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Introduction
In recent years, cancer has emerged as one of the most 
significant global health challenges, consistently ranking 
as the second leading cause of death across many nations. 
The World Health Organization (WHO) anticipates 

a rise in cancer-related mortality rates, particularly in 
low- and middle-income nations, where access to early 
detection, treatment, and healthcare resources remains 
limited. This growing burden underscores the urgent 
need for comprehensive prevention strategies, improved 
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Abstract
Introduction: Microalgae and 
cyanobacteria are promising 
sources of bioactive compounds 
with antioxidant and anticancer 
properties. The cyanobacterium 
Chroococcus turgidus has been studied 
for its potential antioxidant, anti-
inflammatory, antibacterial, antiviral, 
and anticancer effects. This study 
investigates its anticancer effects on 
colorectal cancer (CRC) at the cellular 
and molecular levels.
Methods: The metabolites of C. 
turgidus were screened using the 
Folin–Ciocalteu reagent and GC-MS. 
Antioxidant activity was assessed using the DPPH assay. The biological effects of methanolic 
extract (ME) were evaluated using MTT assay, Annexin V/PI staining, DAPI staining, and western 
blotting. Cells were treated with ME at concentrations ranging from 5 to 500 µg/mL for 24 and 48 
hours, with the IC50 values determined at 373 µg/mL and 291 µg/mL, respectively.
Results: ME contained bioactive compounds such as phenols, flavonoids, and anthocyanins. 
Identified fatty acids included palmitic acid ethyl ester (15.53%), 1-bromo-11-iodoundecane 
(2.31%), undecanoic acid 2,8-dimethyl methyl ester (6.62%), oleic acid (6.47%), and 
7-dehydrocholesterol (7.97%). ME inhibited SW480 cell proliferation in a dose- and time-
dependent manner and induced nuclear fragmentation, chromatin remodeling, and apoptosis. 
Annexin V/PI staining confirmed apoptosis as the dominant mode of cell death. Western blot 
analysis showed increased Bax and decreased Bcl2 expression, supporting its pro-apoptotic 
activity.
Conclusion: C. turgidus may serve as a potential therapeutic agent for gastrointestinal cancers 
through its ability to modulate the Bax/Bcl2 pathway and promote apoptosis. These findings 
highlight its novel anticancer effects and support further preclinical investigations.
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healthcare infrastructure, and equitable access to cancer 
care worldwide.1 Globally, colorectal cancer (CRC) ranks 
as the second most common cancer among women and the 
third among men.2 The mortality rate of CRC may vary by 
as much as tenfold, highlighting the widening disparities 
and increasing disease burden in countries undergoing 
economic and healthcare transitions. While significant 
progress has been made in improving CRC outcomes 
in more developed nations, there persists a significant 
clinical gap, particularly in regions with limited resources, 
where access to early detection, advanced treatments, and 
comprehensive care is often restricted. Addressing these 
gaps is crucial for reducing the global burden of CRC 
and ensuring equitable healthcare outcomes.3,4 Different 
approaches are routinely used in the treatment of various 
cancers, including chemotherapy, radiotherapy, surgery, 
cryosurgery, radiation therapy, and immunotherapy.5 
However, these treatment modalities are often associated 
with expensive processes and may result in severe side 
effects.6,7 Moreover, these combined treatment approaches 
are not without flaws, often leading to various secondary 
health threats, unspecific outcomes, and unavoidable 
toxicity.8,9 In light of these challenges, there is an urgent 
demand for cost-effective treatment strategies that exhibit 
reduced side effects and are suitable for a broad range 
of cancers. The use of traditional natural product-based 
strategies is becoming more widely recognized for their 
potential in pharmaceutical innovation, offering promising 
solutions. The successful isolation and development of 
natural biomaterials (e.g., carbohydrates, lipids, proteins, 
enzymes, and secondary metabolites) have opened new 
avenues for the creation of therapeutic compounds 
and pharmacophores. This progress has invigorated 
the scientific community, driving renewed efforts to 
harness these natural products in the drug discovery and 
evaluation process with greater enthusiasm and focus.8,10-12 
Significant efforts have been dedicated to isolating 
such compounds, leading to the identification of over 
10,000 natural products that may have biotechnological 
applications. However, the overwhelming abundance of 
metabolites and their vast dynamic range have limited 
access to many bioactive natural products, hindering 
further investigation. Additionally, complex challenges 
(e.g., evaluating pharmacokinetics, pharmacodynamics, 
and safety parameters) have emerged as major concerns 
in the study of these natural products.13-15 The unique 
ecological, chemical, and biological properties of 
marine environments have endowed microalgae and 
cyanobacteria with the potential to produce a variety of 
bioactive chemical compounds. These compounds, such 
as phenols, flavonoids, and anthocyanins, have various 
health benefits and find applications in therapeutics.16 
Notably, cyanobacteria, traditionally known for containing 
chlorophyll a and phycobiliproteins (i.e., phycocyanin 
and phycoerythrin), have been found to exhibit greater 

