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tissue regeneration at the infarcted site. In this
study, beta-tricalcium phosphate (BTCP) was
incorporated into poly(e-caprolactone) (PCL) and
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at 0.25, 0.5, 1, and 3 wt.%. The scaffolds were

analyzed through scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy
(FTIR), X-ray diffraction (XRD), tensile strength testing, hemolysis assays, toxicity testing,
and quantitative reverse transcription polymerase chain reaction (qQRT-PCR) for marker gene
expression. Furthermore, subcutaneous scaffold implantation was performed to assess in vivo

é(;}g;ords: angiogenesis in NMRI mice. Tissue samples were examined using hematoxylin and eosin (H&E)
PCL staining and immunohistochemistry.

Gelatin Results: According to the results, BTCP was uniformly distributed throughout the fiber scaffold,
Neovascularization exhibiting a smooth, unbranched morphology with fiber diameters of approximately 75 pm.
Electrospinning Specifically, the mean diameters for PCL-Gel and PCL-Gel-BTCP at 3 wt.% were 45.01 +£2.82 um

Tissue engineering

and 100.91+11.69 pm, respectively. Mechanical property assessments revealed that the elastic
modulus of the scaffolds was suitable for usage as a tissue-engineered cardiac patch. Scaffolds
containing PTCP exhibited favorable blood compatibility and indicated no cytotoxicity at the
tested concentrations. Furthermore, the expression levels of cardiac marker genes (Actn4,
Connexin43, and TrpT2) were elevated in the treatment groups in conjunction with the escalation
of PTCP dosage. Fiber composites with 1% BTCP were selected as the optimal scaffold for in
vivo examination. This scaffold demonstrated a significantly enhanced cell migration rate, with a
growth in capillary formation observed in the immunohistochemistry analysis.

Conclusion: The fibrous PCL-Gel-PTCP-1% scaffold showed optimal cell proliferation, blood
compatibility and vascularization. These properties highlight its promise for cardiac tissue
engineering.
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Introduction

Over 17.9 million deaths occur worldwide annually
owing to cardiovascular diseases (CVDs), making them
the leading cause of global mortality. These conditions
are expected to cause approximately 20 million deaths
worldwide by 2030.! Myocardial infarction (MI) is a
common CVD, resulting from an obstruction in blood
flow. This blockage prevents the heart muscle from
receiving adequate oxygen and nutrients, leading to
the death of numerous cardiomyocytes (CMs) and the
degradation of the extracellular matrix (ECM). This
can ultimately result in life-threatening heart failure or
sudden death.”? Although there have been significant
improvements in pharmacotherapy and surgery to restore
heart function following a heart attack, it is still possible
for the heart to regenerate itself completely, as adult heart
muscle cells have limited ability to regenerate themselves.
Accordingly, there is a great need for innovative
approaches to delay the progression of myocardial
damage.*®

Tissue engineering is a promising branch of
regenerative medicine integrating engineering principles,
biology, and materials to offer viable solutions to replace,
repair, or regenerate missing or damaged cells/tissues.
Reconstruction of the heart's complex myocardial
structure is an area where tissue engineering seeks to
address its unfulfilled needs. By mimicking the shape and
composition of the natural ECM, biomaterials such as
injectable hydrogels or cardiac patches can be deployed at
the site of MI to promote tissue regeneration and provide
an effective method of treatment. Various biomaterial-
based cardiac patches have been researched to enhance
the mechanical function during heart attacks. The cardiac
patch, a layered scaffold that can be surgically implanted
onto the surface of the damaged myocardium, provides
adequate space for cell adhesion, cell proliferation, ECM
formation, and a variable rate of biodegradation based on
the rate of the tissue regeneration. Meanwhile, they can
serve as carriers capable of transporting bioactive cargoes
such as bioactive molecules, drugs, cells, and exosomes,
thus ameliorating the retention rate to achieve significant
therapeutic effects.” '

The electrospinning technique is employed to produce
continuous nanofibers from solutions and is a simple
synthetic process that can alter the fiber diameter from
micrometers to nanometers.'>'? In addition, this technique
allows manipulating significant factors such as the
orientation and density of the fibers. Electrospun scaffolds
present high levels of interconnectivity and porosity,
making them suitable for temporary ECM functions. Noy
only do these nanofibers provide structural support to the
cells but also exert a significant impact on the regulation
of cellular activity.'*!*

Polycaprolactone (PCL), a synthetic polymer, is widely
applied in the production of cardiac patches thanks to

its biocompatibility and gradual degradation, enabling
long-lasting therapeutic effects in certain areas of tissue
engineering."™"” The U.S. FDA has approved for clinical
use of PCL, making it a promising material with various
applications in tissue engineering."® The electrospun PCL
nanofiber scaffold is similar in architectural structure to
the ECM in living tissues, but its low hydrophilicity causes
reduced ability for cell adhesion, migration, proliferation,
and differentiation. To enhance the characteristics of
the three-dimensional (3D) scaffold for cardiac tissue
engineering, researchers have often used a combination
of natural and synthetic polymers."”

