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Introduction
The discovery of gene-disease associations is crucial 
for advancing medical research and improving clinical 
outcomes, especially in preventing, diagnosing, and 
treating genetic illnesses. However, deriving significant 
links from the rapidly expanding biomedical literature 
has become more difficult.1 The MEDLINE database 
adds around 500 000 new biomedical abstracts each year, 
resulting in an enormous amount of data practically 
impossible for academics to evaluate manually. This 
difficulty emphasizes the critical need for computational 
tools that may reveal hidden insights within large 
amounts of textual data.1 Text mining has emerged 
as a critical method for assessing massive amounts 
of biomedical literature. It allows researchers to 

automatically identify noteworthy patterns, correlations, 
and links in unstructured data. Using text mining tools, 
researchers may easily find gene-disease connections, 
keeping up with the field's fast progress. These techniques 
have considerably improved the speed and accuracy of 
information retrieval, revealing important insights into 
complicated biological systems.2,3

Despite these advancements, typical traditional 
techniques for relation extraction (RE) remain difficult 
and time-consuming. Due to the large amount of data 
available, experimental approaches for discovering 
gene-disease associations are sometimes impractical. 
Therefore, automated systems combining machine 
learning, deep learning, and natural language processing 
(NLP) have been created to solve this issue.4 Most recent 
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Abstract
Introduction: Identifying gene-disease 
associations is crucial for advancing 
medical research and improving 
clinical outcomes. Nevertheless, 
the rapid expansion of biomedical 
literature poses significant obstacles 
to extracting meaningful relationships 
from extensive text collections. 
Methods: This study uses deep learning 
techniques to automate this process, 
using publicly available datasets (EU-ADR, GAD, and SNPPhenA) to classify these associations 
accurately. Each dataset underwent rigorous pre-processing, including entity identification and 
preparation, word embedding using pre-trained Word2Vec and fastText models, and position 
embedding to capture semantic and contextual relationships within the text. In this research, 
three deep learning-based hybrid models have been implemented and contrasted, including 
CNN-LSTM, CNN-GRU, and CNN-GRU-LSTM. Each model has been equipped with attentional 
mechanisms to enhance its performance. 
Results: Our findings reveal that the CNN-GRU model achieved the highest accuracy of 91.23% on 
the SNPPhenA dataset, while the CNN-GRU-LSTM model attained an accuracy of 90.14% on the 
EU-ADR dataset. Meanwhile, the CNN-LSTM model demonstrated superior performance on the 
GAD dataset, achieving an accuracy of 84.90%. Compared to previous state-of-the-art methods, such 
as BioBERT-based models, our hybrid approach demonstrates superior classification performance 
by effectively capturing local and sequential features without relying on heavy pre-training.
Conclusion: The developed models and their evaluation data are available at https://github.com/
NoorFadhil/Deep-GDAE.
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developments in biomedical research have changed the 
emphasis from researching individual genes and proteins 
to examining whole genomes and biosystems. Advanced 
methods that can reveal hidden correlations in huge, 
unstructured datasets are required for this progress. 
Computational approaches that automate the extraction 
of these correlations may save researchers substantial 
time, effort, and money while allowing them to prioritize 
preventive, diagnostic, and treatment initiatives.4,5 

The existing computational techniques for gene-disease 
association extraction range from basic co-occurrence 
algorithms to complex machine learning and deep learning 
models. However, many solutions have shortcomings, 
such as poor context management, accuracy, and data 
imbalance. These difficulties call for creative approaches 
that successfully convey the intricate relationships and 
subtleties of context present in biomedical texts.6,7 

In this paper, we have developed three deep-learning 
classification models: CNN-LSTM, CNN-GRU, and 
CNN-GRU-LSTM. Each model combines convolutional 
and recurrent neural networks to classify gene-disease 
correlations accurately. Our classifiers outperformed 
the other state-of-the-art methods in determining 
gene-disease relationships without needing biological 
features. The main contributions of this paper include the 
following:
1.	 The development of hybrid neural network 

architectures, specifically the CNN-LSTM, CNN-
GRU, and CNN-GRU-LSTM models, designed for 
classifying gene-disease associations, 

2.	 Adding attention mechanisms to these models to 
focus on essential parts of the input sequence, making 
classification tasks more accurate and efficient,

3.	 Thorough testing of the suggested models using three 
public datasets: EU-ADR, GAD, and SNPPhenA, to 
evaluate their performance for identifying gene-
disease associations,

4.	 Employing pre-trained word embedding models 
like word2vec and fastText to capture semantic 
relationships in the text, enhancing the feature 
representation for the classifiers, and 

5.	 Employing a position embedding technique to capture 
the relative positions of words within sentences, helping 
to understand contextual relationships in the text.

Literature review 
Biomedical text mining is crucial for extracting significant 
connections from the vast and expanding collection of 
biomedical literature. Relation extraction aims explicitly 
to uncover and describe connections between biomedical 
entities, such as genes, illnesses, and single nucleotide 
polymorphisms (SNPs). In recent years, several studies 
have suggested novel machine learning, deep learning, 
and Transformer-Based Approaches to improve the 
accuracy and efficacy of extracting these relationships. 

A comparative summary of the reviewed studies, 
highlighting their approaches, proposed methods, and 
identified limitations, is presented in Table S1.