pigment diversity. Recent research suggests the presence 
of chlorophyll b in some cyanobacteria, challenging 
previous notions and indicating an evolutionary 
complexity in their photosynthetic apparatus.17 This 
includes potential ancestral traits and adaptations allowing 
efficient light capture across different environments. 
Such findings reveal that cyanobacteria can utilize 
various chlorophylls (including chlorophylls d and f), 
enhancing our understanding of their photosynthetic 
mechanisms and evolutionary history.18,19 Microalgae 
and cyanobacteria-derived phytochemicals have distinct 
and high potential biological actions compared to the 
phytochemical constituents of terrestrial origin (plant 
phytochemicals).16,20,21 Of cyanobacteria, some species 
have been approved as safe for human consumption, such 
as Spirulina or Chlorella, in large part due to their useful 
secondary metabolites. Notably, lower organisms elaborate 
numerous secondary metabolites or natural products as 
signaling molecules for "offense and defense". Recently, 
these metabolites have been extracted, their actions 
were checked in various bioassays, and their potential 
as a remedy for human diseases was evaluated.22-24 This 
bioprospecting study aimed to develop novel anticancer 
agents with enhanced efficacy, focusing on the unicellular 
cyanobacterium Chroococcus turgidus, which was isolated 
from the KANI Barazan International Wetland, located 
to the south of Lake Urmia. The methanolic extract 
(ME) of C. turgidus was evaluated for its potential to 
induce apoptosis in the SW480 colon cancer cell line. 
The antioxidant activity of the ME was assessed using 
the diphenyl picryl hydrazyl (DPPH) assay. In addition, 
its ability to inhibit cancer cell growth was thoroughly 
investigated through multiple techniques, including 
flow cytometry, DAPI (4′,6-diamidino-2-phenylindole) 
staining, and western blot analysis. The combination of 
these methods facilitated a comprehensive evaluation of 
the ME's anticancer properties.

Materials and Methods
Materials 
Ascorbic acid, Folin-Ciocalteu reagent, and Quercetin 
were purchased from Sigma-Aldrich (St. Louis, MO, 
USA). Gallic acid, Methanol, and DPPH were obtained 
from Merck (Kenilworth, NJ, USA). The human 
colorectal carcinoma SW-480 cell line was obtained from 
the National Cell Bank of Iran, Pasteur Institute (Tehran, 
Iran). RPMI 1640 medium, fetal bovine serum (FBS), 
and trypsin-EDTA (0.02–0.05%) were acquired from 
Gibco (Paisley, UK). Phosphate-buffered saline (PBS) 
was purchased from Sigma-Aldrich Company (Munich, 
Germany). Mouse β-Actin (sc-47778) and Bax (sc-7480) 
monoclonal antibodies, rabbit Bcl2 (sc-492) antibody, 
and mouse anti-rabbit IgG-HRP (sc-2357) were obtained 
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 
The reverse transcriptase reagent and FITC-labeled 
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annexin V- apoptosis detection kits were purchased from 
TAKARA Co. (Tokyo, Japan) and Applied Biosystems 
(Foster City, CA, USA), respectively.

Isolation of C. turgidus
The water samples were collected from the regional 
KANI Barazan International Wetland, which located 30 
km from Mahabad city in the West Azerbaijan province 
(NW Iran) with the geographical position of N 36° 59ˊ 
34 ̋ and E 45° 46ˊ 34 ̋. The identification of C. turgidus 
was accomplished by using the algal flora keys. For the 
purification of C. turgidus, single colonies were picked 
and transferred into the 50 mL flasks containing 1M 
modified BG 11’s medium composed of NaNO3 (. 15 g/L), 
K2HPO4 (4.0 g/L), MgSO4.7H2O (7.5 g/L), CaCl2.2H2O 
(3.6 g/L), C6H8O7 (0.6 g/L), (NH4)5[Fe(C6H4O7)2 (0. 6 
g/L), EDTANa2 (0.1 g/L), Na2CO3 (2.0 g/L), H3BO3 (2.86 
g/L), MnCl2.4H2O (. 181 g/L), ZnSO4.7H2O (0.22 g/L), 
Na2MoO4.2H2O (0.39 g/L), CuSO4.5H2O (0.08 g/L), Co 
(NO3) 2.6H2O (0.05 g/L). Moreover, the culture media 
of Chroococcus turgidus was kept under the required 
condition (i.e., 26 ˚C temperature with 16:8 light: dark 
photoperiod, and 80 μmol photon m-2 s-1 irradiance).