Gelatin (Gel), a non-immunogenic and hydrophilic
polymer derived from collagen through partial hydrolysis,
is most widely used for fabricating cell-based scaffolds
through tissue engineering. Gel has proved to be effective
in combination with PCL."** The incorporation of Gel to
PCL has been shown to enhance the elastic modulus and
structural stability of the scaffolds, making them suitable
for usage as platforms for cardiac tissue modeling.**
Thanks to its biological properties and functional groups,
Gel is a suitable substrate for facilitating cell adhesion,
proliferation, and migration. Hybrid scaffolds have
been developed by applying electrospinning techniques
to combine PCL with Gel. According to studies, this
combination holds promise as a scaffold for accelerating
the regeneration of skeletal muscle,® bone,®* nerve,*
skin,* periodontal,” cartilage,** tendon,* and cardiac.®
In one study, electrospinning was employed to create
random and aligned PCL-Gel composite nanofiber
scaffolds that mimic the structure of the oriented ECM.
When comparing PCL-Gel nanofiber scaffolds with
electrospun PCL nanofibers, the results revealed that the
former had lower stiffness, higher hydrophilicity, and
smaller fiber diameters. Cardiomyocytes derived from
rabbits were cultivated on randomly aligned electrospun
nanofibers, in order to assess the biocompatibility and the
ability of the scaffolds to guide cell behavior. Because of
the biological components and ordered topography of
the scaffolds, the aligned scaffold significantly improved
cell adhesion and alignment, as presented by analyses
using SEM and immunocytochemistry.* Gil-Castell
and colleagues developed nanofibers using PCL/Gel/
polyaniline (PANi) for cardiac tissue engineering. They
altered the ratio of PCL to Gel and the dissolution time
in the solvent before electrospinning to generate different
samples. The inclusion of PANi was found to be non-
toxic and resulted in a controlled increase in electrical
conductivity, contributing to cardiomyocyte proliferation
in vitro. The study found that the 40/60 PCL-Gel scaffold
with 1.00 wt.% PANi indicated non-inflammatory
properties and contributed to a reduction in scar tissue
area once it was implanted into the rat heart 72 hours
post-infarction.®

When designing scaffolds for cardiac tissue engineering

2 | Biolmpacts. 2025;15:31096



Fathi et al

and subsequent tissue regeneration, it is essential to
ensure that the surface promotes bioactivity to facilitate
cell adhesion, spreading, and proliferation. Literature
indicates that calcium-based ceramics are valued in tissue
engineering for their biodegradability and bioactivity,
though their performance depends on physicochemical
properties. Calcium sulfate resorbs rapidly in vivo,
often before sufficient tissue forms, risking scaffold
failure. Hydroxyapatite (HA) resorbs slowly, which can
hinder tissue integration and stability.”” p-tricalcium
phosphate (BTCP) offers an intermediate degradation
rate aligned with tissue regeneration timelines, making
it advantageous. Additionally, BTCP releases calcium
ions (Ca*"), essential in tissue growth and angiogenesis,
as endothelial Ca®* signaling regulates endothelial cell
proliferation, migration, and vasculogenesis. In cardiac
tissue, Ca®" is crucial for excitation-contraction coupling
and gene regulation, underscoring BTCP’s potential to
support vascularization and myocardial regeneration via
calcium release.?®*

Our aim in this research was to develop a new cardiac
patch by mixing PCL and Gel (50:50) to resolve the weak
mechanical strength and limited stability of the Gel, while
improving the physicochemical properties and surface
structure of the patch to promote cell infiltration and
differentiation.”” BTCP is recognized for its exceptional
biocompatibility and bioactivity, which are crucial for
fostering cell adhesion, proliferation, and differentiation
in tissue engineering applications.”’ While predominantly
employed in bone tissue engineering, these properties
may also be beneficial for cardiac tissue by promoting
cell integration and survival. The incorporation of BTCP
into thin electrospun scaffolds, with caution regarding
nanoparticle concentration, can potentially enhance their
mechanical strength, a key attribute for sustaining the
dynamic conditions present in the heart.* The structural
and mechanical properties of the final patch as well as
the angiogenic properties of the nanofiber scaffolds were
examined through in vitro research and subcutaneous
implantation. To the best of the authors’ knowledge, this
is the first time this approach has been proposed for usage
in cardiac applications.

Materials and Methods
All materials were either purchased from Sigma-Aldrich
(Germany) or otherwise specified.

Scaffold Preparation

An electrospinning system (Fanavaran Nano Meghyas
Co. Ltd, Iran) was applied to generate the fiber scaffolds.
Briefly, PCL and Gel were dissolved in acetic acid/formic
acid (9:1) at a weight ratio of 1:1 to produce polymer
solutions with a concentration of 18 wt.%. The formic acid/
acetic acid solvent system yields fibers with significantly
reduced diameter (10x smaller than chloroform) and

enables stable, reproducible electrospinning.*® The
solutions were then agitated at room temperature for
72 hours. The PCL-Gel solution was next mixed with
different concentrations of PTCP nanoparticles (0.25, 0.5,
1, and 3 wt.%). Thereafter, the solution was filled into a
5 mL syringe to which an 18-gauge needle was attached.
Using a syringe pump, the flow rate was adjusted to 0.1
ml/h with the applied voltage kept constant at 22 kV for
each group. An aluminum foil was placed 10 cm from
the needle tip as a collector. Each experiment was carried
out at a relative humidity of 45% and room temperature.
The vapor phase cross-linking process was performed by
placing the electrospun scaffolds in a dryer containing 10
mL of 50% glutaraldehyde (GTA) solution at 25 °C for
12 h.** The scaffolds were subjected to a vacuum oven for
one hour prior to the experiments to ensure complete
evaporation of any remaining solvent. After cross-linking,
the scaffolds were usually washed repeatedly for 24 h with
phosphate buffered saline (PBS) to neutralize and remove
unreacted GTA. Final drying was performed under
vacuum at 45 °C to remove traces of moisture. The groups
examined are listed in Table 1.