Machine learning-based approaches
Several early studies applied traditional machine learning 
techniques to the problem of gene-disease association 
extraction. Bhasuran et al8 suggested a supervised machine 
learning approach for extracting gene-disease associations, 
wherein an ensemble support vector machine was trained 
with an extensive feature set, including conceptual, 
syntactic, and semantic features concurrently acquired 
using the Word2Vec word embedding technique. The 
system achieved a F1-score of 83.93% on the GAD corpus, 
87.39% on the CoMAGC corpus, 85.55% on the EU-ADR 
corpus, and 85.57% on the PolySearch dataset. However, 
difficulties developed when dealing with long and complex 
texts, leading to inaccuracies in identifying associations. 
In future work, the authors addressed simplifying intricate 
sentences and enhancing the classifier's effectiveness in 
identifying negative instances to improve significantly the 
extraction process's accuracy. However, Bokharaeian et al9 
suggested a novel method for extracting SNP-phenotype 
associations from biomedical literature. The focus is on 
identifying negation signals and neutral candidates to 
enhance the accuracy of relation extraction. Utilizing 
features such as negation scope and neutral candidate 
detection, they implemented a linguistic-based approach 
that was assessed on the SNPPhenA corpus. With an F1-
score of 75.60%, their method outperformed kernel-based 
approaches in capturing SNP-phenotype associations 
with consideration of confidence levels. However, the 
scarcity of neutral candidates in the corpus impacted the 
model's robustness. Future work suggested improving the 
model by incorporating supplementary linguistic features 
and investigating larger datasets to generalize the results 
across biomedical texts. While, Wang et al10 developed 
HNEEM and HNEEM-PLUS using graph embedding and 
ensemble learning to predict gene-disease associations. 
They implemented six graph embedding approaches to 
create a heterogeneous network integrating genes, diseases, 
chemicals, and chemicals and learned representative 
vectors of genes and diseases. The ensemble model 
HNEEM was created by averaging prediction models 
for each graph embedding representation with random 
forest classifiers. In contrast, the HNEEM-PLUS model 
was created by adding a multilayer perceptron classifier 
to increase base predictor diversity. Their HNEEM-
PLUS model outperformed the other previous methods 
with an F1-score of 82.60 in the collected dataset from 
CTD. However, the intricacy of ensemble approaches 
limits scalability and overfitting, according to the study. 
Therefore, the authors suggest applying more advanced 
ensemble approaches and biological data sources to 
improve prediction accuracy. Xiang et al11 proposed a 
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hybrid method for improving disease-gene prediction by 
integrating multiscale module structures under the name 
HyMM. They applied three algorithms for multiscale 
module decomposition: modularity optimization, 
asymptotic surprise, and fast hierarchical clustering on 
biological networks to extract multiscale modules. These 
modules were then used for ranking genes according to 
their disease association, and the integration of multiple 
rankings was performed under a theoretical framework 
based on naïve Bayes theory. 5-fold cross-validation and 
independent tests showed that HyMM worked better 
than traditional methods. The authors point out that, for 
future work, there is a need for more flexible and robust 
methods for detecting modules capable of incorporating 
more types of biological data to predict disease-causing 
genes better.

Deep learning-based approaches
Recent advances in deep learning have significantly 
improved gene-disease relation extraction by leveraging 
complex neural architectures. Wu et al12 proposed a deep 
learning-based RENET model, which was trained on 
a collected dataset of 30,192 abstracts from MEDLINE 
fetched through DisGeNet to extract gene-disease 
associations. Their model consisted of two main stages; 
the first stage is a representation of words and sentences 
using convolutional neural networks (CNNs), while 
in the second stage, the relationships between each 
sentence were captured in a document with RNN, such 
as GRU/LSTM. Their approach outperformed tools like 
BeFree and DTMiner regarding precision and recall 
values while improving the F-Score by more than 20%. 
Nonetheless, their technique required better NER and a 
deeper contextual understanding of sentence boundaries. 
Future work includes exploring more efficient models for 
handling document-level semantics and incorporating 
domain-specific knowledge bases to improve the 
accuracy of association extraction further. Nourani et al13 
presented Deep-GDAE, a new deep-learning algorithm 
for extracting gene-disease associations from biological 
texts. It used a sentence-level attention-based neural 
network architecture that combined transfer learning 
with pre-trained embeddings from PubMed and PMC. 
Deep-GDAE uses CNNs and bidirectional LSTMs 
(BiLSTMs) to analyze and categorize sentences using 
an attention mechanism. Their model outperformed 
previous methods, with F1-scores of 85.80, 71.63, and 
73.97 for the EU-ADR, GAD, and SNPPhenA corpora, 
respectively. However, researchers note constraints such 
as potential performance differences due to the pre-trained 
embeddings' quality and the biomedical texts' unique 
structure. For future work, the authors recommend further 
investigating more advanced attention mechanisms and 
incorporating supplementary contextual information to 
improve the model's robustness and accuracy. On the 

other hand, Su et al14 proposed RENET2, a deep learning-
based strategy for extracting relationships in discovering 
gene-disease associations from abstract and full-text 
articles. Section filtering and modeling of ambiguous 
relationships were incorporated into this approach. Since 
the annotated full-text datasets are rare, the authors 
developed an iterative strategy for augmenting the 
training data. Their model structure incorporates the 
CNN layer for extracting local semantic features and the 
RNN layer, which captures sequential dependencies and 
contextual information about the sentences. RENET2 
outperformed some existing tools, such as BeFree, 
DTMiner, and BioBERT, with an F1-score of 72.13 % in 
extracting gene-disease relationships from annotated full-
text datasets. However, their strategy demonstrated poor 
processing efficacy for one gene-disease pair at a time 
and needed to integrate advanced deep language models 
like ELMo and BERT for enhancing full-text relation 
extraction. Bokharaeian et al15 introduced a method for 
extracting and ranking SNP-phenotype associations 
from biomedical literature using machine learning and 
deep learning models. In their study, several machine 
learning techniques were developed, including traditional 
methods such as random forest, logistic regression, SVM, 
KNN, GaussianNB, GradientBoosting, and DecisionTree, 
as well as advanced deep learning models like CNN-
LSTM, BERT-LSTM, and PubMedBERT-LSTM for 
extracting associations with a focus on the degree of 
certainty. In testing models on SNPPhenA and the EU-
ADR dataset, the PubMedBERT-LSTM model gave an 
F1-score of 83.9 and 80.7, respectively, compared to prior 
methods. In future work, the authors suggested focusing 
on treating complicated linguistic forms, structures, and 
integrations of more biomedical databases for model 
validation and refinement. However, Dehghani et al16 
proposed a deep learning method for extracting SNP-
phenotype associations from biomedical literature using 
BioBERT-GRU. The model used pre-trained BioBERT 
for feature representation, with a CNN layer over it for 
feature extraction, followed by a bidirectional GRU for 
capturing the dependencies of the sequence data. Results 
showed that BioBERT-GRU outperformed the prior 
models and reached an F1-score of 88.30 at the sentence 
level and 64.50 at the abstract level when evaluated in the 
SNPPhenA dataset. Future work involved determining 
the type of relationship, direct or indicative of a pathway 
effect, and possibly the consideration of the use of fuzzy 
relations instead of crisp relations.