Molecular characterization of C. turgidus
After morphological identification, molecular 
characterizations using16S rRNA gene and 16S-23S 
ITS region were applied for the accurate and reliable 
identification of the isolated cyanobacteria, identified as 
C. turgidus strain KANI.25

Preparation of methanolic extracts of C. turgidus
The cyanobacteria cells were harvested from 500 mL of 
BG 11’s medium (O.D. 630¼. 15–2.0) by centrifugation 
(3000g for 5 minutes, at 4 °C) and then freeze-dried for 
the next process. The soxhlet apparatus extracted freeze-
dried cyanobacteria biomass (5 g) with 125 mL of solvent 
for 7 hours. The extracts were concentrated in a Buchi 
rotary evaporator at 120 rpm and 60 °C for 2 hours, and 
then traces of solvent were removed using a desiccator. 
After filtration of 3 mL ME through the Whatman paper 
(grade 42), the gas chromatography-mass spectrometry 
(GC-MS) analysis was performed. The samples were 
dried under a laminar flow hood, and absolute alcohol 
and sodium sulfate were added to remove residual water. 
A quality control sample (blank solvent) was included to 
ensure the absence of contamination. The GC-MS analysis 
was conducted using an Agilent 6890 equipped with an 
HP-5MS (5% diphenyl/95% dimethyl polysiloxane) fused 
silica capillary column (30 m × 0.25 mm i.d., film thickness 
0.25 µm). The compounds were identified by comparing 
the obtained mass spectra with those available in the 
National Institute of Standards and Technology (NIST) 
library, which contains over 62,000 reference patterns. For 
further validation, an internal standard (n-alkane series, 

C10 – C40) was used to calibrate retention times, and 
the spectra of unknown compounds were matched with 
authenticated reference spectra from the NIST database. 
Additionally, retention indices (RI) were calculated and 
compared with literature data to enhance the reliability of 
compound identification.

Analysis of photosynthetic pigments 
The photosynthetic pigments, including chlorophyll 
a, b, and total carotenoids, were assessed based on the 
previously described method.26 Briefly, cyanobacteria 
cells were harvested from 5 mL of media (O.D. 630¼. 15–
2.0) by centrifugation (at 26 °C, 3000 g for 5 minutes). The 
collected biomass (equivalent to approximately 15 mg dry 
weight) was homogenized in 5 mL of 100% methanol at 
4 °C for 24 hours in the dark. Then, the homogenates 
were centrifuged at 10,000 × g for 10 minutes at 4 °C to 
remove cell debris. For quantitative determination of 
pigments, the supernatants were analyzed using a UV/V 
spectrophotometer at 470, 665, and 653 nm. Methanol 
was used as a blank to correct baseline absorbance, and 
potential spectral interferences were minimized by 
ensuring complete extraction of pigments and avoiding 
contamination from cellular debris. The content of the 
pigments was determined based on standard equations. 
The content of the pigments was determined,26,27 as 
follows:
Ca = 15.65 A665 – 7.340 A653 

Cb = 27.05 A653 – 1.121 A665

Cx + c = (1000 A470 – 2.860 Ca – 129.2 Cb)/245

Where, A denotes the absorbance in the presence of 
the sample, Ca and Cb represent the chlorophyll a, b and 
Cx + c denotes the total carotenoids in the presence of the 
sample.

Analysis of total phenol, flavonoid contents
Total phenols and flavonoids of the cyanobacteria 
cells were isolated using 100% methanol. The total 
phenol quantity of the extracts was measured using the 
Folin-Ciocalteu procedure according to the previous 
method.28,29 In brief, 100 μL of cyanobacterial extract was 
mixed with 2.8 mL of deionized water, 100 μL of Folin-
Ciocalteu reagent, and 2 mL of sodium carbonate aqueous 
solution (2%, final concentration 0.4%). The sodium 
carbonate solution was prepared by first dissolving 2 
g of NaOH in 500 mL of distilled water to obtain a 0.1 
M NaOH solution. Then, 2 g of Na₂CO₃ was dissolved 
in 100 mL of this NaOH solution. The reaction mixture 
was incubated in the dark at room temperature for 30 
minutes. Absorbance was measured at 720 nm using a 
UV/Vis spectrophotometer, with methanol as the blank. 
A calibration curve was prepared using gallic acid as the 
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standard, and results were expressed as mg gallic acid 
equivalent (GAE) per gram of fresh weight (mg GAE/g 
F.W.).

The total flavonoid content was measured using an 
aluminum chloride colorimetric assay. For each reaction, 
500 μL of cyanobacterial extract was mixed with 15 mL 
of 100% methanol, 100 μL of freshly prepared aluminum 
chloride solution (10%) (prepared by dissolving 10 g of 
AlCl₃ in 90 mL methanol), 100 μL of potassium acetate 
(1 M), and 2.8 mL of distilled water. The mixture was 
incubated at 25 °C for 40 minutes. The absorbance 
was recorded at 415 nm using a spectrophotometer, 
with methanol as the blank. The flavonoid content was 
calculated as mg quercetin equivalent per gram of fresh 
weight (mg QE/g F.W.).