Scaffold characterizations

Physicochemical properties

The morphological properties of nanofiber scaffolds
were tested using a scanning electron microscope (SEM;
AIS2300C, South Korea). All groups were coated with
a layer of gold before imaging. The fiber's diameter was
assessed via the Image ] software (National Institutes
of Health, Bethesda, USA).* To examine the structural
phases of the scaffolds, X-ray diffraction (XRD) was
performed using a diffractometer (EQUINOX3000, Inel,
France) with Cu-ka radiation (\=1.58897 A) at 40 kV
and 40 mA. The scan roll was recorded at 0.08°/s over the
20 range of 5-100°.* The crystallite sizes were calculated
using Debye-Scherrer's equation:

0.94
b= Bcosd

which A represents the wavelength of Cu Ka radiation
and B denotes the full width at half maximum (FWHM)
value.

Fourier transform infrared spectroscopy (FTIR) is a
valuable analytical technique for identifying functional
groups and analyzing details of covalent bonding. The

Table 1. Scaffold preparations and treated groups

Abbreviations Scaffolds

PCL-Gel
PCL-Gel-BTCP -0.25
PCL-Gel-BTCP -0.5
PCL-Gel-BTCP -1
PCL-Gel-BTCP -3

18% PCL + 18% Gel

18% PCL + 18% Gel + 0.25% BTCP
18% PCL + 18% Gel + 0.5% BTCP
18% PCL + 18% Gel + 1% BTCP
18% PCL + 18% Gel + 3% BTCP
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FTIR spectra of the samples were acquired using an FTIR
spectrophotometer (PE1760x, Lumex, Canada) within the
range of 4000-400 cm™ with a scanning speed of 23 scans/
min and a resolution of 1 cm™.*’ The tensile strength of
the scaffolds was determined using a uniaxial tensile tester
(Zwick/Roell, Germany) with a 10 N load cell and a strain
rate of 1 mm/min.*

Blood compatibility

Diluted and anticoagulated human blood was employed
to explore the effect of the fibrous scaffolds on the blood.
Specifically, 2 mL of freshly anti-coagulated human
blood, 2.5 mL of normal saline (0.9%), and 0.2 mL of the
anticoagulant blood diluted were added to the scaffolds
and incubated at 37 °C for 60 min. Next, the mixture
underwent centrifugation at a speed of 1500 rpm for a
duration of 10 minutes. The resulting supernatants were
measured for absorbance at 545 nm using a microplate
reader (ELX808, BioTek, USA). To calculate the rate
of hemolysis, we used an equation involving positive
controls consisting of 0.2 mL of human blood diluted
in 5 ml of deionized water (Dpc) and negative controls
made up of 0.2 mL of human blood diluted in 5 ml of
normal saline (Dnc). Dt represents the absorbance of the
samples.®

Blood Hemolysis (%) = (Dt- D, )/ (DPC- D, )x100

Blood clotting index (BCI)

Fiber scaffolds were arranged in thin slices and placed
at the bottom of a controlled 37 °C water bath in a
beaker. Anticoagulated blood (100 uL) and a 0.2 M CaCl,
solution (20 pL) were added to the scaffolds, followed by
25 mL of deionized water after 5 minutes. The obtained
mixture was gently stirred at 37 °C with its absorbance
measured at a wavelength of 545 nm. The experiment was
repeated three times for each sample, with a control group
containing no scaffolds. The level of blood clotting index
was calculated using the following equation:

Blood Clotting Index (%)=A /A_x 100

A represents the absorbance of the samples and A_
shows the absorbance of the control groups.™

Biological assessments

Cardiomyocytes isolation

Cardiac cells were extracted from newborn rats aged 1
to 3 days, following a protocol approved by the Ethics
Committee of Tarbiat Modares University, Iran (IR.
MODARES.AEC.1404.003). Initially, the heart ventricles
were collected and placed in ice-cold PBS. The tissues
were chopped into pieces smaller than 1 mm?® and then
digested using a 0.1% (w/v) solution of collagenase type
II (Worthington, NJ, USA) in Dulbecco’s modified eagle
medium (DMEM) for 10 minutes. The initial supernatant

was discarded, with this digestion procedure repeated
until complete digestion was accomplished. The resulting
mixture was filtered through a 100 pum cell strainer to
separate cell clumps, after which the cells were centrifuged,
resuspended in complete DMEM medium, and pre-
plated in a T-75 flask coated with 0.1% gelatin for 2 hours.
The non-adherent cells, primarily cardiac myocytes, were
then collected and cultured in DMEM with high glucose,
supplemented with 1% penicillin/streptomycin and 10%
horse serum (Gibco).”

Cell viability analysis and morphology assessment

A cytocompatibility evaluation was conducted using
the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) assay at 48, 72, and 120
hours. Briefly, each scaffold was sterilized under
Ultraviolet (UV) light for 30 minutes on each side to
ensure aseptic conditions were maintained. Next, 10* cells
were combined in an expansion medium, transferred
onto the scaffolds within 96-well culture plates, and
incubated at 37°C with 5% CO,. At each time point, the
scaffolds were rinsed with PBS, with a 150 puL solution
of a 5:1 mixture of media and MTT (5 mg/mL in PBS)
being added to each well, followed by incubation. After
four hours, the medium was removed, and the formazan
crystals were dissolved in dimethylsulfoxide (DMSO).
The optical absorbance was assessed at a wavelength of
570 nm using a microplate reader (ELX808, BioTek,
USA). At least three samples were averaged for each trial,
with the cells on the tissue culture plate (TCP) serving as
the control. Cell viability was expressed as a percentage
compared to the control group.” The morphology of CMs
was inspected using SEM 48h after seeding. Samples were
fixed in 2.5% glutaraldehyde in PBS for 1 hour, followed
by a stepwise dehydration process using an ethanol series
(30%, 50%, 70%, 90%, and 100%). Once the samples were
sputter-coated with gold, SEM imaging was undertaken
at different magnifications to assess fiber uniformity and
cell morphology.*

