Supplementary file 1

In-silico based discovery of potential Keap1 inhibitors using the strategies of pharmacophore screening, molecular docking, and MD simulation studies

Ekta Singh^{1,2}, Gurubasavaraja Swamy Purawarga Matada^{1*}, Prasad Sanjay Dhiwar¹, Rajesh B. Patil³, Rohit Pal¹

¹Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India

²Aditya Bangalore Institute of Pharmacy Education and Research, Department of Pharmaceutical Chemistry, 560064, Karnataka, India

³Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Department of Pharmaceutical Chemistry, Off Sinhgad Road, Vadgaon (Bk), Pune 411041, Maharashtra, India

Statistical results of the top 10 pharmacophore hypotheses generated by HypoGenalgorithm.

Нуро.	Total	Null	RMSD	Correlati	Max.	Features
no	cost	Cost		on	Fit	
		distance				
1.	104.364	10.604	0.600368	0.936596	9.13981	HBA
						HBA
						HBA
						HYDROPHOBAromatic
2.	105.489	9.4790	0.697249	0.911059	8.42578	HBA
						НВА
						НВА
						HYDROPHOBAromatic
3.	106.023	8.9450	0.725229	0.903609	8.58790	HBA
						НВА
						HBA
						HYDROPHOBAromatic
4.	106.188	8.7800	0.728697	0.903109	8.80628	HBA
						HBA
						HBA
						HYDROPHOBAromatic

5.	106.511	8.4570	0.758513	0.893562	8.19845	HBA HBA HBA HVDPOPHOBAromatic
6.	106.968	8	0.782225	0.886438	8.30334	HBA
						HBA
						HBA
						HYDROPHOBAromatic
7.	107.052	7.9160	0.788295	0.884439	8.06738	HBA
						НВА
						НВА
						HYDROPHOBAromatic
8.	107.373	7.5950	0.804100	0.879512	8.24711	HBA
						HBA
						НВА
						HYDROPHOBAromatic
9.	107.454	7.5140	0.807727	0.878365	7.69805	HBA
						HBA
						HBA
						HYDROPHOBAromatic
10.	107.5	7.4680	0.80841	0.878306	8.43267	HBA
						HBA
						HBA
						HYDROPHOBAromatic
	1			1	1	

Statistical results of the top 10 pharmacophore hypotheses generated by HypoGenalgorithm. (Supplementary data)

(~~	menenty and	••)				
Нуро.	Total cost	Null Cost	RMSD	Correlation	Max. Fit	Features
no		distance				
11.	104.364	10.604	0.600368	0.936596	9.13981	HBA
						HBA
						HBA
						HYDROPHOBAromatic
12.	105.489	9.4790	0.697249	0.911059	8.42578	HBA
						HBA
						HBA
						HYDROPHOBAromatic
13.	106.023	8.9450	0.725229	0.903609	8.58790	HBA
						HBA
						HBA
						HYDROPHOBAromatic
14.	106.188	8.7800	0.728697	0.903109	8.80628	HBA
						HBA
						HBA
						HYDROPHOBAromatic

15.	106.511	8.4570	0.758513	0.893562	8.19845	HBA
						HBA
						HBA
						HYDROPHOBAromatic
16.	106.968	8	0.782225	0.886438	8.30334	HBA
						HBA
						HBA
						HYDROPHOBAromatic
17.	107.052	7.9160	0.788295	0.884439	8.06738	HBA
						HBA
						HBA
						HYDROPHOBAromatic
18.	107.373	7.5950	0.804100	0.879512	8.24711	HBA
						HBA
						HBA
						HYDROPHOBAromatic
19.	107.454	7.5140	0.807727	0.878365	7.69805	HBA
						HBA
						HBA
						HYDROPHOBAromatic
20.	107.5	7.4680	0.80841	0.878306	8.43267	HBA
						HBA
						HBA
						HYDROPHOBAromatic

Costs and random hypothesis generated (Supplementary data)