For anthocyanin quantification, 500 μL of the extract 
was mixed with 4.5 mL of acidified methanol (1% HCl 
in methanol, v/v), and the mixture was incubated at 4 °C 
for 24 hours in the dark to prevent pigment degradation 
and enhance extraction efficiency. After incubation, the 
sample was centrifuged at 10,000 × g for 10 minutes at 4 
°C. Absorbance was measured at 530 nm and 657 nm, 
with methanol as the blank, and the total anthocyanin 
content was calculated using the equation:

Total Anthocyanin (mg/L) = ( A657 × 0.25 - A530)

Where A657 and A530 correspond to the absorbance at 
530 and 657 nm, respectively. Cyanidin-3-glucoside was 
used as the standard for quantification.

Analysis of anthocyanin content
A 20 mg cyanobacteria cells sample was crushed in a 
porcelain mortar with 4 mL of hydrochloric acid containing 
1% methanol to determine the total anthocyanin 
content. The mixture was kept in the refrigerator for 24 
hours and then centrifuged at 13000 × g for 10 minutes. 
After collecting the supernatant, the absorbance (A) 
of the solution was determined at 530 and 657 nm and 
normalized against the control sample of hydrochloric 
acid containing 1 % methanol. The absorbance used for 
quantifying the anthocyanin content was calculated using 
the following equation.30

A = A530 – (0.25 × A657)

Where A denotes the absorbance in the presence of the 
sample.

Free radical DPPH scavenging capacity
The DPPH radical scavenging assay was carried out based 
on a method described previously by Ozturk and Tuncel.31 
The DPPH assay is a free radical method based on the 
radical scavenging activity of antioxidants towards the 
purple-colored DPPH in methanol. The hydrogen donors 
of antioxidants can reduce the free radical DPPH to the 
corresponding stable diamagnetic molecule hydrazine 

(yellow-colored).31,32 Reaction mixtures of samples were 
prepared by mixing appropriate amounts of extract with 
different concentrations (100, 200, 300, 400, and 500 μg/
mL), 2 ml of DPPH (0.1 mM in methanol 96%) to a total 
volume of 4 ml. All samples vortexed (1 min) and incubated 
in the dark for 60 min at 37 °C. All the experiments were 
done in triplicate. DPPH (0.1mM) was taken as control 
and ascorbic acid as standard. The decrease in absorbance 
of each sample was measured against methanol as blank on 
a spectrophotometer, Ultraspec 2000 (Pharmacia Biotech 
Co., Garden City, England) at 517 nm. The percentage of 
DPPH was calculated using the following equation:

A c A sDPPH% 100
A c
−

= ×

Where, Ac and As denote the absorbance of the control 
reaction and the absorbance in the presence of the sample, 
respectively.

Cytotoxicity assays
The SW-480 cells were cultivated at a seeding density of 
10 × 10⁴ cells/well in 96-well plates. After 24 h, the cells 
were exposed to 200 μL of fresh medium containing 
various concentrations (5, 10, 50, 100, 200, 300, 400, and 
500 μg/mL) of the extracts. These concentrations were 
selected based on preliminary dose-response studies. After 
24 and 48 hours, the medium of each well was replaced 
with 200 μL of fresh MTT [3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide] reagent (2 mg/mL) for 
4 hours. Next, the MTT reagent was removed, and then 
200 μL dimethyl sulfoxide (DMSO) was added to stop 
the reaction, and the cells were incubated at 37 °C for an 
additional 15 min. The optical density was determined 
using a microplate reader, ELx808 (BioTeck, Winooski, 
VT), at 570 nm wavelength. The viability of cells was 
evaluated relative to the absorbance of untreated control 
cells. All experiments were carried out in triplicates.
Apoptosis assay by Annexin-V
A flow cytometry assay was performed to determine 
the induction of apoptosis in the treated SW480 cells 
with microalgae extract. Briefly, the SW480 cells were 
treated with ME (IC50 Dose) and incubated at 37°C for 
24 hours. The final concentration of cells before staining 
was (10 × 105 cells/well in 12-well plates). The cells were 
then resuspended in 200 μL of annexin V-binding buffer 
(from EXBIO) and incubated at room temperature in the 
dark for 10 min. Afterward, the cells were washed with 
ice-cold PBS and subjected to flow cytometry analysis 
using FACSCalibur™ (Becton Dickinson Co., Franklin 
Lakes, NJ, USA) with an emission filter of 600 nm for P.I. 
and 515–545 nm for FITC.33 To ensure the validity of the 
analysis, untreated cells were used as a control group.