Quantitative real-time PCR

Five days after seeding, the gene expression profiles of
cardiac cells on scaffolds were tested. The investigation
focused on markers such as troponin T type 2 (TrpT2),
the gap junction protein Connexin43 (Conx43), and
actinin alpha 4 (Actn4) using quantitative real-time PCR
(qQRT-PCR). Total RNA was isolated from approximately
5 million cells lysed in 700 puL of RiboEX solution
(GeneALL, cat. no. 302-001) designed for cardiac cells
cultured on nanofibrous scaffolds. Thereafter, the isolated
RNA was subjected to reverse transcription using the Easy
c¢DNA Synthesis Kit (Parstous, Iran). Quantitative RT-
PCR was performed using the SYBR Green QPCR Master
Mix (YTA, Cat. No. YT2551) and Real-Time PCR System
(Applied Biosystems, Lincoln, CA). The 20 uL reaction
volume contained 10 pL SYBR Green Master Mix, 0.5
uL each of forward and reverse primers, 3 uL ¢cDNA
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template, and 6 pL RNase-free water. Amplification was
conducted at the annealing temperature. The changes in
gene expression levels were carefully quantified compared
to the control using the 274" formula, employing
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
as a housekeeping gene.”!

Subcutaneous scaffold implantation

To assess the angiogenic potential in vivo, subcutaneous
scaffold implantation was performed. Twelve male Naval
Medical Research Institute (NMRI) mice, aged 7 to 8
weeks and weighing between 30 and 35 g, were utilized
for this experiment. Three days prior to transplantation,
cyclosporine (Novartis Pharma AG, Switzerland) was
added to the animals' drinking water. A combination
of xylazine (Alfasan, Netherlands; 0.02 mL/10 g body
weight) and ketamine (Alfasan, Netherlands; 0.04 ml/100
g body weight) was administered intraperitoneally to
induce general anesthesia. For transplantation, a small
incision was made on the back of the mice with 15x15
mm? scaffolds implanted subcutaneously (Group 1:
PCL-Gel; Group 2: PCL-Gel-BTCP-1), n=3 per group).
The incision was then closed using a surgical suture.
Following the procedure, the mice were recovered and had
unrestricted access to food as well as water.** Finally, they
were sacrificed after 2 and 4 weeks for the experiment.
Histological and immunohistochemical analysis

The implanted scaffolds were explanted along with the
surrounding tissue, fixed in 10% buffered formalin for
48 hours, and subsequently transferred to PBS at 4 °C.
Cellularization was evaluated by sectioning the fixed
tissues into 5 pm thick segments and staining them with
hematoxylin and eosin (H&E). Images were obtained
utilizing an AxioPlan microscope (Carl Zeiss GmbH,
Germany) fitted with an AxioCam camera. The cell
migration rate was evaluated as follows:

Cell Migration Rate (%) =(W1/ W0) x 100

which W1 represents the zone within the scaffold and
WO denotes the area of the entire scaffold.

The process of vascularization was visualized
through immunohistochemical examination. Following
deparaffinization and embedding in paraffin, the tissues
were blocked with 3% (w/v) bovine serum albumin (BSA)
in PBS at pH 7.4 for 20 minutes at 20 °C. The slides were
incubated with the primary anti- Vascular Endothelial
Growth Factor Receptor 2 (VEGFR2) antibody (1:100;
Abcam) for 12 hoursat 4 °C. The samples were then subjected
to three rinses, each lasting five minutes, using PBS. A
peroxidase-conjugated polymer staining kit containing
antibodies to mouse and rabbit immunoglobulins was
utilized to stain the samples. Positive cells were observed
through applying the chromogen 3,3’-diaminobenzidine
(DAB) (Vector Laboratories, Burlingame). The slides

were examined under a light microscope once the
sections were dehydrated, mounted, and counterstained
with Hematoxylin.*® At least four scaffold sections and six
images per section were assessed to collect data.

Statistical analysis

Statistical analyses were conducted using two-way
ANOVA, with post-hoc comparisons performed by
Tukey’s test to assess within-group differences over time.
Calculations were carried out using GraphPad Prism
software (version 8.1.2). The results are expressed as
mean +standard deviation (SD). A P-value of less than
0.05 was considered to indicate statistical significance.
A minimum of three samples were examined for each
experiment.

Results and Discussion

The loss of cardiomyocytes, a hallmark of heart disease,
results in significant cardiac dysfunction, ultimately
culminating in heart failure. Despite major advances in
treatment, the prognosis for heart failure remains bleak, as
conventional therapies do not address the abnormalities in
the number of heart muscle cells.® Multiple studies have
indicated that cardiomyocyte proliferation is essential for
natural heart regeneration. To enhance cardiac function
following injury or to prevent further deterioration,
substantial efforts have been made to support the
proliferation of mammalian cardiomyocytes.””*® The
goal of cardiac tissue engineering is to replace or repair
damaged heart muscle cells effectively. Thus, the use of
scaffolds in various shapes, such as patches, may provide
a suitable environment for cardiomyocytes.”*® PCL is a
synthetic biodegradable polymer with a long degradation
time of 2 to 4 years, which may not be in accordance
with the desired time for cardiac tissue repair, typically
several months to a year. This problem has been a focus in
tissue engineering research, where PCL is more desirable
because of its better mechanical stability but will often
need the incorporation of other materials, such as Gel
or HA, to facilitate its degradation. In cardiac tissue
engineering, this incompatibility can cause the scaffold
to persist at the injury site and provoke an inflammatory
response.®’ The incorporation of Gel with PCL enhances
cellular adhesion and diminishes the degradation rate
in comparison to unmodified PCL. Furthermore, the
introduction of minerals like HA or BTCP into the
polymer scaffolds modulates the degradation rate by
elevating solubility in aqueous environments.*? This study
presents compelling evidence that the incorporation of
BTCP into PCL-Gel scaffolds significantly boosts their
ability to support cardiomyocyte growth and function.
Electrospun nanofiber patches can be used to transport
cardiac progenitor cells or functional cardiomyocytes. In
2021, Sridharan and colleagues created and researched
fibrous scaffolds with a coaxial PCL/gel structure using
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the electrospinning technique. The results revealed that
human induced pluripotent stem cells (iPSCs) can be
cultured on these scaffolds and developed into functional
cardiomyocytes.®

