Synthesis and initial *in vitro* evaluation of olmutinib derivatives as prospective imaging probe for non-small cell lung cancer

Muammar Fawwaz^{1,2*}, Kenji Mishiro^{3*}, Arwansyah⁴, Ryuichi Nishii⁵, Kazuma Ogawa^{2,3*}

¹Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Muslim Indonesia, Urip Sumoharjo KM. 5, Makassar 90-231, Indonesia

²Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
³Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
⁴Department of Chemistry Education, Faculty of Teacher Training and Education, Universitas Tadulako, Palu, Indonesia
⁵Biomedical Imaging Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Higashi-ku, Nagoya 461-8673, Japan

Figure S1. The 1H NMR spectrum of thieno(3,2-d)pyrimidine-2,4(1H,3H)-dione **(1)**. ¹H NMR (400 MHz, (CD₃)₂SO): δ 6.91 (1H, d, *J* = 5.2 Hz), 8.04 (1H, d, *J* = 4.8 Hz), 11.23 (1H, s), 11.57 (1H, s).

Figure S2. The 1H NMR spectrum of 2,4-dichlorothieno(3,2-d)pyrimidine **(2)**. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (1H, d, *J* = 5.2 Hz), 8.13 (1H, d, *J* = 6.0 Hz).

Figure S3. The 1H NMR spectrum of 3,5-dinitrophenol (**3**). ¹H NMR (400 MHz, CDCl₃): δ 6.69 (1H, s), 8.02 (2H, d, *J* = 2.0 Hz), 8.63 (1H, t, *J* = 2.0 Hz).

Figure S4. The 1H NMR spectrum of 3-amino-5-nitrophenol **(4)**. ¹H NMR (400 MHz, (CD₃)₂SO): δ 7.67 (1H, t, *J* = 2.4 Hz), 7.85 (2H, s), 8.06 (1H, t, *J* = 2.4 Hz), 8.42 (2H, td, *J* = 7.6, 1.6 Hz).

Figure S5. The 1H NMR spectrum of 3-iodo-5-nitrophenol **(5)**. ¹H NMR (400 MHz, (CDCl₃): δ 5.54 (1H, s), 7.54 (1H, dd, *J* = 2.4, 1.2 Hz), 7.66 (1H, t, *J* = 2.4 Hz), 8.14 (1H, t, *J* = 2.0 Hz).

Figure S6. The 1H NMR spectrum of 2-chloro-4-(3-iodo-5-nitrophenoxy)thieno(3,2-d)pyrimidine **(6)**. ¹H NMR (400 MHz, (CDCl₃): δ 7.55 (1H, d, *J* = 5.6 Hz), 8.00 (1H, s), 8.08 (1H, d, *J* = 4.0 Hz), 8.17 (1H, t, *J* = 1.6 Hz), 8.54 (1H, s).

Figure S7. The 1H NMR spectrum of 1-methyl-4-(4-nitrophenyl)piperazine (7). ¹H NMR (400 MHz, CDCl₃): δ 2.36 (3H, s), 2.56 (4H, t, *J* = 5.6 Hz), 3.44 (4H, t, *J* = 5.6 Hz), 6.82 (2H, dt, *J* = 9.6, 2.4 Hz), 8.12 (2H, dt, *J* = 9.6, 2.4 Hz).

Figure S8. The 1H NMR spectrum of 4-(4-methylpiperazin-1-yl)aniline **(8).** ¹H NMR (400 MHz, (CDCl₃): δ 2.34 (3H, s), 2.58 (4H, t, *J* = 4.8 Hz), 3.07 (4H, t, *J* = 4.8 Hz), 6.65 (2H, dt, *J* = 9.2, 2.4 Hz), 6.81 (2H, dt, *J* = 8.4, 1.6 Hz).

Figure S9. The 1H NMR spectrum of 4-(3-nitro-5-iodophenoxy)-N-[4-(4methylpiperazin-1-yl)phenyl]thieno(3,2-d)pyrimidin-2-amine (9). ¹H NMR (400 MHz, CDCl₃): δ 2.38 (3H, s), 2.63 (4H, t, J = 5.0 Hz), 3.18 (4H, t, J = 5.0 Hz), 6.80–6.85 (3H, m), 7.28 (1H, d, J = 5.6 Hz), 7.33 (1H, d, J = 8.8 Hz), 7.87 (1H, d, J = 5.6 Hz), 8.01 (1H, t, J = 1.8 Hz), 8.16 (1H, t, J = 2.0 Hz), 8.50 (1H, t, J = 1.8 Hz).

Figure S10. The 1H NMR spectrum of 4-(3-amino-5-iodophenoxy)-N-[4-(4methylpiperazin-1-yl)phenyl]thieno(3,2-d)pyrimidin-2-amine (10). ¹H NMR (400 MHz, CDCl₃): δ 2.36 (3H, s), 2.59 (4H, t, J = 4.4 Hz), 3.16 (4H, t, J = 4.8), 6.55 (1H, t, J = 1.6 Hz), 6.88 (1H, s), 6.89 (1H, d, J = 9.2 Hz), 6.99 (1H, td, J = 1.6, 2.0 Hz), 7.04 (1H, t, J = 1.6 Hz), 7.25 (1H, d, 5.6 Hz), 7.42 (1H, d, J = 8.8 Hz), 7.81 (1H, t, J = 4.8 Hz).

Figure S11. The NMR and MS spectra of *N*-{3-iodo-5-[(2-{[4-(4-methylpiperazin-1yl)phenyl]amino}thieno{3,2-d}pyrimidin-4-yl)oxy]phenyl} **(11)**. ¹H NMR (400 MHz, CDCl₃): δ 2.42 (3H, s), 2.65 (4H, br, s), 3.19 (4H, br, s), 5.80–6.70 (3H, m), 6.80–6.85 (3H, m)^a, 7.29 (1H, d, *J* = 4.8 Hz), 7.33 (2H, d, *J* = 8.0 Hz), 7.56 or 7.78 (1H, s)^b, 7.88 (1H, d, *J* = 5.2 Hz), 8.01 (1H, t, *J* = 1.6 Hz), 8.16 (1H, t, *J* = 2.0 Hz), 8.50 (1H, t, *J* = 2.0 Hz). MS (ESI+) calculated for C₂₆H₂₅IN₆O₂S [M+H]⁺: *m*/*z* = 613.1, found 613.2. ^aThree protons derived from an impurity are also observed in this area. ^bOne of these two singlet signals is derived from an impurity.

Figure S12. HPLC chromatogram of *N-{3-iodo-5-[(2-{[4-(4-methylpiperazin-1-yl)phenyl]amino}thieno{3,2-d}pyrimidin-4-yl)oxy]phenyl}* **(11).** HPLC condition: An isocratic mobile phase of chloroform/methanol = 9/1, Cosmosil[®] 5SL-II (20 ID × 250 mm) column, flow rate 9.5 mL/min.