Apoptosis assay by DAPI staining
Given that nuclear fragmentation and chromatin 
condensation and remodeling are the typical markers 



Goshtasbi et al

   BioImpacts. 2025;15:30867 5

of apoptosis, the DAPI staining assay was employed to 
analyze the occurrence of such phenomena in the treated 
cells. Briefly, the SW480 cells were treated with ME 
(IC50 Dose) and incubated at 37°C for 24 hours. Next, 
the cells were fixed with the freshly prepared ice-cold 
paraformaldehyde 4%. Then, to permeabilize the cells, 
they were exposed to 0.1% Triton X-100 in PBS (NaCl, 
KCl, KH2 PO4, and Na2HPO4, pH 7.4) for 5 minutes. The 
cells were stained with DAPI (1 μg/mL in PBS) in the dark 
for 3 min. Afterward, the cells were washed ( × 3) with 
0.1% Triton X-100 in PBS. Next, they were assessed using 
a live imaging system, Cytation™ 5 (BioTek, Winooski, 
USA).
Western blotting assay
The SW480 cells were cultivated at a seeding density 
of 2.0 × 105 cells/well in 6-well plates. Briefly, the 
SW480 cells were treated with the IC50 dose of ME 
and incubated at 37 °C for 24 hours. The treated and 
untreated cells were centrifuged to extract proteins using 
radioimmunoprecipitation assay (RIPA) lysis buffer 
containing a protease inhibitor cocktail (PMSF, leupeptin, 
and aprotinin). The homogenate was centrifuged at 
5000 × g, 4 °C for 5 minutes. The concentration of protein 
samples was determined using the Bradford assay with 
BSA as the standard. Equal amounts of total protein were 
loaded per well of a 12% polyacrylamide gel (SDS-PAGE). 
The proteins were then transferred onto a polyvinylidene 
fluoride (PVDF) membrane at 100 V for 1 hour. The 
membranes were incubated in 5% bovine serum albumin 
(BSA) dissolved in 20 mM Tris–HCl, containing 150 mM 
NaCl and 0.05% Tween-20 at 4 °C overnight. After three 
washes, the membranes were incubated with specific 
primary antibodies (1:4000; Bax, Bcl2, and β-actin) 
followed by the secondary antibody (1:8,000; horseradish 
peroxidase-conjugated) in 3% BSA at room temperature 
for 2 hours and 1 hour, respectively. Protein bands 
were detected using the Pierce™ ECL western blotting 
substrate chemiluminescent kit. The expression level 
of β-actin was used to normalize the protein levels. The 
quantification of Bax and Bcl2 expression was compared 
with the expression of the housekeeping protein and 
analyzed using ImageJ software.

Statistical analyses
The data were analyzed to determine statistical 
differences using one-way ANOVA followed by Tukey’s 
post hoc test. Statistical analyses were performed with 
SPSS software version 19.0, and a P value of ≤ 0.05 was 
considered statistically significant. All data are presented 
as mean ± standard deviation (SD).

Results
Morphological and molecular traits of isolated cyanobacteria
To identify the collected cyanobacteria, a valid 
authentication key, algal flora, and some recent related 

references were carefully used.34,35 C. turgidus strain 
KANI was identified based on some morphological 
characteristics, including shape and isolated two- or 
four-celled groups together with an amorphous mucilage 
sheath (Fig. 1). For the confirmation of morphologic 
findings, the 16S rRNA gene and 16S-23S ITS region from 
the cyanobacteria genome were amplified. Consequently, 
the samples were sequenced and blasted by means of the 
National Center for Biotechnology Information (NCBI) 
database. The blasting data confirmed the morphologic 
results where the isolated cyanobacteria showed a high 
genetic similarity to C. turgidus.

Fatty acid identification by GC-MS analysis
GC-MS analysis indicated the occurrence of different 
compounds, especially fatty acids, including fatty acid 
esters (FAEs), oleic acid, palmitic acids, and provitamin 
D3 in C. turgidus strain KANI ME (Table 1).

Spectrophotometric analysis of photosynthetic pigments 
microalgae
Chl a, Chl b and carotenoid levels were determined with 
a UV-Vis spectrophotometer measuring absorbencies 
at 665, 649 and 470 nm, respectively, as shown in Fig. 
2a. Besides, the level of photosynthetic pigments in the 
extract was measured for chl a and b, and carotenoids 
were 18.424, 12.864, and 9.428 µg/g FW, respectively 
(Fig. 2b). 

Estimation of phenol, flavonoid, and anthocyanin 
contents
As shown in Fig. 3, the ME 's phenols, flavonoids, and 
anthocyanins content were measured at a concentration 
of 7.428, 1. 1864, and 4.424 mg/g FW, respectively. Based 
on the results, flavonoids are the dominating phenolic 
compounds in C. turgidus strain KANI. 

Fig. 1. The morphology of the isolated C. turgidus strain KANI. Red arrows 
depict two, four, and eight-celled colonies enclosed with an amorphous 
(Scale bar = 10 µm).
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Determination of antioxidant activity
For the analysis of the antioxidant activity, the EC50 is 
determined from the dependence between the DPPH 
concentration remaining after its reaction with the 
antioxidant and different antioxidant concentrations. As 
a result, the EC50

 value was estimated at around 400 μg/
mL of the extract (Fig. 4).