Physicochemical properties

SEM images were utilized to explore the influence of
BTCP on the microscopic structure of PCL-Gel fibers. The
images presented the nanofibers of PCL-Gel, PCL-Gel-
BTCP-0.25, PCL-Gel-BTCP-0.5, PCL-Gel-BTCP-1, and
PCL-Gel-pTCP-3 with mean diameters of 45 .01+2.82,
53.66+7.45,81.12+9.75,99.96 + 15.34, and 100.91 £ 11.69
um, respectively (Fig. 1). A smaller diameter results in a
larger surface area in fibrous scaffolds, making larger
space for cell attachment, simulating ECM growth for
various cells in vivo.** Pores facilitate drug transport and
tissue angiogenesis, enabling cell infiltration, oxygen
transport, and nutrient spread throughout the tissue.®

XRD analysis was applied to examine the structural
crystalline phase of the fabricated scaffolds (Fig. 2). In
general, PCL is a semicrystalline homopolymer with
diffraction peaks at 20=21.9° and 24.2°, corresponding
to the (110) and (200) planes of the orthorhombic crystal
structure.®*® The weakly intense peaks in the XRD
pattern of the sample without BTCP are owing to the low
crystallinity of the PCL-Gel structure. By incorporating
the BTCP into the composite, crystalline peaks appeared
at 21.6°% 23.9% 29.7°, 46.7°, and 49.3° corresponding to
(0240), (1010), (3000), (4010), and (4160) planes for the
BTCP phase in the rhombohedral structure.®®® It can
also be observed that the intensity of the crystalline peaks
grows with increasing PTCP content in the chemical
composition of the composite. The crystallite sizes of
BTCP in the samples with concentrations of 0.25, 0.5, 1,
and 3 wt% were measured at 16.2, 16.5,17.2, and 17.7 nm,
respectively. This suggests that a higher concentration of
the bio-ceramic contributes to a growth in the crystallite
size of the composite phase.

FTIR spectra of the scaffolds are illustrated in Fig. 3A.
The absorption peaks observed at 3290 cm™ and 3080
cm™ are associated with the stretching vibration of O-H
and N-H bonds present in the Gel. Meanwhile, the peaks
at 2940 cm™ and 2870 cm™ correspond to the asymmetric
and symmetric stretching vibration of aliphatic C-H
bonds found in both Gel and PCL structures.”””! The
characteristic peak at 1730 cm™ is ascribed to the stretching
vibration of C=0 in PCL,”” while the localized peak at
1640 cm™ can be attributed to the stretching vibration of
the C=C bond in aromatic rings of Gel and/or bending
vibration of the O-H bond in retained moisture.”” The
peaks appearing at 1540 cm™, 1450 cm?, and 1370 cm™
are assigned to the bending vibration of N-H and C-H
bonds, respectively, and the absorption peak at about
1299 cm is because of the stretching vibration of C-N
in Gel.*”* In addition, the absorption peaks at 1240 cm™!

and 1170 cm™ are associated with the stretching vibration
of C-OH and C-O-C bonds in Gel and are attributed to
the peaks within the wavenumber range from 800 cm™
to 1100 cm™ the stretching vibration functional carbon-
oxygen groups as well as phosphorus-oxygen bonds in
the PTCP structure. The spectra demonstrate that the
intensity of the localized peaks in the wavenumber range
increased with elevating the TCP concentration in the
nanocomposite due to the presence of more P=0 bonds
in their chemical composition. It can also be seen that
the bending vibration of the P=0O bond causes a new
peak at around 730 cm, being further evidence for the
presence of the phosphate-based structure in the pTCP-
containing samples.” The observable peak at around 630
cm™ is linked to the bending vibration of C-H bonds in
aromatic structures.” The higher intensity of the peak for
the PCL-Gel samples can be attributed to the interaction
of the BTCP structure with the aromatic rings, resulting
in a decline in the peak intensity in the presence of the
bio-ceramic structure.

