
an extra layer of protection, the nanocarrier guarantees
that the dual drug may be enveloped in the ideal amount,
enhances the stability and solubility of hydrophobic
pharmaceuticals, and lowers the drug removal rate in vivo
to increase bioavailability. Through increased infiltration
and retention (EPR) effects, delivery nanosystems can
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be passively tailored to tumor tissue, facilitating the
penetration and build-up of anticancer medicines in
specific locations. By altering ligands on nanoparticles to
recognize specific cell surface receptors, active targeting is
an additional technique to enhance absorption capability
and lessen injury to healthy tissues during chemotherapy,
henceincreasing delivery efficiency.'® Nanoparticles, drug
delivery systems with controlled medicine distribution
in the body, drop the possibility of damage and improve
therapeutic outcome.??

Extensive testing

Extensive pre-clinical and clinical testing is required to
gauge the safety and efficiency of treatments based on
nanoparticles. These nanoparticles can be engineered to
deliver the therapeutic elements in a controlled manner
to guarantee an effective and long-lasting treatment
option.””!

Personalized medicine

By customizing treatments to each patient's unique profile,
machine learning models can optimize NP development
for cancer subtypes or pathways of resistance. This will
boost results and cut down on complications.??

Nanomedicine target to inflammatory signalling
pathways in breast cancer

The incapacity of chemotherapy to distinguish between
malignant and normal cells has led to a new focus
on developing targeted medications that are more
effective, less toxic, and more precisely tailored to
target malignant cells. A variety of strategies are being
studied to reduce the inflammatory response in cancer
treatment, including small-molecule inhibitors, organic
biomolecules, composite cytokines, local radiation
exposure, counterbalancing antibodies, oncolytic viruses,
Toll-like receptor agonists, and specialized pro-resolving
lipid mediators.

Preclinical research has revealed that tackling
inflammatory responses can successfully inhibit
carcinogenesis and metastasis thus making it a beneficial
approach for treatment for people suffering from
BC. Furthermore, genetic alterations in proteins that
control cell proliferation and stop the TGF-{ pathway in
inflammatory BC. More studies are required to determine
its biological activity and therapeutic benefits in chronic
BC. In terms of clinical use, therapies that affect the JAK2
and EGFR pathways are perhaps preferred the most.?

NPs are perfect for targeting BC cells because they can
bind selectively to appropriate molecular indicators on the
exterior of individual BC cells by binding ligands on their
interface. The association between ligand and NP engaged
with BCreceptors, suchas HER2, EGFR, VEGFR, and IGF-
IR causes NP absorption through endocytosis and delivers
the associated proteins to the tumour cells' active regions
through proteolytic degradation.”” The main objective
of nanomedicine is to target tumours with medications

and phytopharmaceuticals using different nanosized
carriers such as liposomes, NPs, polymers, micelles,
and conjugates of NPs.*®® There are two mechanisms by
which nanomedicine functions. One method, known as
active targeting, involves covalently attaching drugs to the
targeted receptor via linkers. This process is necessary for
the drugs to be identified by tumour cells. The other uses
the greater penetration and retention effect and is known
as passive targeting.”” Stability and medication release
rate are the key variables for the targeted tumour cell.
A variety of imaging methods, including fluorescence,
PET, NIR luminescence, MRI, gamma cameras, and
fluorescence, are used to quantify the absorption and
uptake of medications in cellular tissues and fluids.