Evaluation of the cytotoxic effect of ME
The ME concentrations from C. turgidus strain KANI 
were evaluated for their cytotoxic effects on SW480 cancer 
cells using the MTT assay. As shown in Fig. 5, viable cell 
numbers were significantly reduced (P < 0.05) in a dose- 
and time-dependent manner, with the greatest effect 
observed at 48 hours. The statistical analysis confirmed 
that both dose and time had a significant impact on cell 
viability. The IC50 values for ME after 24 and 48 hours 
were 373 μg/mL and 291 μg/mL, respectively. Thus, it can 
be deduced that the cyanobacterial extract affects SW480 
cells through a dose- and time-dependent mechanism 
(Fig. 5).

Evaluation of apoptosis by Annexin v
To analyze the apoptosis in SW480 cells treated with ME 
(IC50 Dose) using Annexin-V, PI was removed due to its 
spectrum overlap (620 nm) with photosynthetic pigments 
spectrum in the ME (600-700 nm). In comparison 

with the untreated control cells, after 24 hours, 38.97% 
apoptosis was induced in the SW480 cells treated with the 
IC50 concentration of the ME (Fig. 6).

Apoptosis evaluation by DAPI staining
DAPI is a cell-permeable fluorescent compound that 
stains DNA by binding with high affinity to the minor 
groove at A–T-rich regions. As shown in Fig. 7, compared 
to untreated cells, a notable proportion of treated SW480 
cells exhibited apoptotic nuclear features, including 
chromatin condensation and nuclear fragmentation, 
following 24-hour exposure to ME at the IC50 dose. These 
morphological changes are characteristic of apoptosis and 
further support the cytotoxic effects of the extract.

Apoptosis induction by protein expression assay in 
Western-blotting 
As shown in Fig. 8, treatment with ME (IC50 Dose) has 
reduced the expression of Bcl2 proteins and increased 
the Bax expression in the SW480 cell line. In addition, 
the Bax/Bcl2 ratio was significantly different between the 
treated and control groups, indicating the relative protein 
expression of Bcl2 and Bax compared to the control group.

Discussion
Over the past few decades, more than 50 000 
natural products have been discovered from marine 

Table 1. The identified fatty acids in Chroococcus turgidus strain KANI by GC-MS

Compound analyzed Retention 
Time

Molecular
Formula

Molecular 
weight

Peak
area%

Nature of 
compound Bioactivity

1-Bromo-11-
iodoundecane 24.54 C11H22BrI 36. 11 2.31 Halogenated 

fatty acid Antimicrobial, Antifungal36

Palmitic acid, ethyl 
ester 24.70 C18H36O2 284.5 15.53 Fatty acid 

ester

Antioxidant, Nematicide, Insecticide, Lubricant, Hemolytic, 
Hypocholesterolemic, Pesticide, Antiandrogenic, Flavor, 
Hemolytic,5-Alpha reductase inhibitor37-39

Undecanoic acid, 
2,8-dimethyl-, methyl 
ester

24.86 C14H28O2 228.37 6.62 Fatty acid 
ester Antibacterial, Antitumor40

Oleic acid 27.04 C18H34O2 282.5 6.47 Fatty acid Antitumor, Lubricant Antibacterial, Antitumor, antioxidant 
and Anticancer Antimicrobial, Antiandrogenic 41, 42

7-Dehydrocholesterol 29.46 C27H44O 384.6 7.97 Fatty acid Provitamin D343

Fig. 2. Photosynthetic pigments from the methanolic extract (ME) of C. turgidus strain KANI. (a) visible absorption spectra of ME (b) Chlorophylls (Chl a and 
b) and total Carotenoids (Cx + c ) contents. Columns labeled with different letters are significantly different (P < 0.05). Data were expressed as mean values of 
independent triplicates (mean ± SD).
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microorganisms, many of them with biomedical 
applications.44-46 Research on molecules produced 
by aquatic organisms reveals that microalgae and 
cyanobacteria synthesize a vast array of compounds 
with promising biotechnological applications. Notably, 
these compounds exhibit significant therapeutic 
potential against cancer cells due to their diverse 
biological functions. These include antioxidant activity, 
anti-inflammatory properties, anti-mutagenic effects, 
inhibition of cell proliferation, promotion of cell cycle 
arrest, induction of apoptosis or autophagy, potential 
anti-invasion and anti-metastasis effects, suppression 
of drug resistance mechanisms, and enhancement of 
chemotherapy sensitivity.47-54 The growing interest 
in marine-derived natural products has led to the 
identification of bioactive flavonoids, polyphenols, 
and sterols with potent anticancer activity. Notably, 
compounds such as quercetin and resveratrol, widely 
recognized for their anti-tumor properties, exert their 
effects through oxidative stress modulation, PI3K/
AKT inhibition, and apoptotic signaling activation.55,56 

To contextualize our findings, we have expanded our 
discussion by comparing the anticancer effects of C. 
turgidus metabolites with these well-characterized plant-
derived compounds, highlighting the unique mechanistic 
aspects of our study.