Transformer-Based Approaches
Transformer-based models have recently emerged as 
powerful tools for biomedical text mining, offering 
enhanced performance through contextualized 
embeddings. Lee et al17 introduced BioBERT, a specialized 
language representation model that enhances BERT 
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by pre-training it with extensive biological corpora, 
such as PubMed abstracts and PMC full-text articles. 
The BioBERT model achieved superior performance 
compared to BERT and other advanced models in three 
critical tasks of biomedical text analysis: named entity 
recognition, relation extraction, and question answering, 
where the model demonstrated an improvement of 0.62% 
in F1-score for named entity recognition, 2.80% in F1-
score for relation extraction, and 12.24% in MRR for 
question answering. One of the drawbacks highlighted 
was the computational expense and time requirements 
associated with pre-training. A recommendation was 
offered to improve the efficiency of BioBERT in future 
research and to explore its potential for a broader range of 
applications in biomedical text mining. However, Deng et 
al18 contributed an approach for extracting gene-disease 
associations from biomedical literature using BioBERT, 
a version pre-trained on large-scale biomedical corpora 
like BERT. After downloading relevant literature from 
PubMed, the text was processed through a tokenizer. 
Afterward, BioBERT is used in two successive steps: named 
entity recognition for identifying genes and diseases, and 
then relation extraction to find associations between the 
identified entities. Their model evaluation achieved an 
F1-score of 79.98% on the EU-ADR dataset. However, 
the limitations of this method include that setting up a 
local BioBERT environment requires high computational 
resources and expertise, and it ignores abstracts without 
either gene or disease mentions, which might exclude 
real associations. In future work, the authors suggested 
improving the efficiency and accuracy of the model by 
integrating advanced models or using other biomedical 
datasets for better performance.

As shown in Table S1, many prior studies have made 
considerable advancements in gene-disease relationship 
extraction. However, there are still constraints, such 
as scalability issues, high processing costs, inadequate 
handling of complicated sentence structures, and 
difficulties with negation and speculative language. 
To bridge these gaps, the current study suggests using 
lightweight hybrid models (CNN-GRU, CNN-LSTM, and 
CNN-GRU-LSTM) that mix convolutional and recurrent 
architectures with attention mechanisms. These models 
aim to capture both local and long-range dependencies 
more efficiently, improve contextual information 
handling, and reduce computational demands when 
compared to transformer-based approaches such as 
BioBERT, all while maintaining high classification 
performance across diverse biomedical datasets.

Methods
The methodology of the proposed method is shown in 
Fig. 1. It consists of two main phases: (i) the preprocessing 
phase, and (ii) the classification phase. The datasets were 
obtained from diverse biological libraries including EU-

ADR,19 GAD,20 and SNPPhenA21 and used for predicting 
gene-disease associations. Each dataset undergoes the 
preprocessing phase, where all sentences are preprocessed 
to be represented by pre-trained embedding vectors, 
thereby rendering them suitable for further processing 
by the classifier. Following the preprocessing stage, the 
prepared datasets proceed to the classification phase. In 
this phase, deep-learning-based models are utilized to 
categorize gene-disease associations. Specifically, a multi-
class classification task is performed on the GAD dataset 
to classify gene-disease associations into positive (Y), 
negative (N), and irrelevant (F) categories. Conversely, 
the EUADR and SNPs datasets are subjected to binary 
classification, categorizing gene-disease associations as 
either positive (Y) or negative (N). To improve model 
performance, an attention mechanism at the word 
level was applied to each proposed model during the 
classification phase, enabling the models to concentrate on 
the most relevant words within each sentence throughout 
the classification process.

Dataset description
Different gene-disease association datasets were collected 
from three diverse publicly available comprehensive 
resources, including EU-ADR,19 GAD,20 and SNPPhenA.21 
The purpose of utilizing this diverse set of datasets is 
to evaluate the performance of deep learning models 
in classifying disease-gene associations across different 
benchmark datasets. We used datasets that fell into the 
gene-disease or SNP-phenotype association extraction 
categories. Several recent studies have used these standard 
biomedical relation extraction datasets, such as Bhasuran 
et al,8 Nourani et al,13 Bokharaeian et al,9 Lee et al,17 
Deng et al,18 and Bokharaeian et al.15 These datasets are 
described in detail below.
EU-ADR dataset
EU-ADR19 stands for European adverse drug reaction 
terminology, which consists of annotated scientific 
literature from Medline that focuses on drugs, diseases, 
targets (such as proteins, genes, and gene variations), and 
relationships between these entities. In this study, we used 
only GDAs to assess the proposed models. The EU-ADR 
dataset consists of 355 disease-gene associations, 218 
genes, and 118 diseases. These associations are categorized 
into positive associations (PA), negative associations 
(NA), speculative associations (SA), and false associations 
(FA) based on the degree of certainty that they possess. 
Table S2 presents the statistics of the EU-ADR dataset.
Genetic Association Database (GAD)
GAD20 is a comprehensive database of human genetic 
associations, specifically consisting of data collected 
from published association and genome-wide association 
studies. The GAD dataset contains 5,330 disease-gene 
associations between 1131 genes and 535 diseases. These 
associations are classified into three classes: positive 
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association (Y), negative association (N), and no semantic 
association (F). Table S3 represents the GAD dataset in 
summary.
SNPPhenA dataset
SNPPhenA21 demonstrates ranked relationships between 
SNPs and phenotypes identified in the literature. It was 
generated in three steps: collecting relevant abstracts, 
automatic named entity recognition (NER), and 
determining SNP-phenotype associations, negations, 
method flags, and confidence level. The SNP dataset 
contains 1300 SNP-phenotype associations that involve 
417 SNPs (genes) and 360 phenotypes (diseases), separated 
into training (935 samples) and testing (365 samples) data 
files. These associations are divided into three classes: 
positive, negative, and neutral associations. Table S4 
illustrates the statistics for the SNPPhenA dataset.

Table S5 provides a comparative summary of the 

number of instances per class better to illustrate the 
distribution of association types across datasets. A 
class imbalance exists in all datasets, with positive 
associations generally outnumbering negative or 
uncertain associations. This study merged speculative, 
neutral, and false associations into the main positive or 
negative classes where appropriate. Specifically, in the 
EU-ADR dataset, false associations (FA) and negative 
associations (NA) were merged into a single negative 
class. In contrast, positive associations (PA) and 
speculative associations (SA) were merged into a single 
positive class. In the SNPPhenA dataset, positive and 
neutral associations were combined into a positive class. 
However, no merging was performed in the GAD dataset, 
and three distinct classes were retained. The decision to 
merge certain uncertain classes was made to focus on the 
extraction of definitive gene-disease relationships (i.e., 

Fig. 1. The proposed methodology.
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positive and negative associations), as uncertain instances 
could introduce ambiguity and decrease the reliability 
of the models. Furthermore, modeling speculative or 
neutral associations requires specialized techniques, 
such as uncertainty modeling or fuzzy logic, which are 
beyond the scope of the current study. Future work 
could consider including such associations to enrich the 
relation extraction process.