Mechanical properties

The mechanical characteristics and stress-strain graphs of
fiber scaffolds are presented in Fig. 3B and Table 2. The
pointatwhichthescaffold failsisindicated by the maximum
tensile stress. The PCL-Gel, PCL-Gel-pTCP-0.25, PCL-
Gel-BTCP-0.5, PCL-Gel-BTCP-1, and PCL-Gel-BTCP-3
fiber scaffolds showed tensile strength values of 1.35+0
.03 MPa. 1.74+0.07 MPa, 2.40+0.11 MPa, 1.65+0.09
MPa, and 1.50+0.06 MPa, respectively. Such a behavior
is usually related to particle agglomeration and decreased
continuity of the polymer at higher levels of ceramics,
which create sites of stress concentration and enhance
brittleness. For example, in bone tissue engineering
scaffolds, high PTCP concentration disordered the PCL/
PLGA matrix and resulted in decreased mechanical
stability at the expense of initial enhanced strength at low
TCP concentrations. Likewise, Poly (3-hydroxybutyrate)
PHB/PCL-TCP blends also exhibited reduced ductility
and enhanced brittleness at elevated TCP concentrations
due to inadequate interfacial bonding between the
polymer and ceramic phases.””® Adjusting the ratio of
PCL to Gel can increase flexibility without sacrificing
tensile strength. Cardiac patch studies have ascertained
that a 50:50 PCL and Gel composite increases elasticity
and cell compatibility without sacrificing structural
integrity. Specifically, the hydrophilic properties of gelatin
act against the hydrophobic properties of PCL, facilitating
homogeneous distribution of PTCP and preventing
clumping at higher concentrations.” The incorporation
of BTCP altered the final tensile strength of the scaffolds
depending on the concentration, indicating a rise in
their breaking strength up to a concentration of 0.5%.
Further, upon adding this ceramic to the manufactured
composite and elevating its concentration based on the
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elastic modulus diagram, it is possible to achieve higher
fragility and brittleness of the composition. Meanwhile,
the obtained elastic modulus was within the range of a
tissue-engineered cardiac patch.®

Blood compatibility and blood clotting index (BCI)

To assess the blood compatibility of cardiac patches, the
hemolysis effect is a key aspect that should be evaluated.
The PCL-Gel, PCL-Gel-pTCP-0.25, PCL-Gel-BTCP-0.5,
PCL-Gel-pTCP-1, and PCL-Gel-pTCP-3 fiber scaffolds
presented ahemolysis percentage of3.88 £0.19,3.67 £0.12,
3.84+0.15, 3.96+0.08, and 3.44+0.13, respectively (Fig.
4A). There is no statistically significant difference between
the treatment groups, and the percentage of hemolysis is
lower than 5% in all samples tested.

To assess the antithrombogenic properties of a material
concerning human blood, the BCI was employed in
research. Typically, the BCI value correlates inversely with
the coagulation effect of the material, with lower values
indicating improved anti-thrombogenic properties.’ To
evaluate clot formation, human blood drops were applied
to fibers and after 60 minutes, absorbance was measured
to determine the amount of free hemoglobin released
from clotted blood (Fig. 4B). Absorbance values were
converted to percent free hemoglobin and calculated
as BCI values for each sample. The PCL-Gel, PCL-Gel-
BTCP-0.25, PCL-Gel-BTCP-0.5, PCL-Gel-BTCP-1,
and PCL-Gel-BTCP-3 fiber scaffolds presented a blood
clotting index of 70.05+3.12, 61.17+2.52, 60.09+1.85,
59.71£1.99, and 45.29+5.33, respectively (Fig. 4C).
According to these results, as the amount of fTCP in the
composites increased, the amount of BCI decreased.

Zamani et al reported that the rate of hemolysis is
affected by the compatibility of different materials; the
level of hemoglobin in plasma is represented by the extent
of damage caused by erythrocytes. Based on previous
studies, the critical hemolysis limit is less than 5%.%2 In this
study, the hemolysis rate of PCL gel scaffolds with different

Table 2. Mechanical properties of PCL-Gel -containing various
concentrations of BTCP

Groups Ultimate tensile stress (MPa)
PCL-Gel 1.35+0.03
PCL-Gel-BTCP -0.25 1.74 +0.07
PCL-Gel-BTCP -0.5 2.40+0.11
PCL-Gel-BTCP -1 1.65+0.09
PCL-Gel-BTCP -3 1.50+0.06

concentrations of PTCP was lower than 5%, showing the
blood compatibility of the developed composite materials.
In cardiac tissue engineering, the non-clotting or non-
thrombogenic ability of materials is crucial to prevent
formation of blood clots on engineered tissues. Otherwise,
implanted devices can obstruct blood vessels, which can
lead to dangerous conditions such as thrombosis and
stroke. In order for heart tissue scaffolds and artificial
constructs to function effectively, they need to integrate
seamlessly into the native tissue. The formation of blood
clots can generate barriers, inflammatory reactions, or
fibrosis that prevent proper integration.** The BCI test was
employed to test the coagulation activity of materials. The
lower the BCI value, the more effective the coagulation
effect of the scaffolds.** Based on previous research,
BTCP exhibits certain coagulation characteristics. It
interacts with blood components such as platelets,
potentially resulting in localized clotting effects. When it
comes into contact with blood, its calcium content and
surface characteristics can promote platelet adhesion and
activation, which may support the formation of clots.®
Thus, based on the results of this study, PTCP at various
concentrations had a negative effect on the coagulation
process, so as the amount of TCP increased, the amount
of BCI diminished, complicating its usage at a dose of 3%.
For this reason, we used the composite with 1% BTCP for
in vivo testing, which resulted in no significant difference
from other previous treatment groups in coagulation
induction.

MTT assay

Isolated cardiac cells were employed to test the prepared
scaffolds for possible cytotoxic effects.*® The MTT assay
was used to evaluate using the cytocompatibility of CMs
cultured on PCL-Gel and PBTCP-containing scaffolds
at different concentrations. As displayed in Fig. 5, the
findings indicated that all samples containing PTCP
in their composition exhibited significantly enhanced
viability at the 24, 72, and 120-hour intervals when
compared to the group lacking PTCP (PCL-Gel). Further,
an increase in the concentration of BTCP within the
composite scaffolds was associated with greater viability.
Hence, enhancing cell viability indicated that there was no
toxicity associated with the combination of the prepared
scaffolds, as this value consistently exceeded 98% for all
samples at 120 hours following seeding.
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Scanning electron microscopy

SEM images of cardiomyocytes were captured 48 hours
post-seeding. As depicted in Fig. 6, the micrographs
indicated that each sample promoted cell attachment.
Notably, an increase in the concentration of BTCP within

the prepared scaffolds caused the cells to exhibit a flatter
morphology. The improved cell attachment observed for
scaffolds with higher BTCP concentrations suggests that
BTCP enhances the polymeric structure of the scaffold in
a dose-dependent manner.*’
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Gene Expressions Analysis

The expression profile of the cardiac gene markers
for cardiomyocytes seeded on the scaffolds was
inspected using qRT-PCR and presented in Fig. 7. The
oligonucleotide primer pairs used are listed in Table 3.
As can be observed, the corresponding gene expression
was statistically increased in all scaffolds compared with
the control. This value was more significant for PCL-
Gel-BTCP-3, particularly for the TrpT2 gene marker
(P<0.001).