Fucosterol, a sterol commonly found in marine algae, 
has demonstrated anti-inflammatory, antioxidant, and 
anticancer properties, particularly against hematologic 
malignancies.57 Moreover, hexadecanoic acid methyl 
esters were highlighted for use as anti-inflammatory 
agents, cancer preventive, hepatoprotective, antiarthritic, 
and anti-coronary attributes.58-60 In our study, we identified 
7-dehydrocholesterol (provitamin D3) as one of the major 
components of C. turgidus extract. Given the established 
link between vitamin D deficiency and increased CRC risk, 
this sterol suggests an additional potential mechanism 
of action, warranting further investigation into its role 
in modulating cancer cell behavior.61 To explore new 
anticancer molecules with potentially fewer side effects 
and reduced resistance to existing drugs, this study 
focused on isolating and identifying compounds from 
cyanobacteria in the Kani Barazan International Wetland, 
located to the south of Lake Urmia. The cyanobacterium 
C. turgidus strain KANI was successfully isolated from the 
wetland, with its microscopic morphology aligning with 
the Chroococcaceae family. The molecular identification 
was performed using the 16S rRNA gene and the 16S-23S 
ITS region from its genome. Based on NCBI database 
recommendations, the organism was given a Barcode of 
Life identifier (MW040530.1, 2021)_ENREF_49.25 The 
amount of natural compounds in C. turgidus strain KANI 
is very impressive, which increases the importance of 
this cyanobacterium for the cultivation and extraction of 
these compounds for medicinal purposes. Other related 
investigations have reported the therapeutic effects of the 
identified fatty acids in this study (Table 1).36-43

The cytotoxicity assay results demonstrated that the 
methanolic ME of C. turgidus strain KANI exerted a dose- 
and time-dependent inhibitory effect on the proliferation 

Fig. 3. Total phenol, flavonoid, and anthocyanin contents from the 
methanolic extract (ME) of C. turgidus strain KANI. Columns labeled with 
different letters are significantly different (P < 0.05). Data were expressed 
as mean values of independent triplicates (mean ± SD).

Fig. 4. DPPH radical scavenging activity from the methanolic extract 
(ME) of C. turgidus strain KANI compared with standard (AA; ascorbic 
acid). Data were expressed as mean values of independent triplicates 
(mean ± SD). Different subscripts in small letters (a, b, c, d, and e) above 
the columns indicate significant differences at P ≤ 0.05.

Fig. 5. Cell viability assay of the SW480 cell line in different concentrations 
(0-500 µg/mL) from the ME of C. turgidus strain KANI. Data were 
expressed as mean values of independent triplicates (mean ± SD). 
Indicates significant difference in compared to control group (*P < 0.05 
and **P < 0.01). ME: methanolic extract, UT: untreated control.
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of SW480 CRC cells, consistent with previous reports 
on the pro-apoptotic effects of microalgal metabolites. 
The cytotoxic effects suggest that C. turgidus metabolites 
primarily exert their anticancer activity through apoptosis 
induction.62,63 However, the therapeutic potential 
of these compounds extends beyond their in vitro 
cytotoxicity and is influenced by their bioavailability 
and metabolic stability. Several studies have highlighted 
that the pharmacokinetics of marine-derived bioactive 
compounds can significantly impact their therapeutic 
applicability.64,65 While this study focused on in vitro 
cytotoxic effects, further in vivo validation is necessary 
to evaluate these metabolites' absorption, distribution, 
metabolism, and excretion properties. Structurally similar 
compounds, such as polyphenols and sterols, exhibit 
variable bioavailability due to metabolic modifications; 
therefore, future research should focus on optimizing 

formulation strategies that enhance the stability and 
systemic delivery of compounds originated by C. turgidus, 
potentially through nanoscale delivery systems.

Mechanistically, natural compounds can exert cytotoxic 
effects through multiple pathways. For instance, curcumin 
and curcumol induce apoptosis via p53 activation, 
oxidative stress modulation, and NF-κB suppression, 
while kaempferol inhibits angiogenesis through the ERK/
NF-κB/c-Myc axis. Moreover, zerumbone, a naturally 
occurring sesquiterpene compound found primarily in 
the rhizomes of Zingiber zerumbet, promotes apoptosis by 
enhancing the expression of pro-apoptotic proteins such 
as Bax via cytochrome c release and activating caspase 
cascades, while simultaneously reducing the levels of 
anti-apoptotic proteins like Bcl2.66-69 There is increasing 
evidence to prove the prognostic and predictive role 
of apoptosis-related markers such as Bax and Bcl2. The 

Fig. 6. Apoptosis assay using Annexin-V flow cytometry analysis on SW480 cancer cells. (a) Treated cells with ME comparison with untreated control cells. 
(b) The rate of apoptosis in the treated cells with ME data was expressed as mean values of independent triplicates (mean ± SD). Indicates a significant 
difference compared to the control group (**P < 0.01). ME: methanolic extract, UT: untreated control cells.