Preprocessing phase
Each dataset was subjected to a series of operations 
during the preprocessing phase to enhance its quality and 
facilitate the subsequent analysis process when fed into 

the classifiers. The initial step is to identify and prepare 
entities within each dataset, which includes tasks such as 
sentence preprocessing, entity identification, padding, 
and label mapping. The following step involves applying 
the technique of word embedding to represent each 
sentence as a dense vector. Finally, positional embedding 
is employed to encode the sequential or positional order of 
words within each sentence. Fig. 2 illustrates the workflow 
of the preprocessing phase.
Entity identification and preparation
The essential entities within a dataset are identified: the 
sentence, the disease and gene names, their respective 
locations, and association labels. The names of diseases 

Fig. 2. The workflow of the preprocessing phase for a sample sentence.
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and genes in each sentence are then replaced with 
placeholders to ensure the task's generality. Subsequently, 
each sentence goes through processing procedures to 
improve its analyzability. These steps involve converting 
the text to lowercase, removing punctuation marks, 
replacing "/" characters with spaces, and tokenizing 
the sentence to generate a list of individual words. For 
convenience and standardization, a dictionary was created 
by leveraging pre-existing vocabularies and assigning a 
unique identifier to each word (e.g., '351' was assigned 
to the word 'humans'). Following this, each sentence 
vector was padded to the maximum length using a special 
token represented as < PAD > . This maximum length, 
determined empirically through dataset analysis, was set 
to 100. Padding sentence vectors to the same length are 
necessary to ensure uniform input lengths, facilitating 
efficient processing and compatibility with models 
requiring fixed-size inputs. Finally, the labels associated 
with each sentence are mapped to numeric IDs. In the 
EU-ADR dataset, false and negative associations were 
merged into a single negative class (label 0), while positive 
and speculative associations were incorporated into a 
positive class (label 1). In the SNPPhenA dataset, positive 
and neutral associations were merged and assigned as the 
positive class (label 1), while negative associations were 
labeled as 0. In the GAD dataset, the positive, negative, 
and no semantic associations were assigned three distinct 
labels: 0, 1, and 2, respectively. Subsequently, these 
mapped labels undergo conversion into one-hot encoded.
Word embedding
Word embedding is a method for representing words as 
dense vectors of actual numerical values in a continuous 
vector space. Recently, word embedding in deep learning 
models has demonstrated outstanding effectiveness in 
capturing semantic associations, allowing dimensionality 
reduction, and enabling transfer learning, enhancing 
various natural language processing tasks. To speed 
up training and improve outcomes, two popular pre-
trained word embedding models were used: the word2vec 
model, trained on PubMed and PMC datasets, and 
the fastText model, trained on a large corpus of text 
data gathered through web crawling. While general-
purpose embeddings such as word2vec and fastText 
may have limitations in capturing domain-specific 
nuances of biomedical texts, our use of Entity Relation 
(ER) preprocessing mitigates these limitations. By 
replacing medical terms (e.g., gene and disease names) 
with general placeholders, the biomedical text becomes 
more standardized and comparable to general text, 
allowing word2vec and fastText to capture relationships 
between entities effectively. Nonetheless, domain-specific 
embeddings like BioBERT and PubMedBERT remain 
promising for capturing complex semantic relationships 
inherent in biomedical literature and will be considered 
for future work. The word2vec model has been applied 

to the EU-ADR and GAD datasets, while the fastText 
model was applied to the SNPs Dataset to embed words. 
During the embedding process, each word is fed through 
a pre-trained model that weights the words depending on 
their context and relationships learned during training. 
These weights are expressed as vectors, and each word is 
assigned a 200-dimensional embedding.
Position embedding 
Position embedding is a method employed in NLP tasks 
to present information regarding the order or position 
of words in a sentence. The relative distance between 
words and target entities is an important component in 
determining the association between entities. Therefore, 
to capture this positional information, we trained a 
position embedding model on our training dataset, with 
each relative position embedding having a dimension of 
20. This form of embedding allows the neural network 
to keep track of the distance of each word to a gene or 
disease entity. For example, in the sentence “Mutations in 
the BRCA1 gene are linked to an increased risk of breast 
cancer”; the relative distance from “breast cancer” to the 
gene “BRCA1 gene” is 8. Finally, we merged all word and 
position vectors into a unified vector to create the final 
representation of each sentence, which is then passed as 
inputs to the deep learning models.

Classification phase
Three hybrid deep learning models (CNN-LSTM, CNN-
GRU, and CNN-GRU-LSTM) were designed to extract 
gene-disease associations during the classification phase. 
These architectures were chosen to combine the benefits of 
convolutional and recurrent models. CNNs are excellent 
at capturing local n-gram characteristics and short-range 
dependencies inside sentences, essential for recognizing 
patterns, including gene and disease names. Meanwhile, 
recurrent neural networks (RNNs) can simulate sequential 
information and long-distance dependencies, which 
are required for comprehending complex biomedical 
assertions. GRUs were used for the CNN-GRU model 
because they are computationally simpler and train 
faster than LSTMs while maintaining high performance. 
LSTMs, which are employed in the CNN-LSTM model, 
were chosen for their greater capacity to model long-term 
dependencies, which is especially relevant in biological 
phrases that frequently span extensive semantic links 
between clauses. The hybrid CNN-GRU-LSTM model 
was created to combine the strengths of GRUs and LSTMs 
and improve performance on texts that display short- 
and long-range dependencies. Furthermore, attention 
methods were built into each model to allow for dynamic 
weighting of words within sentences. This allowed the 
models to focus more on essential sections of the input 
and improved the extraction of relevant gene-disease 
connections. Prior research findings demonstrated that 
hybrid architectures and attention significantly improve 
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relation extraction tasks, particularly in complex biological 
domains, influencing these design decisions. Although 
the models were not explicitly designed with dedicated 
negation and speculation detection modules, combining 
pre-trained embedding and attention mechanisms helps 
capture some contextual clues related to negated or 
uncertain expressions.
Models architectures
Three hybrid neural network architectures were 
developed for gene-disease association classification: 
CNN-LSTM, CNN-GRU, and CNN-GRU-LSTM. The 
model architecture consists of one embedding layer, 
convolutional layers (three layers with the GAD dataset 
and two layers with the EUADR and SNPPhenA datasets), 
a bidirectional RNN layer (LSTM or GRU), and a fully 
connected layer, as shown in Fig. 3. Each model receives 
preprocessed sentences as input to start the model training 
process, where the training process is done by adjusting 
the connected model weights to minimize the error value 
between the target and the estimated value of the model. 
The binary cross-entropy loss function was used for 
binary classification to measure the difference between 
the actual and expected distribution. On the other hand, 
the cross-entropy loss function was used for multi-class 
classification to measure the difference between the actual 
and expected distributions. The training phase of the 
models consists of two stages: the feed-forward stage and 
the backpropagation stage. The feed-forward phase of the 
models includes the following steps:

Step (1): Initially, the embedding layer receives an 
input layer consisting of sequences of integer-encoded 
sentences from the pre-processed dataset, where it 
converts sequences into dense vectors of fixed dimension 
size to capture semantic meanings and contextual 
relationships inherent in the sentences. 

Step (2): The embedded sequences are then passed into 
two different paths, described in the following:
•	 In the first path, the embedded sequences are input to 

a CNN layer with a series of 1-D convolution layers 
for extracting the local features of every sentence. 
The model used two convolutional layers for the 
EU-ADR dataset, with 256 filters in the first Conv1D 
layer using kernel size 5 and 128 filters in the second 
Conv1D layer using kernel size 3. In the SNPPhenA 
dataset, two convolutional layers were used with 256 
filters of kernel size 7 in the first Conv1D layer and 
128 filters of kernel size 5 in the second Conv1D 
layer. In the GAD dataset, three convolutional layers 
have been used, with 64 filters in Conv1D layer one 
of kernel size 5, 128 filters in Conv1D layer two of 
kernel size 3, and 256 filters in Conv1D layer three of 
kernel size 3. Each filter was applied with the ReLU 
activation function to capture different features in 
sentences and represent them in feature maps. Max 
pooling and dropout were then employed after each 

convolutional layer, where max pooling was used 
for down-sampling to reduce the spatial dimensions 
of the feature maps. At the same time, dropout 
prevented overfitting by randomly ignoring neurons 
during training. The output of the last convolutional 
layer is subjected to global max pooling to reduce the 
dimensionality by taking the maximum value in each 
feature map, resulting in a fixed-size vector regardless 
of the input sequence length. 

•	 In the second path, the embedded sequences enter 
bidirectional RNN layers, with the specific type of 
RNN layer differing in each of the three models. The 
CNN-LSTM model feeds the embedded sequences 
into a bidirectional LSTM layer, which has 100 cells 
for each forward and backward direction. Each LSTM 
cell contains input, output, and forget gates, essential 
for determining information retention. These 
gates enable the LSTM to adjust cell states based 
on current and prior inputs, guiding the decision-
making process at each time step. The LSTM cells 
process embedded sequences in both forward and 
backward directions, thereby capturing contextual 
information from the beginning to the end and vice 
versa. In contrast, the CNN-GRU model feeds the 
embedded sequences to a bidirectional GRU layer 
with 100 cells. Each GRU cell contains update and 
reset gates to regulate information flow. Like LSTM, 
the GRU processes sequences directionally, enabling 
it to extract contextual information from both 
directions of the sentence. Finally, the CNN-GRU-
LSTM model transfers the embedded sequences to 
a hybrid RNN layer. This layer consists of a GRU 
for forward processing and an LSTM for backward 
processing, with cells set to 100 for both layers. At 
each time step, these cells make decisions regarding 
information retention and adjust their internal states 
in tandem. The hybrid approach enabled the model 
to develop a more sophisticated comprehension 
of the contextual information in the sentence by 
utilizing the capabilities of both GRUs and LSTMs. 
The outputs from the forward and backward RNN 
layers were concatenated and subsequently passed 
through an attention mechanism, enabling the 
model to focus on the most impactful words for 
classification automatically. The attention-enhanced 
feature vectors were then pooled to reduce the 
sequence dimensionality and retain only the most 
significant information.

Step (3): The outputs from the two paths are merged 
into unified vectors and passed to a fully connected 
layer, which contains two dense layers. The first dense 
layer performs the ReLU activation function and L2 
regularization to combine features from earlier layers. 
The outputs from the two paths are merged into unified 
vectors and passed to a fully connected layer, which 
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contains two dense layers. The first dense layer performs 
the ReLU activation function and L2 regularization to 
combine features from earlier layers and reduce the 
dimensionality of the features and overfitting. As for 
the last dense layer, it will take the previous dense layer's 
output and perform a softmax activation function to 
produce the model's final output with two classes (positive 
and negative) with the EU-ADR & SNPPhenA datasets or 

three classes (positive, negative, irrelevant) with the GAD 
dataset. Finally, in the backpropagation stage, the error 
between the predicted and actual output is calculated, and 
then, the Adam optimization algorithm is used to update 
the weight values. 

All models' hyperparameter settings were 
standardized to provide uniform training and equitable 
assessment, as shown in Table 1. Epochs (70) were 

Fig. 3. The architecture of deep models for gene-disease classification. (a) The CNN-LSTM model. (b) The CNN-GRU model. (c) The CNN-GRU-LSTM model. 
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chosen based on initial experiments without overfitting, 
but converged well. A batch size of 32 was selected to 
balance memory usage against the convergence rate. 
The dimensionality of embedding was set to 200 for the 
EU-ADR and SNPPhenA datasets and 300 for the GAD 
dataset, considering the heterogeneous vocabularies 
and complexities of the datasets, but a balance 
between richness in representation and complexity of 
computation. A drop rate of 0.4 following convolutional 
layers and dense layers was utilized for preventing 
overfitting, which is of great importance in biomedical 
text with relatively smaller amounts of labeled data. The 
capacity of RNN cells was set to a fixed value of 100 for 
GRU and LSTM units to allow sufficient model capacity 
for learning complex dependencies without exposing the 
model to the risk of extensive models and overfitting. 
The Adam optimizer with a learning rate of 0.001 
was used because it is stable and adaptive learning for 
different datasets.
Attention mechanism
Attention mechanisms in neural networks have 
demonstrated exceptional efficacy and adaptability 
across various NLP tasks. Their impact was especially 
noticeable in fundamental tasks like machine 
translation,22 sentiment analysis,23 and profiling users on 
social networks.24 Furthermore, attention mechanisms 
have been demonstrated to be effective in more 
complicated applications such as question answering,25 
drug repurposing,26 disease classification,27 and thermal 
prediction.28 In this study, we incorporated an attention 

mechanism into each of the three proposed models for 
relation classification using the RNN output (either LSTM 
or GRU) at the word level. After extracting word-level 
feature vectors from the embedded sequence inputs in 
both forward and backward directions, the attention layer 
assigns different weights to words within each sentence, 
allowing the model to focus on the most informative parts 
of the input sequence. This layer generated a vector of 
weights and was then used to scale the word-level features 
across each time step. Let H be a matrix of LSTM output 
vectors [h1, h2, … , hn], where n is the sentence length. 
A weighted sum of LSTM output vectors composes the 
representation r of the sentence.