The results showed a significant increase in cell viability
athigher BTCP concentrations, especially at 3%, suggesting
that BTCP significantly improves the performance of the
scaffold in supporting cell proliferation. This trend was
consistently observed across different time points and
shows a sustained positive effect of PTCP on cell growth,
consistent with previous studies.®®* This conclusion is
further supported by gene expression analysis, which
shows a significant increase in markers critical for
cardiomyocyte function at different PTCP levels. These
results suggest that PTCP not only increases cell viability
but also promotes specific cellular functions essential
for cardiac tissue engineering.”® Actinin-4 (Actn4) is
essential for cardiac repair and cardiomyocyte functions,
contributing to structural support, regulation of cell
motility, ECM remodeling, and promoting cardiomyocyte
proliferation. These roles are crucial for the effective
regeneration and function of cardiac tissue.”’ Connexin
43 (Conx43) is a critical gap junction protein that plays
a central role in cardiac repair by regulating intercellular
communication, electrical conduction, and cellular
signaling in the heart.”> Furthermore, Conx43 is involved
in promoting cardiomyocyte proliferation, regeneration,
and survival in experimental models.” Troponin T type 2
(TrpT2) plays a role in calcium hemostasis and signaling
within cells, which is critical for function and repair.
Improvements in gene expression markers important
for cardiomyocyte function suggest that fTCP-enriched
scaffolds hold promise for cardiac tissue engineering.’*
BTCP in composites (PCL-Gel) resulted in an increase

in the expression level of these genes with increasing
concentration, which may be useful for cardiac tissue
engineering patches.

Histological analysis

Based on the results obtained from physicochemical and
biological investigations, the PCL-Gel-BTCP -1 sample
was selected for in vivo evaluations, and its results were
compared with those of the sample without BTCP.
Twelve NMRI mice were used for the experiment and
were sacrificed after 2 and 4 weeks. The H&E images
demonstrated improved perivascular localization,
as shown in Fig. 8A, with both scaffolds exhibiting
cellularization after four weeks.

Chen and colleagues reported the use of electrospun
PCL/Gel nanofiber scaffolds loaded with graphene. The
results of CCK-8 assays and histopathological staining
indicated that cells on the hybrid scaffolds exhibited
optimal culture and survival when the mass fraction of
graphene was below 0.5%. Following implantation in
rats for 4, 8, or 12 weeks, H&E staining demonstrated the
absence of inflammatory cell accumulation around the
nanomaterials.”® The newly formed blood vessels in the
cellularizedareawereexaminedusingimmunofluorescence
staining with VEGFR2 (Fig. 8B). Furthermore, the PCL-
Gel-BTCP-1 scaffold showed a significantly higher
cell migration rate throughout the evaluation period
(Fig. 8C) compared to the PCL-Gel sample, reaching
approximately 68% after 4 weeks. The PCL-Gel-BTCP-1
scaffold therefore exhibited a significantly increased cell
migration rate (P<0.01). As adequate cellularization
is essential for efficient vascularization,” the PCL-Gel-
BTCP-1 scaffold used in this research created favorable
conditions for cell infiltration and migration due to its
appropriate composition. Additionally, an increase in
capillary formation was observed on this scaffold, which
supports the findings of cell viability highlighted in the
MTT assay. It appears that this scaffold provides a suitable
microenvironment for cell homing and proliferation.

Vascularization plays a crucial role in cardiac repair and
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regeneration. BTCP has been shown to have beneficial
effects on angiogenesis by acting through the PI3K/Akt
pathway.” This pathway improves the functionality,
movement, adherence, and proliferation of endothelial
cells. Consequently, this could be advantageous for
promoting vascularization and the integration of
the cardiac patch into the host tissue.*”®” Our results
from post-implantation tests indicated that the PCL-
Gel-pTCP-1 scaffold increased cellularization and

demonstrated improved cell migration compared to PCL-
Gel.?”® This suggests that the incorporation of PTCP into
the PCL-Gel scaffold enhances the bioactive properties
of the composite, promoting accelerated cell infiltration
and cellularization.” Furthermore, in the current study,
the PCL-Gel-pTCP-1 scaffold exhibited enhanced
angiogenic potential, as evidenced by the increased
expression of VEGF and the formation of capillary-like
structures.’® This effect is attributed to the presence of
BTCP, which stimulates the production of angiogenic
factors and promotes endothelial cell migration.'”
Additionally, the porous structure of the scaffolds acts
as a reservoir for retaining the essential Ca**ions needed
to attract mesenchymal stem cells (MSCs), myoblasts,
myoendothelial cells, and pericytes for neovascularization
process.'