The capability to modify the biodistribution of diverse
agents has resulted in improvement of therapeutic indices,
primarily through the formulation of liposome medicines.
They are flexible containers for drugs that may regulate
vesicle residence in the body's systemic circulation
or other compartments, manage the persistence of
encapsulated pharmaceuticals in biological fluids,
and improve vesicle uptake by target cells. Liposomes
continue to be the most effective nanomedicine vehicle for
anticancer drugs. The basic example of theranostics is the
mixing of medications and imaging agents for diagnostic
purposes.** Conjugating anti-EGFR mAb cetuximab
(C225, ErbituxTM) to the outer surface of DOX-loaded
liposomes produced C225-ILs-DOX, an EGFR-targeted
immunoliposome (IL). When EGFR-overexpressing cells
were exposed to C225-ILs-DOX in vitro, they internalized
and bound to the cells more effectively than non-targeted
liposomes. Furthermore, in EGFR-overexpressing MDA-
MB-468 BC cells, C225-ILs-DOX demonstrated twenty-
nine times more cytotoxicity compared to the similar
nontargeted liposomal DOX.?” With both EGFR and
EGFRv III overexpressed in the U87/EGFRv III tumor
model, C225-ILs-DOX exhibited a six-fold increase in
cellular accumulation in comparison to non-targeted
liposomes. Furthermore, EGFR-overexpressing tumour
xenograft models, C225-ILs-DOX demonstrated a
markedly improved antitumor activity in comparison
to the nontargeted liposomal DOX.?® By overturning
the NO-NOS system, SiO,NP inhibits the PI3K-AKT-
mTOR signaling pathway and causes malignant cells to
undergo an allergic reaction that ends in apoptosis.’?
Novel theranostic principles depending on the medium-
sensitive plasmonic absorption that causes infrared light
and visible light-induced collective oscillation of the
electrons on the gold surface when the NP dimension
is much smaller compared to the wavelength of light
have introduced gold NPs (GNPs ).#%#! Photo-thermal
therapy is one of the ways through which GNP plasmons
can be helpful to nanomedicine. GNPs offer adaptable
scaffolding for identification and array-based "chemical
nose" methods of cell surface detection. Clinical studies
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have been initiated for both passive cancer targeting using
PEG and active cancer targeting using covalent bonds
to rhTNFa (CYT-6091).2* When it comes to plasmonic
properties, the GNP is thought to be more secure and
technologically excellent than group 11 elements.”
The ability of Au NPs loaded with quercetin has been
reported to successfully limit the epithelial-mesenchymal
transition by hindering transcription-repressing agents,
such as Snail, Slug, and Twist, as well as angiogenesis.
They impact the widespread distribution by inhibiting
the EGFR/VEGFR2-assisted pathway and cycle arrest by
hampering the EGFR/PI3K/AKT-assisted pathways in
BC cell lines.** Superparamagnetic iron oxide NPs are
frequently utilized with magnets for cancer eradication
by overheating and MRI, ignoring safety issues.”* Drug
molecules are encapsulated by silica and other oxide NPs
for delivery.”*

Numerous drug molecules comprising of polymers,
copolymers, antibodies, aptamers, proteins, and
dendrimers, have been thoroughly investigated in the
field of nanomedicine.*”**® Clinical trials employ a variety
of biodegradable polymers.”> Poor drug loading, burst
release, and poor miscibility with the medicines are among
the issues with these kinds of polymers.”® Dendrimers
possess a great ability to capsule medications and clinical
research was done on the micro biocide VivaGel.

In preliminary research and clinical investigations,
EGFR mAb-decorated NPs demonstrated improved
anticancer activity as well as enhanced tumor-targeting
capability. For example, rapamycin-loaded polymeric
poly(lactide-co-glycolide) NPs that have anti-EGFR
monoclonal antibodies attached to their surface were
taken up by MCEF-7 cells by over thirteen times greater
as compared to unconjugated NPs.?** Researchers created
cationic lipid-aided polymeric NPs that are encased with
siRNA for the treatment of breast carcinoma stem cells
(BCSCs) targeting the oncogene Plk1.2° After that, the
BCSCs were successfully. By inhibiting the TGF-P type
I receptor and TGF- signalling, they made it easier for
NPs to enter cancer cells.?!