Fig. 7. Apoptosis assay by DAPI staining of SW480 cells. (a, b and c) UT group and (d, e, and f) treated with the ME. Red arrows depict chromatin 
condensation and fragmented nuclei. ME: methanolic extract, UT: untreated control cells.



Goshtasbi et al

   BioImpacts. 2025;15:30867 9

Bax/Bcl2 ratio can behave as a rheostat that regulates 
cell sensitivity to apoptosis. Decreased levels of this 
ratio may result in cancer cells' resistance to apoptosis. 
Hence, the Bax/Bcl2 ratio can impact tumor progression 
and aggressiveness.70-72 Our findings indicate that C. 
turgidus extract similarly modulates apoptotic pathways, 
as evidenced by increased Bax expression and reduced 
Bcl2 levels. Given the established role of Bax/Bcl2 as a 
key determinant of apoptotic sensitivity,73 these results 
suggest that C. turgidus metabolites may act via the 
mitochondrial apoptotic pathway. To improve the clarity 
and robustness of our apoptosis assay, we have refined 
our Annexin V flow cytometry data presentation by 
explicitly reporting the percentages of early apoptosis, late 
apoptosis, and necrosis. This adjustment ensures a more 
precise interpretation of apoptotic responses following 
treatment with C. turgidus extract.

Beyond apoptosis induction, drug delivery remains 
a critical aspect of CRC therapy. Given the increasing 
use of nanoformulations to enhance the stability and 
bioavailability of natural compounds,74 metabolites of 
C. turgidus can be formulated and used as nanosized 
drug delivery systems. Lipid-based carriers, polymeric 
nanoparticles, and liposomal formulations have 
demonstrated the ability to improve the pharmacokinetics 
and targeted delivery of marine bioactive compounds.75,76 
Although our study did not specifically investigate 
delivery strategies, these insights provide a foundation for 
future formulation-based studies.

The bioactivity of C. turgidus extract is likely 
attributable to different types of metabolites, including 
(i) lipopeptides (e.g., cyclic depsipeptides micropeptins, 
and linear peptides aeruginosins) that interfere with 
proteolytic enzymes and cellular signaling pathways and 
used in inflammatory diseases and certain types of cancer, 
(ii) polyketides (e.g., curacin, and apratoxin) that inhibit 
microtubule polymerization with potential therapeutic 
applications in oncology, (iii) indole alkaloids, which 
disrupt DNA replication and interfere with cell cycle 
progression, (iv) cyclic peptide toxins (e.g., microcystins, 
and nodularins) that inhibit protein phosphatases and 
dysregulate oncogenic pathways, (v) mycosporine-
like amino acids, which exhibit photoprotective and 
antioxidative properties.

Although our study provides compelling evidence 
supporting the anticancer potential of C. turgidus, 
additional studies are warranted to elucidate the precise 
molecular interactions underlying its cytotoxic activity. 
Future research should focus on metabolomic profiling, 
pharmacokinetic studies, and in vivo validation to further 
explore the therapeutic applicability of C. turgidus 
bioactive compounds in CRC treatment.

Conclusion 
Microalgae and cyanobacteria are recognized as crucial 
organisms across diverse ecosystems, largely due to their 
varied structures and capacity to synthesize a wide range of 
bioactive compounds. While extensive information exists 

 

 

 

 

 

Fig. 8. Western blot analysis of Bcl2 and Bax protein expression in SW480 cells after treatment by ME. (a) Bax, Bcl2, and β-actin protein bands. (b)The 
relative protein expression of Bcl2 and Bax compared with that in the control group (UT). (c) The Bax: Bcl2 ratio. Data were expressed as mean values of 
independent triplicates (mean ± SD). Indicates a significant difference compared to the control group (*P < 0.05 and **P < 0.01). ME: methanolic extract, UT: 
untreated control cells.
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regarding the compounds produced by microalgae and 
their biological properties, ongoing research continues to 
explore their potential applications in drug development 
and the production of innovative industrial materials. 
Consequently, there is a pressing need to investigate the 
therapeutic potentials and applications of various species 
of microalgae and cyanobacteria. A recent study focusing 
on the ME from the C. turgidus strain KANI revealed 
significant anticancer activity in vitro. This activity may 
be positively correlated with the presence of bioactive 
compounds such as fatty acids, polyphenolic compounds, 
and anthocyanins. These metabolites are well-known for 
their antioxidant properties, which allow them to combat 
free radical oxidation, exhibit therapeutic benefits, and 
perform essential physiological functions. This research 
offers valuable insights into the in vitro effects of the 
ME from C. turgidus strain KANI. In summary, the 
identification and characterization of algal metabolites 
hold great promise for the development of new antitumor 
agents and could pave the way for innovative approaches 
to cancer therapy in the future.
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