M = tanh(H)                                                                         (1)
α = softmax(wT M)                                                               (2)
r = HαT                                                                                  (3)

Where H
wd nR ×∈ , dw is word embedding size, w is a 

vector of trainable weights, and wT is a transpose. The 
dimension of w, α, and r are dw, n, and dw, respectively. 
The sentence-pair representation for classification is 
attained by:

h* = tanh(r)                                                                          (4)

Experimental Results
In this section, we evaluated the performance of our 
models across three separate datasets, using precision, F1-
score, and recall metrics to demonstrate their effectiveness 
in classifying gene-disease associations. To validate 
our evaluation, we employed a 5-fold cross-validation 
approach on the GAD and EU-ADR datasets to ensure 
the maintenance of consistent class distribution across the 
folds, where the models were trained on four folds and 
tested on the remaining fold of the dataset. For the EU-
ADR dataset, class imbalance was addressed by applying 
class weight balancing during training to ensure more 
equitable model performance across different classes. 
For SNPPhenA, the dataset was already partitioned into 
training and testing files when it was obtained. 

Evaluation matrices
The performance measurement matrix for gene-disease 
associations (positive or negative) extraction systems 
comprises four performance measures. These are the 
Accuracy (Acc), precision (P), recall (R), and F1-score 
(F). These measures can be used to assess the proposed 
system's accuracy in extracting association types. The 
matrix identifies two categories of errors in the results 
produced by the proposed system, which will assist us 
in determining the performance level of the underlying 
implementation of the gene-disease relations extraction 
model. Type I errors, which are caused by false positives 
(FP), and type II errors, which are caused by false 

Table 1. The hyper-parameter settings used for the proposed models

Hyperparameter Value (All Models)

Number of epochs 70

Batch size 32

Training samples size 284 (EU-ADR), 935 (SNPPhenA), 4264 
(GAD)

Maximum sentence length 102 (EU-ADR), 91 (SNPPhenA), 81 (GAD)

Embedding dimension 200 (EU-ADR & SNPPhenA), 300 (GAD)

Number of convolutions 2 (EU-ADR, SNPPhenA), 3 (GAD)

Number of filters 256, 128 (EU-ADR, SNPPhenA); 64, 128, 
256 (GAD)

Kernel sizes (5,3) EU-ADR, (7,5) SNPPhenA, (5,3,3) 
GAD

Max pooling size 3

Dropout (CNN layers) 0.4

RNN cells
100 GRU (CNN-GRU), 100 LSTM (CNN-
LSTM), 100 GRU + 100 LSTM (CNN-GRU-
LSTM)

Optimizer Adam

Learning rate 0.001

Bias 0

L2 regularizer (Dense Layers) 0.05

Dropout (Dense Layers) 0.4
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negatives (FN), can be distinguished by precision and 
recall, respectively. The F-score is a comprehensive 
performance measure that considers both the precision 
and recall scores. The harmonic mean of precision and 
recall is referred to as the F1-score. Accuracy, on the other 
hand, measures the overall correctness of the system by 
considering both true positives (TP) and true negatives 
(TN) among all evaluated cases. The evaluation metrics 
are:

TP TNAcc
TP TN FP FN

+
=

+ + +                                             (5)

TPP
TP FP

=
+                                                                       (6)

TPR
TP FN

=
+                                                                       (7)

*2* P RF
P R

=
+                                                                       (8)

Where a correct positive association was counted as TP 
if the predicted association matched the true association, 
and an incorrect positive association was counted as FP 
if it did not match the corresponding true association. 
Moreover, for negative associations, a correct negative 
association was counted as a TN, and an incorrect 
association was counted as an FN.

Evaluations using the EU-ADR dataset
The evaluation of the proposed models on the EU-
ADR dataset highlights the strengths and limitations 
of each architecture, as shown in Table 2. The CNN-
GRU-LSTM model achieved the highest accuracy 
(90.14%), followed by CNN-GRU (88.73%) and CNN-
LSTM (85.92%). The superior performance of CNN-
GRU-LSTM is attributed to its ability to capture both 
short- and long-range dependencies effectively, while 
CNN-GRU offered competitive performance with 
fewer parameters, reducing the risk of overfitting on the 
relatively small dataset. All models demonstrated stronger 
performance on the positive class than the negative class, 
due to class imbalance, where negative associations were 
underrepresented. For example, CNN-GRU-LSTM 
achieved a precision of 92.59% and a recall of 94.34% 
for the positive class, but only 82.35% precision and 
77.78% recall for the negative class. Although class weight 
balancing was applied to mitigate this issue, it only partially 
improved minority class performance, suggesting that 
more advanced techniques like oversampling or synthetic 
data generation could further address the imbalance. To 
assess model robustness, additional experiments with 
noisy and missing data were conducted. Under 10% 
perturbation, CNN-GRU experienced a 5.3% accuracy 

drop. In contrast, CNN-GRU-LSTM exhibited greater 
resilience with only a 3.2% reduction, highlighting the 
benefit of combining GRU and LSTM units in handling 
noise and variability.

