Design and computational analysis of an effective multi-epitope vaccine candidate using subunit B of cholera toxin as a build-in adjuvant against urinary tract infections

Maryam Rezaei, Mehri Habibi, Parastoo Ehsani, Mohammad Reza Asadi Karam^{*}, Saeid Bouzari^{*}

Molecular Biology Department, Pasteur institute of Iran, Tehran, Iran

Figure S1: The frequency of MHC alleles used in our study is shown based on the data extracted from www.allelefrequencies.net.

Structural element	δG	Information
External loop	-	5 ss bases & 1
	0.60	closing helices.
Stack	-	External closing
	1.40	pair is u ⁴ -g ¹⁰²³
Stack	-	External closing
	1.50	pair is g 5-c 1022
Stack	-	External closing
	2.10	pair is g 6-u 1021
Stack	-	External closing
	3.30	pair is g ⁷ -c ¹⁰²⁰

Table S1: Free energy details related to 5'end of chimeric gene mRNA structure

Figure S2: The best predicted mRNA structure (Δ G=-252.17 kcal/mol).

Figure S3: The two-dimensional diagram of the vaccine protein-TLR2 docked complex. The hydrogen bonds and hydrophobic interactions are shown as a Deep sky blue dashed line, and a red spline curve, respectively. The intermolecular bonds of the vaccine and TLRs are shown as orange and pink lines, respectively. The plots provided by the DIMPLOT tool of LigPlot+ v2.2 program.

Figure S4: The merge tertiary structure of the TLR2- vaccine protein complex at 75,95 and 99ns.

	Interacting amino acids of ligand	Interacting amino acids of receptor
75 ns	His247, Thr249, Gln250, His252, Leu254	Val292, Asn294, Leu324, Tyr323, Tyr326
95ns	Thr249, Gln250, His252, Leu254, Ala336	Val292, Asn294, Ala297,Tyr323, Leu324
99ns	Thr249, Gln250, lle251, His252, Pro327, His328	Val292, Asn294, Asp301, Arg302, Leu324, Tyr326

Table S2: Interacting amino acids of vaccine protein and TLR2 at 75ns, 95ns and 99 ns by Ligplot+ software.

Figure S5.: Conformational changes of the TLR2- vaccine protein complex at 10, 20, 31, 40, 50, 60, 70, 80, 90 and 95ns during simulation time after clustering analysis.