Challenges and future directions
Targeted chemotherapy is entering a new era due to
cutting-edge treatments and methods in innovative drug
delivery systems. Nanotechnology research is becoming
more widespread in the pharmaceutical and medical
device industries. In recent years, new systems—targeted
NPs in particular—have helped to lower the incidence of
BC as well as the rate of morbidity and mortality related
to the disease. Encasing numerous powerful anticancer
medications in NPs can enhance their therapeutic index
in BC*2

However, the development of protein corona, rapid
renal and hepatic clearance, existence of tumour-
associated macrophages, poor tumour blood perfusion

are significant physiological obstacles faced by
nanostructure-based drug delivery compounds that can
drastically change the action and targeting capacity of
NPs shortly after they are administered in the blood. BC
cells frequently have leaky blood arteries with wide spaces
amongst endothelial cells which enable NPs to escape into
the tumour tissue. Elevated interstitial fluid pressure inside
the tumour may prevent more permeation. The tumour’s
intricate extracellular matrix network may make it more
difficult for NPs to diffuse and migrate toward cancer
cells. This influences the effectiveness of nanomedicines
by initiating premature removal from the body, impeding
their competence to impact the intended target tissues.
Size optimization, surface alteration, selection of
biocompatible materials, stimuli responsive designs, active
targeting through ligand conjugation are the approaches
that can be effectively used to reduce these barriers.?>**
Despite the significant progress, challenges such as
long-term safety, regulatory approvals, and scalability
of production persist. To overcome these challenges,
collaboration amongst researchers, clinicians, and
regulatory bodies are crucial.

Customized and targeted drug delivery by polymeric
nanoparticles, aims to overcome the challenges of
managing TNBC. Enhanced tumour penetration to gather
at specific areas and ligand-mediated active targeting
to increase selectivity were employed. Encapsulated
chemotherapeutics, such PTX and curcumin, exhibit
better anticancer effect if administered intratumorally in
controlled, and extended settings. By employing novel
copolymers or drug conjugates, the polymer range can
be expanded to improve drug encapsulation, stability,
and tumor penetration. By integrating gene therapies,
imaging agents, or triggering stimuli responsiveness into
polymeric nanoparticles, it is also conceivable to address
inherent characteristic and acquired medicine resistance
in TNBC while monitoring results.?*

Using cyclic dinucleotide (CDN), stimulator of
interferon genes (STING) agonists and Mn**, the
researchers created a novel self-assembling nanoparticle
that can activate the body's immune system. There are
certain limitations to the concept of development of
nanoparticle-based diagnostic imaging precision as well
as real-time effectiveness of treatment.”® Strict safety
assessments are necessary to avoid the potential hazards
such as systemic toxicity and immunological responses
resulting from nanoparticle contact with biological
systems.”” The prolonged toxicity of nanomaterials,
their influence on immune functioning, pharmaceutical
stability issues, reproducing uniform NPs batches,
and various other issues need to be tackled prior to the
implementation of nanomedicines in clinical practice for
management of BC illness. Future directions include the
development of personalized nanomedicine approaches
through the assimilation of artificial intelligence for
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treatment optimization and exploring the potential of
immunotherapies in combination with nanotechnology.

Conclusion

In the last few years, nanotechnology has become a game-
changer in dealing with BC. When it is used alone or
in conjunction with additional therapeutic modalities,
nanomedicine can be a helpful tool in the treatment of BC.
To achieve focused drug delivery, a diverse range of NPs
including liposomes, polymeric nanoparticles, polymeric
micelles, dendrimers, carbon nanotubes, etc have been
studied. In patients having advanced or metastatic TNBC
who test positive for PD-L1, a phase I clinical trial has
started to assess the combination therapy of atezolizumab
(an anti-PD-L1 monoclonal antibody) and nanoparticle
albumin-bound PTX. A phase II trial using a similar
combination therapy was conducted before surgery in
patients with TNBC. In patients having advanced or
metastatic TNBC, a phase I/Ib study is being conducted
to assess the combination treatment of Etrumadenant,
an A2a and A2b adenosine receptor antagonist, having
pegylated liposomal DOX or albumin-bound PTX.'®
Nanomedicines conjugates such as Kadcyla® (also named
T-DM1 or Ado-Trastuzumab emtansine), Enhertu®,
(Trastuzumab-duocarmycin), RC48, and HT19-MMAF
are being administered to attack on HER-2 receptors and
they include maytansinoid, deruxtecan, duocarmicyn, or
auristatins as antineoplastic molecules. The conjugates
like Trodelvy® (named Sacituzumab), Glembatumumab-
Vedotin, Ladiratuzumab-vedotin, Cofetuzumab-
pelidotin, and PF-06647263 are being used to aim for
Trop-2 glycoprotein, NMB glycoprotein, Zinc transporter
LIV-1, and Ephrin receptor-4 etc. These medications are
used to target TNBC and incorporate camptothecins,
calicheamicins, or auristatins drug molecules. Besides
antibody-drug conjugates, other active targeted nano
systems such as Abraxane® and Nab-rapamycin, which
are composed of albumin NPs having paclitaxel and
rapamycin, respectively, and a few liposomes (MM-
302, C225-ILS-Dox, and MM-310) loaded with DOX or
docetaxel and covered by ligands that aim at the Ephrin
A2, EPGF, or HER-2 receptors are administered.