Evaluations using the GAD dataset
Evaluation of the models on the GAD dataset for multi-class 
classification of gene-disease associations demonstrated 
strong and relatively consistent performance across 
different architectures, as shown in Table 2. The CNN-
LSTM model achieved the highest accuracy at 84.90%, 
followed closely by the CNN-GRU-LSTM model (84.80%) 
and the CNN-GRU model (84.52%). The superior 
performance of CNN-LSTM can be attributed to its 
strong ability to capture long-term dependencies, which 
are essential in the GAD dataset where complex sentence 
structures are common. Although the CNN-GRU-
LSTM model also performed competitively, its slightly 
lower accuracy may be due to its increased complexity, 
which could introduce minor overfitting on large but 
diverse datasets. Meanwhile, CNN-GRU showed robust 
generalization across classes due to its efficiency and fewer 
parameters but slightly underperformed compared to 
CNN-LSTM in capturing longer contextual dependencies. 
Overall, the results indicate that all three models could 
identify gene-disease associations effectively, with CNN-
LSTM slightly outperforming others in modeling the 
nuanced relationships inherent in the GAD dataset.

Evaluations using the SNPPhenA dataset
The performance of the proposed models was evaluated 
using the SNPPhenA dataset, which is known for its 
complex structure and diverse association patterns. 
Among the models, the CNN-GRU achieved an accuracy 
of 91.23% with a slightly higher Macro average F1-score 
of 88.77%, indicating a better balance and improved 
recall for the negative class (75.70%), as shown in Table 
2. The CNN-GRU model's superior performance is 
attributed to the GRU's efficiency in modeling short to 
medium-range dependencies while avoiding overfitting. 
This is particularly beneficial given the relatively small 
and complex nature of the SNPPhenA dataset. The 
GRU architecture's simplified gating mechanisms enable 
quicker learning and greater generalization, capturing 
fundamental relationship patterns with minimal 
complexity. Similarly, the CNN-LSTM model also attained 
an accuracy of 91.23% with a Macro average F1-score of 
88.69%, although its recall for the negative class was lower 
(74.77%), suggesting occasional difficulty in identifying 
true negatives. In contrast, the CNN-GRU-LSTM model 
recorded the highest Macro average precision (92.32%) 
but had the lowest recall for the negative class (69.16%), 
resulting in a Macro average F1-score of 86.92% and a 
slightly reduced accuracy of 90.14%. While the CNN-
GRU-LSTM model excelled in detecting true positives, its 
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weaker performance in capturing true negatives affected 
its overall balance. Among the three models, the CNN-
GRU demonstrated the best trade-off between precision, 
recall, and F1-score, establishing it as the most effective 
model for analyzing the SNPPhenA dataset.

Error analysis
Even though the proposed models achieved strong overall 
performance in classifying gene-disease associations, 
an analysis of misclassified samples revealed several 
recurring challenges. Errors were widespread in sentences 

Table 2. Performance comparison of deep learning models on different datasets

Dataset Model Precision (%) Recall (%) F1-score (%) Support (%) Accuracy (%)

EU-ADR 

CNN-GRU-LSTM

Negative 82.35 77.78 80.00 18

90.14
Positive 92.59 94.34 93.46 53

Macro avg. 87.47 86.06 86.73 71

Weighted avg. 90.00 90.14 90.05 71

CNN-GRU

Negative 81.25 72.22 76.47 18

88.73
Positive 90.91 94.34 92.59 53

Macro avg. 86.08 83.28 84.53 71

Weighted avg. 88.46 88.73 88.51 71

CNN-LSTM

Negative 72.22 72.22 72.22 18

85.92
Positive 90.57 90.57 90.57 53

Macro avg. 81.39 81.39 81.39 71

Weighted avg. 85.92 85.92 85.92 71

GAD

CNN-GRU-LSTM

Irrelevant 86.28 84.27 85.27 515

84.80

Positive 81.23 84.8 82.98 342

Negative 87.38 86.12 86.75 209

Macro avg. 84.96 85.06 85.00 1066

Weighted avg. 84.88 84.8 84.82 1066

CNN-GRU

Irrelevant 88.58 81.36 84.82 515

84.52

Positive 81.28 85.09 83.14 342

Negative 81.28 91.39 86.04 209

Macro avg. 83.72 85.94 84.67 1066

Weighted avg. 84.81 84.52 84.52 1066

CNN-LSTM

Irrelevant 89.01 81.75 85.22 515

84.90

Positive 82.34 84.50 83.41 342

Negative 80.58 93.30 86.47 209

macro avg. 83.97 86.52 85.03 1066

Weighted avg. 85.21 84.90 84.89 1066

SNPPhenA 

CNN-GRU-LSTM

Negative 96.10 69.16 80.43 107

90.14
Positive 88.54 98.84 93.41 258

Macro avg. 92.32 84.00 86.92 365

Weighted avg. 90.76 90.14 89.6 365

CNN-GRU

Negative 93.10 75.70 83.51 107

91.23
Positive 90.65 97.67 94.03 258

Macro avg. 91.88 86.69 88.77 365

Weighted avg. 91.37 91.23 90.94 365

CNN-LSTM

Negative 94.12 74.77 83.33 107

91.23
Positive 90.36 98.06 94.05 258

Macro avg. 92.24 86.41 88.69 365

Weighted avg. 91.46 91.23 90.91 365
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with complex syntactic structures, especially when there 
were long-distance dependencies between the mentions of 
genes and diseases. Furthermore, the models made slightly 
inaccurate predictions when dealing with speculative 
statements (such as "Gene X can be held responsible for 
Disease Y") and negated relationships (such as "Gene X 
is not related to Disease Y"). Class imbalance was another 
primary source of error, which was mainly observed in 
the EU-ADR dataset, where the negative relationships 
were nowhere near being represented to a satisfactory 
degree compared to positive relationships. This distortion 
made it more challenging for the models to make accurate 
predictions of less frequent classes. These findings suggest 
that even with the incorporation of attention mechanisms, 
the models still struggle to detect fine-grained linguistic 
patterns, subtle semantic cues, and underrepresented class 
distributions. Subsequent research can overcome these 
constraints by exploring more advanced architectures, 
such as transformer-based models, and by adding 
specialized negation and speculation detection modules 
to enhance the extraction of complex biomedical relations 
further.

Performance evaluation compared to previous studies
The performance of the proposed models was compared 
to that of previous models that addressed the task of gene-
disease association classification using the same datasets 
(EU-ADR, GAD, and SNPPhenA) as shown in Tables 
S2, S3, and S4. For the EU-ADR dataset, our CNN-GRU-
LSTM model outperformed all prior techniques, with an 
F1-score of 93.46%, as shown in Table 3. Bhasuran et al 
offered an Ensemble SVM with an F1-score of 85.34%, 
whereas Nourani et al showed a minor improvement with 
a CNN-BiLSTM model at 85.80%. Despite using domain-
specific pre-trained models, BioBERT-based techniques 
by Lee et al and Deng et al produced F1-scores of 84.83% 
and 79.98%, respectively, falling short of our model's 
performance. The CNN-GRU-LSTM model's ability 

to efficiently combine convolutional and sequential 
operations for feature extraction and dependency 
modeling enables it to handle the dataset's complexity 
more effectively than previous methods, setting a new 
benchmark for EU-ADR classification.