	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ran									
С	nd	nd	nd	nd	nd	nd	nd	nd	nd	do									
os	om	om	om	om	om	om	om	om	om	ml	ml	ml	ml	m1	ml	m1	m1	m1	ml
ts	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
1																			
0																			
4.	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	114	114	114	114	114	114	114	112	114	114
3	11	11	11	11	11	11	11	11	11	114	114	114	114	114	114	114	112	114	61
0	4.9	4.9	02	4.9	4.9	4.9	4.9	4.9	4.9	.90	.90	.90	.90	.90	.90	.90	.57	.90	.01
4	12	12	93	12	11	12	12	12	12	120	120	121	126	0	0	0	112	0	0
54	$\frac{12}{20}$	04		37	75	67	7.0	29	31	20	63	131	73	53	62	116	23	71	96
89	2.0 84	18	29	86	81	55	96	2.5	74	.2)	.05	.10	.75	.55	.02	82	.23	./1	.70
10	12	12	11	12	11	12	70	12	13	131	121	131	127	117	122	117	114	120	115
6.0	2.7	0.4	4.9	9.7	7.7	7.0	12	3.1	4.3	.15	.51	.50	.14	.62	.34	.05	.96	.69	.81
23	5	92	68	2	44	78	8.8	69	81	3	4	5	8	3	2	8	8	4	9
10	12	12	11	13	11	12	12	12	13	131	122	131	127	117	124	117	115	120	117
6.1	3.5	0.8	6.3	0.8	7.9	7.7	9.2	4.2	4.6	.53	.58	.75	.73	.70	.22	.36	.35	.82	.47
88	79	6	39	32	81	42	23	58	39	6	5	4	9	8	7	1	6	3	1
10	12	12	11	13	11	12	12	12	13	131	122	132	127	118	124	117		120	118
6.5	3.6	4.4	6.8	1.8	8.2	8.3	9.5	6.3	4.6	.84	.64	.64	.88	.88	.83	.51	117	.82	.40
11	81	49	52	39	15	85	82	19	7	5	2	3	1	6	8	7	.79	4	7
10	12	12	11	13	11	12	12	12	13	131	123	133	129	118	124	117	118	121	118
6.9	3.7	7.0	7.1	2.7	8.3	9.5	9.8	6.3	4.6	.87	.36	.09	.18	.99	.96	.67	.51	.22	.41
68	74	16	38	4	06	25	74	95	84	3	1	3	8	4	4	3	7	7	7
10	12	12	11	13	11	13	12	12	13	131	123	133	129	119	125	118	118	121	120
7.0	3.8	7.7	7.4	3.4	8.4	0.3	9.9	7.1	4.9	.87	.39	.09	.39	.07	.61	.95	.59	.73	.33
52	64	58	11	91	49	66	09	52	34	4	100	9	5	4	6	5	5	101	4
10	12	12	11	13	11	13	13	12	13	132	123	133	129	119	125	119	118	121	121
7.5	4.1	/.8	8.0	3.9	8.5 52	1.4	0.1	7.2	4.9	.15	./2	.50	.44	.23	.95	.07	.//	.92	.0/
10	12	12	11	12	11	12	10	12	12	122	122	122	120	110	126	4	0	122	122
74	4 1	7.8	8.0	30	86	16	0.4	72	5.0	21	86	67	45	28	120	110	86	24	122 44
54	34	37	91	72	28	44	22	30	04	.21	.00	.07	.+3	.28	.09	17	.00	.24	.44
57	12	12	11	13	11	13	13	12	13	132	123	133	129	119	126	119	119	122	122
10	4.1	8.0	8.1	3.9	8.7	1.9	0.7	7.5	5.1	.22	.92	.76	.49	.45	.15	.27	.31	.50	.48
7.5	61	28	77	78	33	69	7	47	73	3	4	5	5	2	6	4	6	7	2

Compound	Aq	GI absorp	BBB penetr	P-gp Inhihi	CYP450 inhibition					ADMET_Ext_Hep
	So	tion	ation	tion	1	2 C	2	2	3	atotoxicity
	1				Α	19	С	D	Α	
	(L				2		9	6	4	
	og S)									
Sulforaphan	-	High	No	N	Ν	Ν	Ν	Ν	Ν	-1.7285
e (Std)	1.5									
	0									
Hit_Asinex	-	High	No	Y	Ν	Ν	Y	Y	Y	-1.3288
	4.7									
	2									
Hit_MiniMa	-	Low	No	Ν	Ν	Ν	Ν	Ν	Ν	-2.47373
ybridge	4.5									
	5									
Hit_Zinc	-	high	No	N	Y	Ν	Y	Y	Y	-3.52324
	4.3	_								
	8									

ADMET properties of 3 top hit molecules (Supplementary data)

Toxicity parameters of hit molecules(Supplementary data)

Compound	Female	Male rat	Skin	Aerobic	Developmen	AMES
	rat NTP	NTP	irritanc	biodegradabil	tal toxicity	predicti
	predictio	predictio	У	ity	potential	on
	n	n				
Sulforaphane (Std)	Non- carcinog en	Non- carcinog en	Mild irritant	Non- degradable	Toxic	Non- mutagen
Hit_Asinex	Non- carcinog en	Non- carcinog en	Non- irritant	Non- degradable	Non-toxic	Non- mutagen
Hit_MiniMaybri dge	Non- carcinog en	Non- carcinog en	Non- irritant	Non- degradable	Non-toxic	Non- mutagen
Hit_Zinc	Non- carcinog en	Non- carcinog en	Non- irritant	Non- degradable	Non-toxic	Non- mutagen

Drug likeness properties of 3 top hit molecules (Supplementary data)

Molecules	Mol	Alog	Н	H bond	Lipinsk	Rotatabl	Total	Molar	Verber'
	Wt	Р	Bond	accepto	i's rule	e bonds	polar	refractiv	s rule
	(g/mol		donor	r			surface	ity	
							area		

)						$(Å^2)$		
Sulforaphane (Std)	177.29	1.081	0	2	Yes	5	80.73	48.40	Yes
Hit_Asinex	489.02	2.906	3	6	Yes	8	125.88	139.28	Yes
Hit_MiniMay bridge	391.44	3.311	3	7	Yes	8	144.66	104.04	Yes
Hit_Zinc	382.41	4.066	3	6	Yes	8	100.91	106.22	Yes

Lipinski's rule: Mol wt \leq 500 g/mol; ALog P \leq 5 but not < 1; H-bond donors \leq 5; H-bond acceptors \leq 10; Verber's rule: Rotatable bonds \leq 10; TPSA \leq 140 Å²

Fig. S1 Regression plot of hypothesis1. Green dots depict active molecules and black dots depict inactive molecules.

Fig. S2 (a) standard: sulforaphane, (b) Hit_Asinex (c) Hit_MiniMaybridge and (d) Hit_Zinc database

Fig. S3 Amino acid interactions (a) standard: sulforaphane (b) Hit_Asinex (c) Hit_MiniMaybridge and (d) Hit_zinc

Fig. S4: Trajectories of protein-ligand (Hit-Asinex) complex extracted at different time interval of MDS

100 ns

Fig. S5: Trajectories of protein-ligand (Hit-Maybridge) complex extracted at different time interval of MDS

75 ns

Fig. S6: Trajectories of protein-ligand (Hit-Zinc) complex extracted at different time interval of MDS

100 ns

Fig. S7: Trajectories of protein-ligand (Standard Drug) complex extracted at different time interval of MDS