This paper reviewed the present difficulties facing
traditional BC therapies as well as the possible benefits of
using nanotherapeutics in BC treatment. Nanotechnology
offers a variety of ways to increase therapeutic efficacy and
precision, from improving early detection to facilitating
targeted medication administration and developing
multimodal imaging. Even though nanomedicines have
demonstrated a promising future for the cure of BC, a
few challenges continue to be resolved beforehand using
nanomedicines in clinical applications. These include
apprehensions about the long-standing toxicological
consequences of nanomaterials and the impact they have
on the body's defenses, complications with medicine’s

stability, the reproducibility of uniform batches of NPs etc.
In summary, nanomedicine is a useful tool for treating BC
either on its own or in conjunction with other therapeutic
approaches, and more research and development of
more safe and successful nanotechnology-based cancer
treatments is required. Sustained investigation and
creativity provide the potential to transform treatment for
BC and eventually enhance results.

In summary, nanomedicine is a promising approach
for managing BC alone or in combination with other
therapeutic approaches, but further investigation and
development of safer and better therapeutics based on

Review Highlights

What is the current knowledge?

o Progress in  nanomedicine  has  positioned
nanotechnology-based approaches in the forefront of
cancer  research.

o Novel drug delivery systems are made to function as
carrier systems for drug delivery to targets, improving
targeting, decreasing tumor resistance, extending
medication circulation time in vivo, and opening
novel therapy and preventative options for a variety of
illnesses.

o The therapeutic effectiveness of chemotherapeutics is
hindered by chemoresistance and toxicity.

o Current treatments include surgery, chemotherapy,
phototherapy, biological therapy, and Radiation therapy,

but with limited efficacy.

What is new here?

o This review emphasizes on the most recent
developments in nanotechnology-driven BC therapy.
The article addresses the most recent advancements in
drug formulations based on nanoparticles, such as new
materials, surface alterations, and functionalization
techniques that enhance therapeutic efficacy and
bioavailability.

o The study investigates new strategies for targeted drug
delivery, including biomimetic nanoplatforms, stimulus-
responsive nanocarriers, and ligand-functionalized
nanoparticles, which maximize drug absorption at
tumour locations while reducing systemic toxicity.

o Therapeutic approaches like Combination with PTT,
Combination with PDT, CDT for use of NPs in cancer
treatment are also being discussed.

o In contrast to traditional reviews, this work explores
how nanotechnology is improving early diagnosis and
detection by integrating NPs for real-time monitoring
and simultaneous therapy through multimodal imaging
approaches.

o Inaddition to reviewing basic developments, the article
addresses the translational potential, regulatory issues,
and opportunities for clinical use of BC treatments
based on nanotechnology.
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nanotechnology to completely understand their long-term
impacts on the body is required. Research is underway to
create more specific and biocompatible nanoparticles.
Additionally, the use of nanoparticles in combination
with other treatment modalities, like immunotherapy and
gene therapy, is also being investigated. Another exciting
field of study is the creation of customized nanoparticle
treatments that are suited to the distinct molecular
subtypes of BC.
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