The hydrophobic nature of PCL limits its cell affinity,
which can be improved through surface modifications
such as NaOH treatment, shown to enhance endothelial
cell adhesion like human umbilical vein endothelial
cell (HUVECs) and PCL biocompatibility."”® BTCP
scaffolds also demonstrate pro-angiogenic properties,
promoting HUVEC infiltration, migration, proliferation,
and upregulating angiogenic markers like CD31,
especially in channel-like architectures, indicating
strong neovascularization potential.’® In cardiac tissue
engineering, incorporating cell types such as cardiac
fibroblasts—key for ECM deposition but potentially
contributing to pathological remodeling if dysregulated—
and hiPSC-derived cardiomyocytes (hiPSC-CMs)—which
mimic patient-specific genetics and enable drug testing—
can improve regenerative outcomes.'>' Gelatin-
based hydrogels support hiPSC-CM culture; matrices
with suitable stiffness and degradation rates enhance
network formation, expression of contractile proteins,
and contraction velocity, emphasizing the importance of
mechanical properties for functional cardiac tissues.'”’”

Based on these insights, future research will focus on
developingamulticellular co-culture system incorporating
endothelial cells, cardiac fibroblasts, and hiPSCs within
our tissue-engineered constructs. This strategy aims
to better mimic the native cellular complexity of the
myocardium, promote more physiologically relevant cell-
cell interactions, and ultimately improve the translational
relevance of engineered cardiac tissues.

While BTCP has been extensively used in bone repair
due to its osteoconductivity'®, biodegradability,'” and
biocompatibility,"!®!"! it is also a promising candidate
for cardiac tissue engineering. Its controlled dissolution
facilitates gradual material replacement by native tissue,
while the release of bioactive Ca*" plays a critical role
in modulating the local microenvironment. Ca*" ions
released during BTCP degradation enhance angiogenesis
and myocardial repair by activating signaling pathways in
endothelial and cardiac cells.**"'? In addition, Ca®" acts as
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Table 3. Primers used for gqRT-PCR

Genes Abbreviations Primer Sequence (5-3') Annealing (°C)
. F: CGACCACCTGAATGAAGACC
Troponin Ttype 2 TrpT, R: TTTCTGCTGCTTGAACTTTTCC 294
Connexina3 Conx F: TATGTGATGAGGAAGGAAGAGAAG 59.3
43 R: TTGAAGATGCTGATGCTGATGATGTAG ’
. F: CGGGATGGGCTCAAACTTATG
Actinin Alpha 4 Actn, R: GATGTCTTGGATGGCGAACC 59.8
Glyceraldehyde-3-phosphate dehydrogenase GAPDH F: CTCATTTCCTGGTATGACA 59.5

R: CTTCCTCCCGTGCTCTTGCT

the key link between electrical excitation and contraction
in cardiomyocytes while regulating gene transcription and
other critical cellular functions.** Experimental studies
support the angiogenic potential of TCP. In vitro, BTCP
scaffoldshave been shown to promote HUVEC infiltration,
proliferation, and migration. Additionally, the expression
of angiogenic marker CD31 and migration-associated
protein a5 is upregulated on BTCP scaffolds with
channel-like architectures, indicating a strong capacity
to stimulate neovascularization.'” In vivo, unidirectional
porous PTCP (UDPTCP) has demonstrated significant
vascularization potential. Three weeks post-implantation,
UDPTCP structures were fully infiltrated by capillaries,
with endothelial cells, pericytes, and basement membranes
contributing to the formation of a mature vascular
network.'”® Despite these biological advantages, the
inherent brittleness and stiffness of PTCP limit its utility
as a standalone material in soft tissue applications like
cardiac repair. To overcome these mechanical limitations,
BTCP is often integrated into composite scaffolds with
pliable, biodegradable polymers such as PCL or Gel.
These composites provide improved flexibility, prevent
structural failure, enable tunable degradation kinetics, and
enhance cellular compatibility. Supporting this composite
strategy, chitosan/calcium silicate-based cardiac patches
have demonstrated therapeutic efficacy in post-infarction
models by promoting cardiomyocyte activation and
enhancing myocardial function through the synergistic

effects of bioactive ion release and aligned nanostructural
features. In vivo findings further confirm reduced scar
tissue formation and increased angiogenesis, reinforcing
the therapeutic potential of ion-releasing, nanostructured
biomaterials for cardiac tissue engineering.''* Thus,
polymer/ceramic composite patches incorporating fTCP
represent a promising platform for myocardial repair.
Integrating controlled biodegradability, ion-mediated
bioactivity, and customizable mechanical properties,
BTCP-reinforced composites may support structural
regeneration and functional restoration of infarcted
myocardium.

Further research is needed to optimize composite
formulations. Key areas include fine-tuning its
degradation rate, enhancing angiogenic signaling, and
exploring combination therapies with growth factors to
maximize regenerative outcomes. In vivo assessments
utilizing an animal model of heart attack are also essential
to confirm the effectiveness of the created patches in
regeneration process, as well.

Conclusion

Overall, the incorporation of BTCP into PCL-Gel
scaffolds notably enhanced their cytocompatibility and
functional support for cardiomyocytes, underscoring
its potential as a promising material for cardiac tissue
engineering. The scaffold with 1% BTCP demonstrated
superior cell proliferation, vascularization, and
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migration, highlighting its capacity to promote tissue
regeneration effectively. These findings corroborate
previous studies that have shown BTCP's beneficial role
in scaffold performance, particularly in facilitating cell
attachment and angiogenesis. Looking forward, future
research should aim to optimize BTCP concentrations
and explore synergistic effects with other biocompatible
materials to further refine scaffold properties. Long-term
in vivo studies are essential to evaluate the durability, the
potential risk of calcification, integration, and functional
outcomes of such scaffolds in cardiac repair. Additionally,
investigating scalable fabrication methods and assessing
the clinical safety and efficacy of these composites will be
critical steps toward translating this promising approach
into viable therapeutic strategies for patients suffering
from ischemic heart diseases.
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