On the GAD dataset, the CNN-LSTM model achieved 
an F1-score of 85.03%, as shown in Table 3. In terms of 
capturing the complex characteristics of the dataset, our 
model outperforms the CNN-BiLSTM model of Nourani 
et al, which achieved an F1-score of 71.63%. Similarly, the 
BioBERT-based model of Lee et al achieved an F1-score 
of 81.52%, somewhat lower than our CNN-LSTM model. 
The comparison indicates that our hybrid CNN-LSTM 
architecture is more successful than previous techniques 
in handling the problems of the GAD dataset.

For the SNPPhenA dataset, our CNN-GRU model 
outperformed previous techniques with an F1-score 
of 88.77%, as shown in Table 3. The negation-neutral-
based technique (NNB) by Bokharaeian et al produced 
an F1-score of 75.60%, while the CNN-BiLSTM model 
by Nourani et al scored 73.97%, despite the dataset's 
intrinsic problems. More recently, Bokharaeian et al 
used PubMedBERT-LSTM and produced an F1-score of 
83.90%, which demonstrated improvements but fell short 
of our suggested model. Our model's use of convolutional 
and GRU layers allows it to effectively capture spatial 
and temporal dependencies within the data, resulting in 
higher performance.

Discussion
This study examined the reliability of hybrid deep 
learning-based models in classifying gene-disease 
associations from biomedical literature, augmented by 
attention mechanisms. By utilizing three distinct publicly 
accessible datasets (EU-ADR, GAD, and SNPPhenA), the 
models demonstrated their ability to uncover significant 
associations in extensive text collections. A comprehensive 
evaluation was conducted on the proposed models, which 

Table 3. Evaluation results on the EU-ADR, GAD, and SNPPhenA datasets

Dataset Study Method Precision (%) Recall (%) F1-Score (%)

EU-ADR 

Bhasuran et al8 EnsembleSVM 76.43 98.01 85.34

Nourani et al13  CNN-BiLSTM 78.10 97.0 85.80

Lee et al17 BioBERT 80.92 90.81 84.83

Deng et al18 BioBERT 75.03 76.17 79.98

Proposed method CNN-GRU-LSTM 92.59 94.34 93.46

GAD 

Nourani et al13  CNN-BiLSTM 71.62 72.64 71.63

Lee et al17 BioBERT 75.95 88.08 81.52

Proposed method CNN-LSTM 83.97 86.52 85.03

SNPPhenA

Bokharaeian et al9 NNB 75.40 79.60 75.60

Nourani et al13  CNN-BiLSTM 75.99 74.69 73.97

Bokharaeian et al15 PubMedBERT–
LSTM 84.00 84.40 83.90

Proposed method CNN-GRU 91.88 86.69 88.77
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include CNN-LSTM, CNN-GRU, and CNN-GRU-
LSTM. The CNN-GRU model demonstrated outstanding 
performance on the SNPPhenA dataset, achieving an 
accuracy of 91.23%. Likewise, the CNN-GRU-LSTM 
model showed strong results on the EU-ADR dataset, 
with an accuracy of 90.14%.

Meanwhile, the CNN-LSTM model achieved an 
accuracy of 84.90% on the GAD dataset. These results 
indicate that the hybrid approach, which combines 
convolutional neural networks with recurrent neural 
networks (specifically the integration of LSTM and GRU 
layers), effectively captures subtle and contextual details 
essential for accurate gene-disease association extraction. 
Attention mechanisms enhanced model performance by 
enabling a focus on the most relevant information within 
the input sequences, helping to overcome challenges 
posed by imbalanced datasets. Notably, all models faced 
performance limitations on underrepresented classes, 
particularly in the EU-ADR dataset, highlighting the 
need for future methods to handle class imbalance more 
effectively.

Regarding computational cost, the CNN-GRU model 
exhibited the fewest parameters among all models, 
owing to its simpler structure, making it the most 
computationally efficient in terms of model size. However, 
the training time differences across the datasets were 
relatively minor and more influenced by dataset size than 
model complexity. Specifically, training on the EU-ADR 
dataset took approximately 1 minute and 10 seconds, 
while training on the GAD dataset took about 15 minutes, 
and about 4 minutes for the SNPPhenA dataset. These 
variations primarily reflect differences in data volume 
rather than significant computational disparities between 
models. As for hardware requirements, all training 
experiments were conducted on a system equipped with 
an Intel Core i5-12400 CPU and an NVIDIA RTX 3060 
Ti GPU, running Windows 10 and using Python version 
3.7 within the Anaconda environment. Furthermore, 
although transformer-based models such as BioBERT 
and PubMedBERT have achieved remarkable results 
in biomedical NLP tasks, they were not employed in 
this study primarily due to their high computational 
demands, which may not be accessible to all researchers or 
practitioners. Instead, emphasis was placed on developing 
lighter hybrid models that balance strong performance 
with practical computational requirements.
Conclusion
The findings of this study demonstrate that lightweight 
hybrid deep learning models, when enhanced with 
attention mechanisms, can effectively extract gene-
disease associations from biomedical literature with 
high accuracy and computational efficiency. Each 
model showcased strengths depending on the dataset 
characteristics, with CNN-GRU achieving superior 
results on SNPPhenA, CNN-GRU-LSTM excelling 

on EU-ADR, and CNN-LSTM performing best on 
GAD. Regarding real-world applicability, although 
the models were initially developed and validated for 
research applications, their relatively low computational 
demand and strong predictive performance suggest that, 
with further tuning and domain-specific validation, 
they could be adapted for use within clinical decision-
support systems or biomedical research pipelines. Future 
research is encouraged to explore adaptive architectures 
that dynamically adjust to varying data characteristics, 
integrate advanced transformer-based models to capture 
deeper semantic relationships, and develop enhanced 
preprocessing strategies to improve model robustness 
and generalizability for clinical deployment. Future work 
should also focus on explicitly addressing negations and 
speculative language by integrating specialized detection 
modules or enhancing attention mechanisms to better 
distinguish uncertain and negated associations in 
biomedical texts.
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